Introduction to Twin-Width

Stéphan Thomassé (ENS de Lyon)

With Édouard Bonnet, Romain Bourneuf, Colin Geniet, Ugo Giocanti, Eunjung Kim, Jarik Nešetřil, Patrice Ossona de Mendez,

Amadeus Reinald, Sebastian Siebertz, Pierre Simon, Szymon
Toruńczyk, Rémi Watrigant

Aussois TWW workshop 22 May, 2023

Happiness in TCS

- Rational langages are exactly those recognized by finite automata

Happiness in TCS

- Rational langages are exactly those recognized by finite automata
- Matroids are exactly hypergraphs on which the greedy algorithm always work

Happiness in TCS

- Rational langages are exactly those recognized by finite automata
- Matroids are exactly hypergraphs on which the greedy algorithm always work
- Bounded Vapnik-Cervonenkis classes of concepts are exactly those which are PAC-learnable

Happiness in TCS

- Rational langages are exactly those recognized by finite automata
- Matroids are exactly hypergraphs on which the greedy algorithm always work
- Bounded Vapnik-Cervonenkis classes of concepts are exactly those which are PAC-learnable
- Bounded tree-width classes of graphs are exactly those on which MSO_{2} is FPT

Happiness in TCS

- Rational langages are exactly those recognized by finite automata
- Matroids are exactly hypergraphs on which the greedy algorithm always work
- Bounded Vapnik-Cervonenkis classes of concepts are exactly those which are PAC-learnable
- Bounded tree-width classes of graphs are exactly those on which MSO_{2} is FPT
- TU-matrices, perfect graphs, minor closed classes, bounded expansion, pattern-free permutations ...

Complexity of input (static) vs computation (dynamic)

Some features of simple discrete structures

- avoid substructures

Some features of simple discrete structures

- avoid substructures
- have nice partitions

Some features of simple discrete structures

- avoid substructures
- have nice partitions
- can be constructed or decomposed

Some features of simple discrete structures

- avoid substructures
- have nice partitions
- can be constructed or decomposed
- behave well w.r.t. some parameter

Some features of simple discrete structures

- avoid substructures
- have nice partitions
- can be constructed or decomposed
- behave well w.r.t. some parameter
- have small "growth"

Some features of simple discrete structures

- avoid substructures
- have nice partitions
- can be constructed or decomposed
- behave well w.r.t. some parameter
- have small "growth"

Often boils down to "Strict vs Full" class (minor closed, pattern-free, bounded VC-dimension)

Counting (Strict vs Full): VC-dimension

Let \mathcal{M} be a class of 01-matrices

Counting (Strict vs Full): VC-dimension

Let \mathcal{M} be a class of 01-matrices

- VC-dimension $\approx \min$ size squared matrix not in \mathcal{M}

Counting (Strict vs Full): VC-dimension

Let \mathcal{M} be a class of 01-matrices

- VC-dimension \approx min size squared matrix not in \mathcal{M}
- unbounded VC-dim $\equiv \mathcal{M}$ has growth $2^{n^{2}}$

Counting (Strict vs Full): VC-dimension

Let \mathcal{M} be a class of 01-matrices

- VC-dimension $\approx \min$ size squared matrix not in \mathcal{M}
- unbounded VC-dim $\equiv \mathcal{M}$ has growth $2^{n^{2}}$
- bounded VC-dim $\equiv \mathcal{M}$ has growth at most $2^{n^{2-\varepsilon}}$ (Alon, Balogh, Bollobás, and Morris, 2011)

Counting (Strict vs Full): VC-dimension

Let \mathcal{M} be a class of 01-matrices

- VC-dimension $\approx \min$ size squared matrix not in \mathcal{M}
- unbounded VC-dim $\equiv \mathcal{M}$ has growth $2^{n^{2}}$
- bounded VC-dim $\equiv \mathcal{M}$ has growth at most $2^{n^{2-\varepsilon}}$ (Alon, Balogh, Bollobás, and Morris, 2011)
- VC-dimension is the last (big) gap in growth

Counting (Strict vs Full): VC-dimension

Let \mathcal{M} be a class of 01-matrices

- VC-dimension \approx min size squared matrix not in \mathcal{M}
- unbounded VC -dim $\equiv \mathcal{M}$ has growth $2^{n^{2}}$
- bounded VC-dim $\equiv \mathcal{M}$ has growth at most $2^{n^{2-\varepsilon}}$ (Alon, Balogh, Bollobás, and Morris, 2011)
- VC-dimension is the last (big) gap in growth

Where are the others gaps?

Counting (Strict vs Full): Minors

Let \mathcal{G} be a minor closed class of graphs

Counting (Strict vs Full): Minors

Let \mathcal{G} be a minor closed class of graphs

Counting (Strict vs Full): Minors

Let \mathcal{G} be a minor closed class of graphs

- full class has growth $2^{n^{2}}$

Counting (Strict vs Full): Minors

Let \mathcal{G} be a minor closed class of graphs

- full class has growth $2^{n^{2}}$
- strict classes has growth at most c^{n} (Blankenship 2003, Norine, Seymour, Thomas, Wollan 2006)

Counting (Strict vs Full): Minors

Let \mathcal{G} be a minor closed class of graphs

- full class has growth $2^{n^{2}}$
- strict classes has growth at most c^{n} (Blankenship 2003, Norine, Seymour, Thomas, Wollan 2006)

Exponential growth is called small

Counting (Strict vs Full): Permutations patterns

The permutation 2413 is a pattern of 742168935

Counting (Strict vs Full): Permutations patterns

The permutation 2413 is a pattern of 742168935 Let \mathcal{P} be a pattern-closed class of permutations

Counting (Strict vs Full): Permutations patterns

The permutation 2413 is a pattern of 742168935 Let \mathcal{P} be a pattern-closed class of permutations

- full class \mathcal{P} has growth n !

Counting (Strict vs Full): Permutations patterns

The permutation 2413 is a pattern of 742168935 Let \mathcal{P} be a pattern-closed class of permutations

- full class \mathcal{P} has growth n !
- strict class \mathcal{P} has growth at most c^{n} (Marcus, Tardos 2004)

Counting (Strict vs Full): Permutations patterns

The permutation 2413 is a pattern of 742168935 Let \mathcal{P} be a pattern-closed class of permutations

- full class \mathcal{P} has growth n !
- strict class \mathcal{P} has growth at most c^{n} (Marcus, Tardos 2004)
(Nearly) everything in this talk based on MT

Counting (Strict vs Full): Parity minors

$$
M=\left[\begin{array}{llllllll}
1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ll|llll|ll}
1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
\hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
N=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

The matrix N is a parity minor of M

Counting (Strict vs Full): Parity minors

$$
M=\left[\begin{array}{llllllll}
1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$\left[\begin{array}{ll|llll|ll}1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1\end{array}\right]$

$$
N=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

The matrix N is a parity minor of M
Let \mathcal{M} be a parity-minor closed class of 01-matrices

Counting (Strict vs Full): Parity minors

$$
M=\left[\begin{array}{llllllll}
1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$\left[\begin{array}{ll|llll|ll}1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1\end{array}\right]$

$$
N=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

The matrix N is a parity minor of M
Let \mathcal{M} be a parity-minor closed class of 01-matrices

- full class \mathcal{M} has growth $2^{n^{2}}$

Counting (Strict vs Full): Parity minors

$$
M=\left[\begin{array}{llllllll}
1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$\left[\begin{array}{ll|llll|ll}1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1\end{array}\right]$

$$
N=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

The matrix N is a parity minor of M
Let \mathcal{M} be a parity-minor closed class of 01-matrices

- full class \mathcal{M} has growth $2^{n^{2}}$
- strict class \mathcal{M} has growth at most c^{n} (with Bonnet, Giocanti, Ossona de Mendez 2022)

Counting (Strict vs Full): Parity minors

$$
M=\left[\begin{array}{llllllll}
1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$\left[\begin{array}{ll|llll|ll}1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1\end{array}\right]$

$$
N=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

The matrix N is a parity minor of M
Let \mathcal{M} be a parity-minor closed class of 01-matrices

- full class \mathcal{M} has growth $2^{n^{2}}$
- strict class \mathcal{M} has growth at most c^{n} (with Bonnet, Giocanti, Ossona de Mendez 2022)

bounded tww \equiv parity minor closure is strict

Counting: Main results on twin-width

- Bounded twin width classes are small (with Bonnet, Geniet, Kim, Watrigant, TWW2)

Counting: Main results on twin-width

- Bounded twin width classes are small (with Bonnet, Geniet, Kim, Watrigant, TWW2)
- count up to isomorphy (with Bonnet, Nešetřil, Ossona de Mendez, Siebertz)

Counting: Main results on twin-width

- Bounded twin width classes are small (with Bonnet, Geniet, Kim, Watrigant, TWW2)
- count up to isomorphy (with Bonnet, Nešetřil, Ossona de Mendez, Siebertz)
- small does not imply bounded twin-width (with Bonnet, Geniet, Ossona de Mendez, Tessera)

Counting: Main results on twin-width

- Bounded twin width classes are small (with Bonnet, Geniet, Kim, Watrigant, TWW2)
- count up to isomorphy (with Bonnet, Nešetřil, Ossona de Mendez, Siebertz)
- small does not imply bounded twin-width (with Bonnet, Geniet, Ossona de Mendez, Tessera)
(Approximate) counting follows from partitions

Partitions: Szemerédi lemma

Given a graph G and $\varepsilon>0$, there is a partition $X_{1}, X_{2}, \ldots, X_{k}$ of $V(G)$ such that:

Partitions: Szemerédi lemma

Given a graph G and $\varepsilon>0$, there is a partition $X_{1}, X_{2}, \ldots, X_{k}$ of $V(G)$ such that:

- all X_{i} have (almost) same size

Partitions: Szemerédi lemma

Given a graph G and $\varepsilon>0$, there is a partition $X_{1}, X_{2}, \ldots, X_{k}$ of $V(G)$ such that:

- all X_{i} have (almost) same size
- k is function of $1 / \varepsilon$

Partitions: Szemerédi lemma

Given a graph G and $\varepsilon>0$, there is a partition $X_{1}, X_{2}, \ldots, X_{k}$ of $V(G)$ such that:

- all X_{i} have (almost) same size
- k is function of $1 / \varepsilon$
- apart εk^{2} error pairs, all bipartite X_{i}, X_{j} are random-like (ε-regular)

Partitions: Szemerédi lemma

Given a graph G and $\varepsilon>0$, there is a partition $X_{1}, X_{2}, \ldots, X_{k}$ of $V(G)$ such that:

- all X_{i} have (almost) same size
- k is function of $1 / \varepsilon$
- apart εk^{2} error pairs, all bipartite X_{i}, X_{j} are random-like (ε-regular)

There is a sequence of partitions approximating G

Partitions: Szemerédi lemma + VC-dimension

VC-dimension of $G=$ VC-dimension of its adjacency matrix A_{G}.

Partitions: Szemerédi lemma + VC-dimension

VC-dimension of $G=$ VC-dimension of its adjacency matrix A_{G}.
Bounded VC-dimension \equiv forbidden (half induced) bipartite graph.

Partitions: Szemerédi lemma + VC-dimension

VC-dimension of $G=$ VC-dimension of its adjacency matrix A_{G}.
Bounded VC-dimension \equiv forbidden (half induced) bipartite graph.

- in Szemerédi partition P, k is now poly $(1 / \varepsilon)$ (Lovász, Szegedy 2010)

Partitions: Szemerédi lemma + VC-dimension

VC-dimension of $G=$ VC-dimension of its adjacency matrix A_{G}.
Bounded VC-dimension \equiv forbidden (half induced) bipartite graph.

- in Szemerédi partition P, k is now poly $(1 / \varepsilon)$ (Lovász, Szegedy 2010)
- ε-regular pairs X_{i}, X_{j} have near 0 or 1 density

Partitions: Szemerédi lemma + VC-dimension

VC-dimension of $G=$ VC-dimension of its adjacency matrix A_{G}.
Bounded VC-dimension \equiv forbidden (half induced) bipartite graph.

- in Szemerédi partition P, k is now poly $(1 / \varepsilon)$ (Lovász, Szegedy 2010)
- ε-regular pairs X_{i}, X_{j} have near 0 or 1 density
- "explains" the $2^{n^{2}}$ gap

Partitions: Szemerédi lemma + VC-dimension

VC-dimension of $G=$ VC-dimension of its adjacency matrix A_{G}.
Bounded VC-dimension \equiv forbidden (half induced) bipartite graph.

- in Szemerédi partition P, k is now poly $(1 / \varepsilon)$ (Lovász, Szegedy 2010)
- ε-regular pairs X_{i}, X_{j} have near 0 or 1 density
- "explains" the $2^{n^{2}}$ gap
G approximated by a sequence G / P with few errors

Partitions: Error degree of a partition

Let $P=X_{1}, \ldots, X_{k}$ be a partition of G

Partitions: Error degree of a partition

Let $P=X_{1}, \ldots, X_{k}$ be a partition of G

- G / P has vertices X_{1}, \ldots, X_{k}

Partitions: Error degree of a partition

Let $P=X_{1}, \ldots, X_{k}$ be a partition of G

- G / P has vertices X_{1}, \ldots, X_{k}
- X_{i}, X_{j} is an edge if all edges between them

Partitions: Error degree of a partition

Let $P=X_{1}, \ldots, X_{k}$ be a partition of G

- G / P has vertices X_{1}, \ldots, X_{k}
- X_{i}, X_{j} is an edge if all edges between them
- X_{i}, X_{j} is a non edge if no edge between them

Partitions: Error degree of a partition

Let $P=X_{1}, \ldots, X_{k}$ be a partition of G

- G / P has vertices X_{1}, \ldots, X_{k}
- X_{i}, X_{j} is an edge if all edges between them
- X_{i}, X_{j} is a non edge if no edge between them
- otherwise X_{i}, X_{j} is an error edge (red edge)

Partitions: Error degree of a partition

Let $P=X_{1}, \ldots, X_{k}$ be a partition of G

- G / P has vertices X_{1}, \ldots, X_{k}
- X_{i}, X_{j} is an edge if all edges between them
- X_{i}, X_{j} is a non edge if no edge between them
- otherwise X_{i}, X_{j} is an error edge (red edge)

Degree of P is maximum red degree in G / P

Partitions: Twin-width of G

A partition sequence $S=P_{n}, \ldots, P_{1}$ satisfies:

Partitions: Twin-width of G

A partition sequence $S=P_{n}, \ldots, P_{1}$ satisfies:

- P_{n} is the partition of V into singletons

Partitions: Twin-width of G

A partition sequence $S=P_{n}, \ldots, P_{1}$ satisfies:

- P_{n} is the partition of V into singletons
- P_{1} is the partition into one part $\{V\}$

Partitions: Twin-width of G

A partition sequence $S=P_{n}, \ldots, P_{1}$ satisfies:

- P_{n} is the partition of V into singletons
- P_{1} is the partition into one part $\{V\}$
- P_{i-1} is obtained from P_{i} by merging two parts

Partitions: Twin-width of G

A partition sequence $S=P_{n}, \ldots, P_{1}$ satisfies:

- P_{n} is the partition of V into singletons
- P_{1} is the partition into one part $\{V\}$
- P_{i-1} is obtained from P_{i} by merging two parts
- The degree of S is maximum degree of some P_{i}

Partitions: Twin-width of G

A partition sequence $S=P_{n}, \ldots, P_{1}$ satisfies:

- P_{n} is the partition of V into singletons
- P_{1} is the partition into one part $\{V\}$
- P_{i-1} is obtained from P_{i} by merging two parts
- The degree of S is maximum degree of some P_{i}

The twin-width of G is the minimum degree of a partition sequence S

Partitions: A degree 2 sequence

Partitions: A degree 2 sequence

Can we restrict more?

Partitions: Bounding components size

$r c(P)=$ largest size of a red component in G / P

Partitions: Bounding components size

$r c(P)=$ largest size of a red component in G / P

- If $S=P_{n}, \ldots, P_{1}, r c(S)$ is the maximum $r c\left(P_{i}\right)$

Partitions: Bounding components size

$r c(P)=$ largest size of a red component in G / P

- If $S=P_{n}, \ldots, P_{1}, r c(S)$ is the maximum $r c\left(P_{i}\right)$
- The component twin-width $\operatorname{ctww}(G)$ is the minimum $r c(S)$ of a partition sequence S

Partitions: Bounding components size

$r c(P)=$ largest size of a red component in G / P

- If $S=P_{n}, \ldots, P_{1}, r c(S)$ is the maximum $r c\left(P_{i}\right)$
- The component twin-width $\operatorname{ctww}(G)$ is the minimum $r c(S)$ of a partition sequence S
- ctww is equivalent to rank width (with Bonnet, Kim, Reinald, TWW6)

Partitions: Bounding components size

$r c(P)=$ largest size of a red component in G / P

- If $S=P_{n}, \ldots, P_{1}, r c(S)$ is the maximum $r c\left(P_{i}\right)$
- The component twin-width $\operatorname{ctww}(G)$ is the minimum $r c(S)$ of a partition sequence S
- ctww is equivalent to rank width (with Bonnet, Kim, Reinald, TWW6)

Twin-width sits between rank-width and bounded VC-dimension

Partitions: Q\& A

- The versatile miracle: balanced twin-width partition sequence (max part size \approx average part size)

Partitions: Q\& A

- The versatile miracle: balanced twin-width partition sequence (max part size \approx average part size)
- Huge gap between VC-dim and tww, any candidate?

Partitions: Q\& A

- The versatile miracle: balanced twin-width partition sequence (max part size \approx average part size)
- Huge gap between VC-dim and tww, any candidate?
- A class has bounded twin-width iff every graph has a \sqrt{n} partition with bounded degree?

Partitions: Q\& A

- The versatile miracle: balanced twin-width partition sequence (max part size \approx average part size)
- Huge gap between VC-dim and tww, any candidate?
- A class has bounded twin-width iff every graph has a \sqrt{n} partition with bounded degree?
- Is it enough to connect V to $\{V\}$ via degree $\leq d$ partition?

Partitions: Q\& A

- The versatile miracle: balanced twin-width partition sequence (max part size \approx average part size)
- Huge gap between VC-dim and tww, any candidate?
- A class has bounded twin-width iff every graph has a \sqrt{n} partition with bounded degree?
- Is it enough to connect V to $\{V\}$ via degree $\leq d$ partition?

Partitions are obtained from matrix divisions

Matrix divisions: The Füredi-Hajnal conjecture

$\left[\begin{array}{ll|ll|ll|ll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Every $n \times n$ matrix with $c_{k} \cdot n$ " 1 " have a k-grid minor

Matrix divisions: The Füredi-Hajnal conjecture

$\left[\begin{array}{ll|ll|ll|ll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Every $n \times n$ matrix with $c_{k} \cdot n " 1$ " have a k-grid minor

- Marcus-Tardos '04: proof by induction on n. the fuel

Matrix divisions: The Füredi-Hajnal conjecture

$\left[\begin{array}{ll|ll|ll|ll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Every $n \times n$ matrix with $c_{k} \cdot n " 1$ " have a k-grid minor

- Marcus-Tardos '04: proof by induction on n. the fuel
- Guillemot-Marx '14: No k-grid minor \Longrightarrow one can contract two consecutive rows or columns. the engine

Matrix divisions: The Füredi-Hajnal conjecture

$\left[\begin{array}{ll|ll|ll|ll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Every $n \times n$ matrix with $c_{k} \cdot n " 1$ " have a k-grid minor

- Marcus-Tardos '04: proof by induction on n. the fuel
- Guillemot-Marx '14: No k-grid minor \Longrightarrow one can contract two consecutive rows or columns. the engine

Matrix divisions: The Füredi-Hajnal conjecture

$\left[\begin{array}{ll|ll|ll|ll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Every $n \times n$ matrix with $c_{k} \cdot n " 1$ " have a k-grid minor

- Marcus-Tardos '04: proof by induction on n. the fuel
- Guillemot-Marx '14: No k-grid minor \Longrightarrow one can contract two consecutive rows or columns. the engine

Sparse G : bounded tww $\approx A_{G}$ has no large grid minor

Matrix divisions: The dense case, mixed-minors

$\left[\begin{array}{ll|lll|lll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Matrix divisions: The dense case, mixed-minors

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

- G has bounded tww iff A_{G} has no large mixed minor (with Bonnet, Kim, Watrigant TWW1)

Matrix divisions: The dense case, mixed-minors

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

- G has bounded tww iff A_{G} has no large mixed minor (with Bonnet, Kim, Watrigant TWW1)
- To bound tww: find the right vertex ordering

Matrix divisions: The dense case, mixed-minors

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

- G has bounded tww iff A_{G} has no large mixed minor (with Bonnet, Kim, Watrigant TWW1)
- To bound tww: find the right vertex ordering

Matrix divisions: The dense case, mixed-minors

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

- G has bounded tww iff A_{G} has no large mixed minor (with Bonnet, Kim, Watrigant TWW1)
- To bound tww: find the right vertex ordering

Pilipczuk and Sokołowski: forget the diagonal

Matrix divisions: Grid rank

Grid rank of M : largest $k \times k$ division where all zones have rank at least k.

Matrix divisions: Grid rank

Grid rank of M : largest $k \times k$ division where all zones have rank at least k. For a class \mathcal{M} of matrices, TFAE (with Bonnet, Giocanti, Ossona de Mendez, Simon, Toruńczyk, TWW4):

Matrix divisions: Grid rank

Grid rank of M : largest $k \times k$ division where all zones have rank at least k. For a class \mathcal{M} of matrices, TFAE (with Bonnet, Giocanti, Ossona de Mendez, Simon, Toruńczyk, TWW4):

- \mathcal{M} has bounded tww

Matrix divisions: Grid rank

Grid rank of M : largest $k \times k$ division where all zones have rank at least k. For a class \mathcal{M} of matrices, TFAE (with Bonnet, Giocanti, Ossona de Mendez, Simon, Toruńczyk, TWW4):

- \mathcal{M} has bounded tww
- \mathcal{M} has bounded grid rank

Matrix divisions: Grid rank

Grid rank of M : largest $k \times k$ division where all zones have rank at least k. For a class \mathcal{M} of matrices, TFAE (with Bonnet, Giocanti, Ossona de Mendez, Simon, Toruńczyk, TWW4):

- \mathcal{M} has bounded tww
- \mathcal{M} has bounded grid rank
- \mathcal{M} has (sub)exponential growth

Matrix divisions: Grid rank

Grid rank of M : largest $k \times k$ division where all zones have rank at least k. For a class \mathcal{M} of matrices, TFAE (with Bonnet, Giocanti, Ossona de Mendez, Simon, Toruńczyk, TWW4):

- \mathcal{M} has bounded tww
- \mathcal{M} has bounded grid rank
- \mathcal{M} has (sub)exponential growth
- \mathcal{M} is NIP

Matrix divisions: Grid rank

Grid rank of M : largest $k \times k$ division where all zones have rank at least k. For a class \mathcal{M} of matrices, TFAE (with Bonnet, Giocanti, Ossona de Mendez, Simon, Toruńczyk, TWW4):

- \mathcal{M} has bounded tww
- \mathcal{M} has bounded grid rank
- \mathcal{M} has (sub)exponential growth
- \mathcal{M} is NIP
- \mathcal{M} FO-model checking is FPT

Matrix divisions: Grid rank

Grid rank of M : largest $k \times k$ division where all zones have rank at least k. For a class \mathcal{M} of matrices, TFAE (with Bonnet, Giocanti, Ossona de Mendez, Simon, Toruńczyk, TWW4):

- \mathcal{M} has bounded tww
- \mathcal{M} has bounded grid rank
- \mathcal{M} has (sub)exponential growth
- \mathcal{M} is NIP
- \mathcal{M} FO-model checking is FPT

Grid rank definition works for infinite fields

Matrix divisions: Q\&A

- Bounded tww: product of $n \times n$ matrices in time $O(n)$

Matrix divisions: Q\&A

- Bounded tww: product of $n \times n$ matrices in time $O(n)$
- Seems to work for \mathbb{R} or \mathbb{C} (ask Colin)

Matrix divisions: Q\&A

- Bounded tww: product of $n \times n$ matrices in time $O(n)$
- Seems to work for \mathbb{R} or \mathbb{C} (ask Colin)
- Bounded tww not stable w.r.t. inverse

Matrix divisions: Q\&A

- Bounded tww: product of $n \times n$ matrices in time $O(n)$
- Seems to work for \mathbb{R} or \mathbb{C} (ask Colin)
- Bounded tww not stable w.r.t. inverse
- Bounded tww: how fast can we solve $M . X=1$?

Matrix divisions: Q\&A

- Bounded tww: product of $n \times n$ matrices in time $O(n)$
- Seems to work for \mathbb{R} or \mathbb{C} (ask Colin)
- Bounded tww not stable w.r.t. inverse
- Bounded tww: how fast can we solve $M . X=1$?

How fast can we find an odd set in a planar graph?

Some open problems: Tournaments

Tournament classes have bounded tww iff NIP iff small (with Geniet)

Some open problems: Tournaments

Tournament classes have bounded tww iff NIP iff small (with Geniet)

- Find a total order via binary search

Some open problems: Tournaments

Tournament classes have bounded tww iff NIP iff small (with Geniet)

- Find a total order via binary search
- If large grid rank, FO-extract smaller certificate of large tww

Some open problems: Tournaments

Tournament classes have bounded tww iff NIP iff small (with Geniet)

- Find a total order via binary search
- If large grid rank, FO-extract smaller certificate of large tww
- Cannot FO-interpret a total order on the vertex set of a tournament (Bojańczyk)

Some open problems: Tournaments

Tournament classes have bounded tww iff NIP iff small (with Geniet)

- Find a total order via binary search
- If large grid rank, FO-extract smaller certificate of large tww
- Cannot FO-interpret a total order on the vertex set of a tournament (Bojańczyk)

> FO+MOD-transduce a total order?

Some open problems: Polyhedra

Dominating set can be apx in bounded twin-width graphs (with Bonnet, Geniet, Kim, Watrigant, TWW3)

Some open problems: Polyhedra

Dominating set can be apx in bounded twin-width graphs (with Bonnet, Geniet, Kim, Watrigant, TWW3)

- Solve fractional relaxation γ^{*}

Some open problems: Polyhedra

Dominating set can be apx in bounded twin-width graphs (with Bonnet, Geniet, Kim, Watrigant, TWW3)

- Solve fractional relaxation γ^{*}
- Run versatile partition sequence until c. γ^{*} parts left

Some open problems: Polyhedra

Dominating set can be apx in bounded twin-width graphs (with Bonnet, Geniet, Kim, Watrigant, TWW3)

- Solve fractional relaxation γ^{*}
- Run versatile partition sequence until c. γ^{*} parts left
- Pick a point in each part

Some open problems: Polyhedra

Dominating set can be apx in bounded twin-width graphs (with Bonnet, Geniet, Kim, Watrigant, TWW3)

- Solve fractional relaxation γ^{*}
- Run versatile partition sequence until c. γ^{*} parts left
- Pick a point in each part

What are bounded tww polyhedra? Bipartite matching??

Some open problems: Constructions

Easy classes have global structure: TU-matrices, perfect graphs, minor-closed...

Some open problems: Constructions

Easy classes have global structure: TU-matrices, perfect graphs, minor-closed...

- General framework: basic class + simple operations

Some open problems: Constructions

Easy classes have global structure: TU-matrices, perfect graphs, minor-closed...

- General framework: basic class + simple operations
- Pattern-free permutations can be constructed (with Bonnet, Bourneuf, Geniet, last week)

Some open problems: Constructions

Easy classes have global structure: TU-matrices, perfect graphs, minor-closed...

- General framework: basic class + simple operations
- Pattern-free permutations can be constructed (with Bonnet, Bourneuf, Geniet, last week)
- Can the same be done with VC-dimension?

Some open problems: Constructions

Easy classes have global structure: TU-matrices, perfect graphs, minor-closed...

- General framework: basic class + simple operations
- Pattern-free permutations can be constructed (with Bonnet, Bourneuf, Geniet, last week)
- Can the same be done with VC-dimension?

Can we construct H-free graphs? Erdős-Hajnal??

