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Stability and dependence

A graph G is definable in a structure H if there is a formula φ(x̄ , ȳ)
such that V (G) = V (H)∣x̄ ∣ and E(G) = {(ā, b̄) ∶ H ⊧ φ(ā, b̄)}.

Example: Finding d-degenerate graphs in the age of edgeless graphs.

▸ φ(x̄ , ȳ) with ∣x̄ ∣ = ∣ȳ ∣ = d + 1

▸ Assume ∣V (G)∣ = n. Let V (H) = [n] Ð→ V (G) ⊆ [n]d+1.

▸ G is d-degenerate Ð→ order V (G) such that every v ∈ V (G) has
at most d smaller neighbors, say v1, . . . , vk for k ≤ d .

▸ Map v to (v1, . . . , vk , v , . . . , v).

▸ Define E(G) in H by

φ(x̄ , ȳ) = ⋁
1≤i≤d

(xi = yd+1 ∨ yi = xd+1).

▸ Attention: we do not interpret G but a supergraph of G .
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Stability and dependence

A class C of graphs is definable in a class D of structures if there is a
formula φ(x̄ , ȳ) such that every G ∈ C is defined by φ in some H ∈ D .

The order-dimension of a graph G is the largest integer ℓ such that
there exist vertices a1, . . . , aℓ,b1, . . . ,bℓ with {ai ,bj} ∈ E(G)⇔ i ≤ j .

A class C of structures is stable if every graph class definable in C
has bounded order-dimension.
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Stability and dependence

The VC-dimension of a graph G is the largest integer d such that
there exist vertices a1, . . . , ad ∈ V (G) and vertices bJ ∈ V (G) for
J ⊆ [d] such that {ai ,bJ} ∈ E(G)⇔ i ∈ J.

A class C of structures is dependent/NIP if every graph class
definable in C has bounded VC-dimension.
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Monadic stability and dependence

A class C of structures is monadically stable/NIP if the class of all
monadic expansions (colorings) of structures from C is stable/NIP.

Example: The class of 1-subdivided cliques is stable but not
monadically NIP.

[Braunfeld and Laskoswki, 22]: A hereditary class of graphs is
stable/NIP if and only if it is monadically stable/NIP.

▸ Twin-width is hereditary → we only have to show monadic NIP.

[Baldwin and Shelah, 85]: C is monadically stable/NIP if and only
every graph class definable in the monadic expansions of C by
formulas φ(x , y) have bounded order/VC dimension.

▸ Instead of interpretations (in powers) we may look at transductions.

▸ Transductions combine colorings and simple interpretations φ(x , y).
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Transductions

k-copy operation

Coloring

Simple interpretation φ(x , y) defining the new edge set and taking an
induced subgraph

▸ φ(x , y) = ¬E(x , y) (complementing the edge relation)

▸ Keep only red and blue vertices (definable induced subgraph)
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Bounded twin-width is preserved under transductions

[Bonnet, Kim, Thomassé, Watrigant, 20]: If C has bounded
twin-width, then every transduction of C has bounded twin-width.

▸ Twin-width is preserved under the k-copy operation:
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Bounded twin-width is preserved under transductions

[Bonnet, Kim, Thomassé, Watrigant, 20]: If C has bounded
twin-width, then every transduction of C has bounded twin-width.

▸ Twin-width is preserved under the k-copy operation: ✓
▸ Coloring and simple interpretation:

- Refine the contraction sequence by local red types.
[Beautiful presentation by Gajarský, Pilipczuk, Przybyszewski,
Toruńczyk, 22]

- In the contraction sequence local red types change only in local red
neighborhoods and can be updated efficiently.
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Bounded twin-width classes are monadically NIP

[Bonnet, Kim, Thomassé, Watrigant, 20]: If C has bounded
twin-width, then every transduction of C has bounded twin-width.

▸ Bounded twin-width classes are monadically NIP.

[Bonnet, Giocanti, Ossona de Mendez, Simon, Thomassé,
Toruńczyk, 22]: A hereditary class of ordered binary structures has
bounded twin-width if and only if it is monadically NIP.

[Bonnet, Kim, Thomassé, Watrigant, 20]: If C has bounded
twin-width and each G ∈ C is given with a contraction sequence, then
FO model checking is FPT linear on C .

▸ Open problem: How to compute good contraction sequences?

[Bonnet, Giocanti, Ossona de Mendez, Simon, Thomassé,
Toruńczyk, 22]: If C is a hereditary class of ordered graphs,
then FO model checking is FPT on C if and only if C has bounded
twin-width.
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Structural decompositions

[Nešeťril and Ossona de Mendez, 04]: A class C of graphs has
bounded expansion ⇔ for every p there exists a class Dp with
bounded treedepth, such that each G ∈ C can be partitioned into at
most Np parts, each p of them inducing a subgraph in Dp.

→ Classes with bounded expansion have bounded treedepth
decompositions.

[Nešeťril and Ossona de Mendez, 04]: A class C of graphs is nowhere
dense ⇔ for every p there exists a class Dp with bounded treedepth,
such that each graph G ∈ C can be partitioned into at
most Np ∈ ∣G ∣o(1) parts, each p of them inducing a subgraph in Dp.

→ Nowhere dense classes have quasi-bounded treedepth decompositions.
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Structural decompositions

[Gajarský, Kreutzer, Nešeťril, Ossona de Mendez, Pilipczuk, S.,
Toruńczyk, 20]: A class C of graphs has structurally bounded
expansion ⇔ for every there exists a class Dp with bounded
shrubdepth, such that each G ∈ C can be partitioned into at most Np

parts, each p of them inducing a subgraph in Dp.

→ Classes with structurally bounded expansion have bounded shrubdepth
decompositions.

[Dreier, Gajarský, Kiefer, Pilipczuk, Toruńczyk, 22]: If a class C of
graphs is structurally nowhere dense, then for every p there exists a
class Dp with bounded shrubdepth, such that each G ∈ C can be

partitioned into at most Np ∈ ∣G ∣o(1) parts, each p of them inducing a
subgraph in Dp.

→ Structurally nowhere dense classes have quasi-bounded shrubdepth
decompositions.
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Structural decompositions

Let Π be a hereditary class property. If every class C with
quasi-bounded Π decompositions again has property Π, we call Π a
decomposition horizon.

[Braunfeld, Nešeťril, Ossona de Mendez, S., 22] The class properties
monadic stability and monadic NIP are decomposition horizons.

▸ Classes with quasi-bounded twin-width decompositions are
monadically NIP.

Conjecture: Let C be a hereditary class of graphs. Then the following
are equivalent:

▸ C is structurally nowhere dense

▸ C has quasi-bounded shrubdepth decompositions

▸ C is monadically stable.
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Structural decompositions

Conjecture: Let C be a hereditary class of graphs. Then

▸ C is monadically NIP

⇔ C has quasi-bounded twin-width decompositions.

[Bonnet, Geniet, Kim, Thomassé, Watrigant, 21]: Sparse classes with
bounded twin-width have bounded expansion, hence bounded
treedepth decompositions.

[Gajarský, Pilipczuk, Toruńczyk, 22]: Stable classes with bounded
twin-width have structurally bounded expansion, hence bounded
shrubdepth decompositions.
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Structural decompositions

[Ossona de Mendez]: Classes with bounded twin-width cannot be
decomposed into a constant number of simpler pieces (no bounded
decompositions):

▸ Take a class C with bounded twin-width and unbounded X
(e.g. unbounded cliquewidth).

▸ Close C under lexicographic products (this preserves twin-width).

▸ Color with a bounded number of colors.

▸ Then we find a monochromatic copy of any G ∈ C (Ramsey).

▸ Hence, C does not have bounded X decompositions.
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Twin-models

[Bonnet, Nešeťril, Ossona de Mendez, S, Thomassé, 22]:
Twin-model: read the contraction sequence the other way around to
get a tree-like representation

Create all tuples (u, v) such that there exists u′ ≤ u and v ′ ≤ v with a
transversal edge (u′, v ′).

▸ Need to satisfy a minimality and consistency condition so that we can
get a contraction sequence from a twin-model.

Sebastian Siebertz Logic and Twin-width 17/29



Twin-models

The twin-model together with the tree-order (full twin-model) has
bounded twin-width (at most twice the twin-width of the structure).

The Gaifman graph of the twin-model (without the order) is sparse
→ has bounded expansion.

Two applications:

▸ Construction of sparse weak neighborhood covers.

▸ Twin-width and permutations.
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Sparse weak neighborhood covers

A weak r -neighborhood cover with degree d and spread s of a
graph G is a family X of subsets of V (G), called clusters, such that

▸ the r -neighborhood of every vertex is contained in some cluster:
for every v ∈ V (G) there exists X ∈ X with Nr [v] ⊆ X ,

▸ every cluster has weak diameter at most s and

▸ every vertex occurs in at most d clusters:
for all v ∈ V (G)

∣{X ∈ X ∣ v ∈ X}∣ ≤ d .

A class C admits sparse weak neighborhood covers if there exist
functions g(r , ε) and s(r) ≥ r such that for every r ∈ N, every ε > 0,
every graph G ∈ C admits a weak r -neighborhood cover with
degree g(r , ε) ⋅ ∣G ∣ε and spread s(r).
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Sparse weak neighborhood covers

It suffices to look for 1-neighborhood covers: An r -neighborhood cover
can be recovered from a 1-neighborhood cover in the rth power of G
→ this is a transduction, hence we again have bounded twin-width.

Let A ⊆ V (G). The contraction of A into a single vertex is a
weak k-contraction if A has weak radius at most k , that is, there is
v ∈ V (G) such that A ⊆ Nk(v).

If H is obtained from G by disjoint weak k-contractions and H admits
a weak r -neighborhood cover with degree d and spread s, then G
admits a weak r -neighborhood cover with degree d and spread
(2k + 1)s.
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Sparse weak neighborhood covers

Consider a full twin-model (with order).
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Sparse weak neighborhood covers

Consider the minimal elements with traversal edges and contract
everything below to single vertices.
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Sparse weak neighborhood covers

These are 1-contractions, because the traversal edges encode
bicliques.
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Sparse weak neighborhood covers

The contractions are definable in the full twin-model, which has
bounded twin-width.

Hence, the resulting graph has bounded twin-width.
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Sparse weak neighborhood covers

The resulting edges are either blue (transversal edges that were
present in the twin-model).

These edges alone induce a graph of bounded expansion, because they
are a subset of the edges of a graph with sparse bounded twin-width.
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Sparse weak neighborhood covers
All other edges are created by the contraction.

Problem: these are not red edges from the contraction sequence.

▸ Assume v comes alive first and is no longer alive when u comes alive
(reading the sequence backwards).

▸ Then a predecessor of u became alive before v and we have a red edge
(otherwise there would be a blue edge in the twin-model and u would
not be a vertex of the reduced graph).
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Sparse weak neighborhood covers

▸ We push down the red edge(s) (may be many copies) and orient them
towards v

▸ The out-degree remains bounded → we still have a degenerate
twin-model (without the order) and hence bounded expansion.

▸ Classes with bounded expansion have sparse neighborhood covers ✓
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Structurally nowhere dense graphs

[Dreier, Gajarský, Kiefer, Pilipczuk, Toruńczyk, 22]: If a class C of
graphs is structurally nowhere dense, then its graphs have similar
tree-like decompositions called quasi-bushes with quasi-bounded weak
coloring numbers.

[Dreier, Mählmann, S., 23]: Structurally nowhere dense graph classes
have sparse weak neighborhood covers.

▸ Proof: conceptually similar but more technical.

▸ Question: Do structurally nowhere dense graph classes have nowhere
dense quasi-bushes?

[Dreier, Mählmann, S., 23]: FO model checking on (locally)
structurally nowhere dense classes is fixed-parameter tractable.

▸ Flipper game

▸ Local types (avoid complicated rank preserving locality)

▸ Sparse weak neighborhood covers (can be efficiently approximated)
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Model checking on monadically stable classes

If a monadically stable class C admits sparse weak neighborhood
covers, then FO model-checking is fixed-parameter tractable on C .

Conjecture: Monadically NIP classes admit sparse weak neighborhood
covers.

Question: Do monadically stable classes have treelike decompositions
of bounded depth?
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Permutations

[Bonnet, Nešeťril Ossona de Mendez, S, Thomassé, 2022]: A class of
binary relational structures has bounded twin-width if and only if it is
a first-order transduction of a proper permutation class.

▸ Permutation: two linear orders on the universe (V ,<1,<2).

▸ Proper permutation class: set of permutations closed under
sub-permutations excluding at least one permutation.

Example: 21-avoiding permutation = linear order. Transductions have
bounded linear cliquewidth.

Example: 231-avoiding permutation = tree order. Transductions have
bounded cliquewidth.

“⇐” Proper permutation classes have bounded twin-width (small ordered
hereditary classes) and so have their transductions.

Sebastian Siebertz Logic and Twin-width 24/29



Tree-models and permutations

“⇒” Let C be a class of bounded twin-width.

We show that the class F of full twin-models of graphs from C is
bi-transducible with a permutation class P.

▸ We can transduce C from F .

▸ Hence C is a transduction of the permutation class P.

▸ P is a proper permutation class because it is a transuction of F ,
which has bounded twin-width, and hence has bounded twin-width.

The full twin-models of graphs from C have bounded twin-width and
without the order they are sparse (have bounded expansion and in
particular have bounded star chromatic number).
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Transductions and star chromatic numer

Star coloring: Proper coloring such that any two color classes induce a
star forest (disjoint union of stars).

[Courcelle?]: Let Σ be a relational signature (of arbitrary arity) and C
a class of Σ-structures. Assume the class of Gaifman graphs G of C
has bounded star chromatic number. Then C is bi-transducible
with G .

▸ In particular, we can transduce all orientations of graphs with bounded
star chromatic number.
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Star chromatic number and transductions

Let G < be a class of ordered graphs with star chromatic number at
most c . Then G < is bi-transducible with a class P of permutations.

▸ Take a star coloring of G with c colors.

▸ Orient the edges so that bicolored stars are oriented away from their
centers (every edge is bicolored because we have a proper coloring).

Sebastian Siebertz Logic and Twin-width 27/29



Star chromatic number and transductions

▸ Blow each vertex into (u,1), . . . , (u, c + 1) and

▸ keep only the vertices of the form (u, c + 1) and (u, i) if u has an
in-neighbor colored i .

▸ Define two orders:

- <1 helps to identify copies – it orders (u,1), (u,2), . . . , (u, c + 1)
consecutively.

- <2 helps to recover the edges – it puts a copy (v , i) for an
out-neighbor v of u directly in front of (u, c + 1).
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