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1 Context, positioning, and objectives

In the past two years, we have introduced and developed the theory around a novel graph-theoretic
invariant, dubbed twin-width. This notion has turned out useful and fruitful in several areas of research
including algorithmic graph theory, combinatorics, model theory, and algebra. An interesting aspect is
that classes of bounded twin-width, while specifically structured, are mostly orthogonal to the current
organization of graph theory. If we have at least partially explored some of the new lands, many more
have appeared to us and are currently globally uncharted. The time seems right to try and expand
our group with postdoctoral researchers and interested colleagues, who would bring some fresh lights
and additional expertises into the project.

We start with an introduction to twin-width, since it is not a very standard notion yet.

1.1 A tour through twin-width

Cographs can be defined inductively by: The 1-vertex graph is a cograph, and if G1 and G2 are
two cographs, then the disjoint union G1 ∪ G2 and the complete join G1 + G2 are also cographs.
This definition gives rise to a recursive linear-time algorithm solving many NP-hard problems on this
particular class (see Fig. 1, left). The inception of clique-width [15, 48] in the early nineties, and of
rank-width [43] a decade later, may both be thought of as generalizing this definition, the former, by
allowing local joins, the latter, by allowing more complicated attachments. In the latter three papers,
the authors show or observe that many problems can be solved faster when the clique-width/rank-width
is bounded, and present cographs as a paradigmatic example of constant clique-width/rank-width.

Among the several characterizations of cographs, another one goes as follows: One can iteratively
find two twins (i.e., two vertices with the same neighbors, outside of themselves) and contract them
into one vertex, until the graph contains a single vertex. There is a perhaps more contrived algorithmic
scheme to solve problems efficiently based on this equivalent definition (see Fig. 1, right). Yet, trying
to generalize this alternative scheme, one could have come up with the notion of twin-width thirty
years ago.

Now we allow to contract, or identify, two (possibly non-adjacent) vertices with a small number
of private neighbors. We mark in red those edges that are incident to only one of the two contracted
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Figure 1: Two ways of solving Maximum Independent Set, that is, the size α(G) of a largest subset
of pairwise non-adjacent vertices, on cographs. To the left, the classic non-tail recursive argument. To
the right, the same idea made iterative: When the next two twins to contract are non-adjacent, we
record their sum, when they are adjacent, their maximum. Initially all the vertices contain value 1,
and eventually the single vertex will contain α(G).

vertices (see Fig. 2). This means that we work with trigraphs, where between a pair of vertices, we
have either a non-edge, or a black edge, or a red edge.

u1 u2 x1 x2 x3 x4 x5 x6 x7 v1 v2

u v w

u1 u2 x1 x2 x3 x4 x5 x6 x7 v1 v2

Figure 2: Contraction of vertices u and v into w, and how the edges of the trigraph are updated.

Red edges are “error edges”, for which the adjacency is uncertain, and should be avoided as much
as possible. The twin-width of an n-vertex graph G is the least integer d, such that G can be reduced
to a single vertex by a sequence of contractions, where every trigraph of the sequence has maximum
red degree (that is, maximum number of red edges incident to a vertex) at most d. The sequence of
trigraphs, usually denoted G = Gn, Gn−1, . . . , G1, is then called a d-sequence.

Our path to the definition has been different. About eight years ago, Sylvain Guillemot and
Dániel Marx wrote a beautiful paper [30] solving the Permutation Pattern problem. Given two
permutations σ and π, Permutation Pattern asks whether the matrix of σ is a submatrix of the
matrix of π. Guillemot and Marx found an algorithm with running time 2O(|σ|2 log |σ|)|π| (now even
2O(|σ|2)|π|), that is, linear if σ is fixed. The algorithm relies on a celebrated result in combinatorics,
solution to the Füredi-Hajnal and Stanley-Wilf conjectures [35], the Marcus-Tardos theorem [38].

Theorem 1 ([38]). For every integer k, there is a ck such that every n ×m 0,1-matrix with at least
ck max(n,m) entries 1 admits a k × k division with no cell being all 0.

Guillemot and Marx define a width invariant for permutation patterns. They then proceed with a
win-win strategy: Either the width of π is large, and the Marcus-Tardos theorem implies that σ (in
fact, every |σ| × |σ| pattern) appears in π, or the width of π is small, and Permutation Pattern
can be efficiently solved by dynamic programming. They conclude their introduction observing that
“[i]t would be interesting to see if there is a corresponding graph-theoretic analog for this scheme, which
might be useful for solving some graph-theoretical problem.” And indeed twin-width extends their very
width to general graphs.

Classes with bounded twin-width turn out to be very general. They include bounded rank-, clique-,
or boolean-width graphs, Kt-minor free graphs, Kt-free d-dimensional unit ball graphs, unit interval
graphs, posets of bounded antichain size, some specific family of expanders, Ω(log n)-subdivisions of
all the graphs [10, 4]. All these results are effective: On these classes, we can find in polynomial-
time O(1)-sequences. A useful, and also effective, characterization of bounded twin-width, in order
to establish some of these results, is the existence of a total order, said mixed free, on the vertex set
such that the corresponding adjacency matrix does not admit large complex divisions. More precisely,
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a (sub)matrix is mixed if it has at least two distinct row vectors and at least two distinct column
vectors. Then, an ordering of the vertex set of a graph G is t-mixed free if the adjacency matrix of G
following that order does not admit a t× t division (i.e., a partition of the rows and of the columns in
t intervals) where each of the t2 cells is mixed. Using the Marcus-Tardos theorem, and following the
lines of Guillemot and Marx, we showed that:

Theorem 2 ([10]). Every graph admitting a t-mixed free order has twin-width bounded by 22
O(t).

Despite the wide variety of classes with bounded twin-width, they allow linear-time fixed-parameter
algorithms (building upon the basic scheme of Fig. 1). Equipped with an O(1)-sequence, one can solve
in linear-time problems that are known intractable on general graphs. For instance k-Independent
Set and k-Dominating Set,1 for which any f(k)no(k)-time algorithm would enable an unlikely subex-
ponential algorithm for 3-SAT, can be solved in time 2O(k)n on graphs given with an O(1)-sequence [5].
More generally, still with an O(1)-sequence, one can model check any first-order sentence2 in time
f(k)n [10]. More precisely, we designed the following algorithm.

Theorem 3 ([10]). Given a graph G, a d-sequence G = Gn, . . . , G1, and a first-order sentence ϕ of
quantifier depth `, one can decide G |= ϕ in time f(`, d)n.

Admittedly the function f is horrendous; it is a tower of exponentials of height O(`). Nevertheless
this high dependency is unavoidable under some standard complexity-theoretic assumption, and first-
order logic provides a fairly broad class of problems. Again, as we mentioned, faster algorithms exist
on specific first-order expressible problems.

A first-order (FO) transduction of a graph class C consists of all the graphs obtainable by coloring
the vertices of some G ∈ C with a constant number of colors, defining a new edge set by means of a first-
order formula with two free variables (that formula may use the old edges and the colors), and taking
an induced subgraph of the newly built graph (finally ignoring the colors). The following theorem
shows that bounded twin-width classes are particularly robust, as far as model theory is concerned.

Theorem 4 ([10]). Every FO transduction of a class with bounded twin-width has bounded twin-width.

Results like Theorem 3 are known for the sparse classes introduced by Nešetřil and Ossona de
Mendez [40]. Dvorák, Král, and Thomas [19] achieved a fixed-parameter linear-time algorithm for first-
order model checking on classes with bounded expansion3, while Grohe, Kreutzer, and Siebertz [28]
obtained a fixed-parameter quasilinear-time algorithm on the more general (the most general, for
subgraph-closed classes with such an algorithm) nowhere dense classes.4

These results are incomparable with Theorem 3, which also applies to dense classes (like unit in-
terval graphs, or bounded clique-width classes), while bounded-degree graphs (a class with bounded
expansion) have unbounded twin-width. The reason we know that bounded-degree graphs, even sub-
cubic graphs, have unbounded twin-width is perhaps not the most satisfactory.

Theorem 5 ([4, 11]). Every class of graphs of twin-width at most d contains at most 2Od(n) ·n! graphs
labeled by [n], and even at most 2Od(n) non-isomorphic n-vertex graphs.

A class with a growth of Theorem 5 is said small. Since subcubic graphs have a larger labeled growth
of n

3
2
n+o(n), they cannot have bounded twin-width. To conclude our tour, let us finally mention that

twin-width explains a lot about hereditary (i.e., closed under taking induced substructures) classes of
totally ordered graphs.

1The problems of finding, in a graph, at least k vertices that are pairwise non-adjacent, or at most k vertices whose
closed neighborhood is the entire vertex set, respectively.

2Such as ∃x1∃x2 · · · ∃x2k−1∃x2k

∧
16i6k E(x2i−1, x2i) ∧

∧
(i,j)/∈{(1,2),(3,4),...,(2k−1,2k)} ¬E(xi, xj) which corresponds to

the k-Induced Matching, where one is asked to find a matching of k edges such that no edge of the graph has a
common endpoint with two edges of the matching.

3A subgraph-closed class has bounded expansion if there is a function f such that for every integer p, no p-subdivision
of a graph with minimum degree f(p) is in the class.

4A subgraph-closed class is nowhere dense if there is a function f such that for every integer p, the p-subdivision of
the clique Kf(p) is not in the class.
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Theorem 6 ([7]). Let C be a hereditary class of ordered graphs. The following are equivalent.
• C has bounded twin-width.
• C is monadically dependent, that is, no transduction of C contains all graphs [1].
• First-order model checking is fixed-parameter tractable on C.5
• C is small.
• C has less than

∑bn/2c
k=0

(
n
2k

)
k! = nn/2+o(n) graphs on n vertices.

The gap in the growth of hereditary classes of ordered graphs, implied by the equivalence between
the fourth and fifth items of Theorem 6, settled a conjecture of Balogh, Bollobás, and Morris [2].
Twin-width has been defined for unordered matrices on finite alphabets and binary structures [10],
and for (ordered) matrices also on finite alphabets [7]. These two paths lead to functionally equivalent
definitions for the twin-width of ordered graphs (or ordered binary structures) [7, Section 2].

1.2 Outline of the project

Our goal is to demonstrate that twin-width, although discovered relatively late, is an essential part
of graph theory. We have started and wish to continue proving that, in the realm of graphs and its
neighboring realms, twin-width is a key notion in understanding sporadically observed phenomena in
a generic and simpler light, as well as in accessing new truths. The project splits into three work
packages (WP1: foundation, WP2: theoretical applications, and WP3: practical applications).

The first package, WP1, aims to continue developing the theory of twin-width, exporting it to
new settings, streamlining the notion and the central results, and making this output as accessible as
it should. This package further splits into three tasks. The first task entails obtaining new results,
the missing pieces that some silences during the tour may have suggested; mainly, an efficient ap-
proximate algorithm finding contraction sequences, and explicit examples of bounded-degree graphs
with unbounded twin-width. The second task of WP1 is to find useful extensions of twin-width to
other objects, such as matrices over infinite fields, matroids, triple systems/3-dimensional tensors, set
systems/tensors, as well as useful restrictions of bounded twin-width classes, such as only allowing
edge contractions, or adding to the structure a spanning tree order. The usefulness of the extensions
is measured as the extent to which nice properties of (graphic) twin-width are preserved in a more
general or different setting. The usefulness of the restrictions may take various forms: characterizing
well-established classes with twin-width-like invariants, providing preliminary steps for which the al-
gorithm sought by the first task of WP1 is more amenable, or obtaining still quite general bounded
twin-width classes with enhanced algorithmic and structural properties. If the first task asks for new
results and the second, for new “definitions,” the third task is not concerned with novelty. Instead it
deals with keeping the theory as accessible as possible, while cleaning the exposition and streamlining
the proofs as our understanding matures. Concretely this will materialize by writing a monograph on
twin-width toward the end of the project.

In the second work package, WP2, challenges are of two kinds: improved bounds/algorithms on
structures of bounded twin-width, and advances on a priori non-twin-width-related open questions
with elements of our theory. Both challenges resonate with the first work package. The former kind is
connected to the aim of understanding bounded twin-width structures better, whereas the latter is more
related to the essence of the theory and to the second task of WP1 on extensions and restrictions of
twin-width. The applications concern finite model theory, approximation algorithms, finitely generated
groups, labeling schemes, linear algebra, and computational geometry. The third and last work package,
WP3, deals with practical implementation and investigates real-life scenarios where twin-width could
be useful.

1.3 WP1: Foundation of twin-width

We start with the most pressing open questions on the theory of twin-width.
5This item implies the other ones under the complexity assumption FPT6=AW[∗].
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1.3.1 Task 1: The missing pieces

For every class C that we showed of bounded twin-width, our proof came with a polynomial-time
algorithm reporting O(1)-sequences for graphs of C. Yet we do not know how to efficiently approximate
the twin-width in full generality. The big missing piece is:

Question 1. Find an efficient algorithm that, given a graph G and an integer k, correctly reports
that the twin-width of G is greater than k, or outputs an f(k)-sequence of G.

For the theory, the magnitude of f does not really matter, as long as f is computable. Of course,
for practical purposes, getting f as low as possible is an important additional challenge. To make
Question 1 formal, we should say what we mean by efficient. There are several possible answers.
Ideally the algorithm would run in time kO(1)m on m-edge graphs. For most applications, it is not
crucial that the dependency in k is polynomial. A running time in g(k)m for any function g, would
allow to conclude that first-order model checking is linear-time (in the number of edges) solvable on
graphs of bounded twin-width, invoking Theorem 3. The next best thing would be a fixed-parameter
algorithm in g(k)nc, on n-vertex graphs, for some hopefully small constant c. Finally even a slice-
wise polynomial algorithm in ng(k) would have some merits. With such an approximation, we could
conclude that first-order model checking is polynomial-time solvable on graphs of bounded twin-width.

We resolved Question 1 for ordered graphs, or equivalently, for matrices on finite alphabets seen as
ordered structures.

Theorem 7 ([7]). Given as input an n × n matrix M over an alphabet of constant size, and an
integer k, there is an 22

O(k2 log k)
nO(1)-time algorithm which

• correctly reports that the twin-width of M if greater than k, or
• outputs a 2O(k4)-sequence for M .

Besides improving the approximation ratio, getting the running time to f(k)n2 (linear in the input
size), or even to f(k)n for sparse matrices, would strengthen Theorem 6. Indeed it would yield a fixed-
parameter linear-time (instead of polynomial-time) algorithm for model checking on ordered binary
structures. A simple implementation of the current algorithm runs in f(k)n3.

Theorem 7 gives some hope and a new perspective for (unordered) graphs. During the tour,
we mentioned that finding a mixed free order is enough to efficiently compute a contraction sequence.
When a mixed free order is added to the structure, the twin-width remains unchanged. This is perhaps
too strong a property. We now know that finding any total order that, when added, do not make the
twin-width go from bounded to unbounded, would be sufficient to solve Question 1 (see Fig. 3).

what an efficient
approximation
of twin-width
boils down to

classes for which
we know how to do

d-sequence
(by definition)

mixed free order any order preserving
bounded twin-width

2020 2021

bd boolean-width
unit interval graphs

d-dimensional grids

pattern-avoiding permutations

bounded-width posets

Kt-minor free graphs

logn-subdivisions

iterated 2-lifts
bd stack/queue #

any small
matrix class

Figure 3: Progress on computing O(1)-sequences and classes shown of bounded twin-width.

On bounded-degree graphs, the problem of finding a sequence can be expressed without resorting to
trigraphs. As the black degree (i.e., the number of black edges incident to a vertex) cannot increase in
our trigraph contractions, we are simply asking if there is a sequence of vertex identifications that keeps
the degree below a constant threshold. Independently of twin-width, this is a fairly natural question.
Similar problems have already been investigated (more often than not, of successively contracting an
input graph to fall into a given class) but not this particular one. It is still a challenging question, since
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some cubic expanders have bounded twin-width, whereas random cubic n-vertex graphs subdivided
o(log n) times (which offer a lot of contractions that do not increase the degree) have almost surely
twin-width ω(1) [4].

An obstacle to solving this problem is that scaling lower bounds to the twin-width of bounded-
degree graphs turn out to be elusive. If we know that subcubic graphs globally have unbounded
twin-width due to a counting argument, we are currently unable to:

Question 2. Pinpoint a family {Gi | i ∈ N} where every Gi is a subcubic graph of twin-width at
least i.

This problem constitutes a typical example of “finding hay in a haystack”: Every cubic graph almost
surely works. Yet Question 2 is open even for more restricted graph parameters like queue-number (or
the related stack number, track number, and geometric thickness) whose unboundedness on bounded-
degree graphs is only known via a counting argument [49]. Thus figuring this question out will not
only help our understanding in twin-width, but provide a missing construction in these contexts. The
answer, contrary to the question, need not be difficult. One likely needs to find the right angle or
perspective, which could come from multiplying the equivalent views on twin-width; a natural part of
theory building.

The flip side of the same coin is that we need to better understand the structure of bounded twin-
width graphs. A usual impulse is to see how twin-width relates to (combinations of) the principal
graph invariants: chromatic number, clique number, treewidth, Hadwiger number, etc. Bounded twin-
width graphs are χ-bounded [5], that is, one can color any graph with function of twin-width and
clique number many colors. Although we do not know if the dependency of that function in the clique
number can be made polynomial.

Question 3. Are classes with bounded twin-width polynomially χ-bounded?

The polynomial χ-boundedness of graphs of bounded rank-width (or equivalently clique-width) has
been recently obtained [3]. It uses tools from the algebraic theory of formal languages, and mainly
a theorem of Colcombet [14] building upon the so-called Factorization Forest theorem of Simon [46].
In essence, the latter results say that for every regular language L, each word w can label the leaves
of a (universally) bounded-height tree (with large arity) in such a way that the membership to L of
infixes of w can be determined in constant time. Somehow this can be applied to the tree layout of a
rank-decomposition. Although bounded twin-width graphs are more general than bounded rank-width
graphs, they also admit a tree-based sparse model (called ordered union tree [5] or twin-model [11]).
A counterpart of the previous machinery on bounded twin-width graphs is of interest for the χ-binding
function, but also in the context of graph compression and labeling schemes (see Section 1.4.4).

If this approach fails to improve the χ-binding function, it might simply be because graphs of
twin-width at most d are not polynomially χ-bounded. After all, they significantly extend bounded
rank-width graphs whose polynomial χ-boundedness is a delicate result. Therefore they could form a
counter-example to the following important conjecture by Louis Esperet [22]: Every hereditary class
that is χ-bounded is polynomially χ-bounded. In particular, this conjecture implies that trees T
satisfying the Gyárfás-Sumner conjecture (that T -free graphs are χ-bounded) also satisfy the Erdős-
Hajnal conjecture (that T -free graphs have a polynomially large clique or independent set). The Pt-free
graphs make for another natural candidate to try and disprove Esperet’s conjecture, but it seems easier
to build “complicated” bounded twin-width graphs rather than Pt-free ones.

UPDATE: Sokołowski and Mi. Pilipczuk have announced a partial resolution (by the
positive) of Question 3 showing that classes of bounded twin-width are quasipolynomially
χ-bounded, and Esperet’s conjecture has been disproved [12] (obviously not using twin-
width).

6



ANR AAPG 2021
Coordinated by: Édouard Bonnet
CES 48: Fondements du numérique : informatique, automatique, traitement du signal

TWIN-WIDTH Funding instrument: JCJC
Duration: 4 years Requested funding: 154k€

A crucial component of treewidth and rank-width theory is the existence of exploitable certificates
that the width is large. For treewidth they take the shape of well-linked sets, brambles, and grid
minors, and for rank-width, tangles. These dual objects render algorithms approximating those widths
possible. If, on the way to producing a decomposition, the algorithm gets stuck, it does so because it
discovers such a certificate. The certificate can then be output as a token of the width being larger than
anticipated. We did find a twin-width dual for ordered graphs, and obtained an algorithm following
the same principle. However we currently do not have a convenient certificate of high twin-width for
(unordered) binary structures, one that could help with Question 1.

Question 4. Is there a convenient dual to twin-width?

Recently we realized that bounded rank-width/clique-width/boolean-width has a natural reinter-
pretation in terms of contraction sequences. We discuss this further in the second task of WP1. This
brings some hope that the sought dual could come from a variant on the theme of tangles.

Another noteworthy strength of treewidth is the companion concept of graph minor, whose oper-
ations preserve the treewidth bound, while it sets a well-quasi-order over graphs. Among the several
operations that do not increase twin-width, we hope to find one with the same property.

Question 5. Is there a well-quasi-ordering associated to twin-width?

If so, it is perhaps possible to rewrite some parts of the Graph Minors series [45] in a more general
setting. One year before twin-width was defined, a new kind of decomposition was developed for
classes including many (but not limited to) proper minor-closed classes (see for instance [17, 18]).
This decomposition is dubbed product structure theorem (after Robertson and Seymour’s structure
theorem for every proper minor-closed class), and it says that graphs from these classes are subgraphs
of a strong product between a path and a graph of bounded tree-width. It has been the crucial new
ingredient in settling long-standing open questions in graph drawing, adjacency labeling schemes, and
non-repetitive coloring. We started to discuss some connections of this program with twin-width [4]
but it feels like there is more to unravel, in particular in the new lights that these two notions shed on
graphs excluding a fixed minor. We will come back to it in the third task of WP1 and in WP2.

1.3.2 Task 2: Generalizations and restrictions of twin-width

Extensions. As twin-width strengthens our understanding of graphs, and even more so, of ordered
graphs or 0,1-matrices (see Theorem 6), the natural next step is to export it to more general, or simply
different, settings.

If we have a twin-width of unordered [10] and ordered matrices [7], our definitions only fit matrices
on finite alphabets. In the second work package, we propose to develop faster algorithms on bounded
twin-width matrices. It is thus opportune to try and generalize our framework to matrices over an
infinite field. A natural extension of the contraction process is to allow contractions of pairs of (row
or column) vectors that are close to being collinear. This is a viable attempt, although it does not
preserve all the characterizations of twin-width of 0, 1-matrices. On the other hand, more conservative
definitions may simply be too restrictive. The philosophical question of what should twin-width be
ensues.

Question 6. What do we want to call bounded twin-width for matrices over infinite fields?

This very issue is more poignant when generalizing twin-width to hypergraphs. We should here
start with the simpler case of uniform hypergraphs, even 3-uniform hypergraphs. And since, as far as
twin-width is concerned, we understand ordered structures better, let us even begin with 3-dimensional
(ordered) tensors. Several (non-equivalent) definitions of twin-width are possible based on contracting
similar slices, on the absence of complex divisions, on introducing auxiliary binary relations, or on
moving to a higher-dimensional space.
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Question 7. What do we want to call bounded twin-width for tensors or hypergraphs?

Concretely two model-theoretic characterizations of bounded twin-width for ordered binary struc-
tures (dependence and monadic dependence) do not collapse on ordered ternary structures. Therefore
there is a real choice to make for the higher-dimensional twin-width. If we are optimistic, a possible
stance is that several distinct twin-width-inspired definitions will prove useful. Concretely we want to
use twin-width to obtain (some, all is impossible) of the equivalences of Theorem 6 for higher-arity
relations.

Matroids are another common generalization of graphs. For matroids representable over finite
fields, twin-width can be defined as the minimum twin-width of a matrix representing the matroid.
With that definition, we can show that the cycle matroid of any Kt,t-free, bounded twin-width graph
has bounded twin-width itself. It is possible (and would be interesting) that the converse holds. A clear
application is model checking on matroids. The computational complexity of monadic second-order
(MSO) model checking on linear matroids over finite fields is well understood: It is tractable precisely
on classes with bounded branch-width [33]. For FO model checking, though, only partial results are
known (see for instance [26]). Hopefully the inception of twin-width in that context may help shaping
up a dichotomy of the kind known for MSO model checking.

Restrictions. As already mentioned, we recently realized that bounded boolean-width (which is
equivalent to bounded clique-width or rank-width) can be characterized in terms of our contraction
sequences. To specialize bounded twin-width to bounded boolean-width one just needs to add the
requirement that every trigraph of the sequence has its red connected components (i.e., the connected
components of the graph induced by the red edges only) of bounded size. One can then drop the
condition on the maximum red degree which is now redundant. This provides an arguably simpler
definition of bounded clique-width/rank-width graphs, where no labels nor tree layout is necessary. It
is tempting to revisit the main results on the topic and see whether we can get simpler proofs or new
insights with that characterization.

Question 8. Is the characterization of bounded clique-width/rank-width via contraction sequences
(pedagogically) useful?

UPDATE: We believe it is. It for instance gives a unifying view for FPT MSO model
checking in bounded clique-width classes (which is roughly as far as one can go) and
FO model checking in several monadically dependent classes; see [9] and http://perso.
ens-lyon.fr/edouard.bonnet/talk/jga21.pdf.

Still following the line of reformulating bits of graph theory in terms of contraction sequences,
proper minor-closed classes can be characterized as subgraph-closed sparse (i.e., Kt,t free) classes
with bounded spanning twin-width. The spanning twin-width is the minimum twin-width of a binary
structure consisting of the initial graph and one of its rooted spanning forests encoded as a tree order
(with a directed edge from any node to any descendant node). This definition may seem a bit arbitrary,
but it generalizes the notable case when the mixed free order may follow a Hamiltonian path. In that
particular case, contractions can be realized along this path as edge contractions. Let us actually call
edge twin-width this very restriction. Spanning and edge twin-widths could coincide. If they do, we
may not be so far from an approximation of twin-width when restricted to proper minor-closed classes.

Question 9. Is there an efficient algorithm to approximate the edge twin-width?

We have reasons to believe that this question is strictly easier than Question 1. Indeed both
short and long subdivisions of cliques have unbounded edge twin-width, hence do not need to be
distinguished by the algorithm. On the contrary, an approximation of twin-width has to somehow
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realize that o(log n)-subdivisions are “no-instances”, while Ω(log n)-subdivisions are “yes-instances” [4];
the latter fact coming from the non-trivial property that every permutation is the product of O(log n)
permutations whose matrices are O(1)-mixed minor free.

1.3.3 Task 3: Accessibility and diffusion

The twin-width series of papers already spans hundreds of pages. While we tried to write everything as
simply and clearly as possible, it still requires quite a bit of effort for an interested reader to get up to
date with the current theory. As all the active areas of theoretical computer science and combinatorics
are expanding and speeding up, it is increasingly hard to keep up even with one’s very field. The
personal experience of the coordinator is that the list of papers, results, or simply tricks that he should
read or know almost invariably grows in a ruthless backlog. The one situation where this list decreases
is when a nice expository paper, an online tutorial, a detailed survey, a monograph, or a textbook is
released on a topic of his interest.

In two or three years, we should have enough material and perspective for a first version of a
monograph on twin-width. As an intermediate step toward that goal, the coordinator plans to write
his habilitation thesis on the topic. The advantage of a monograph over the original papers are
manyfold: slower pace, streamlined exposition, better organization, all-in-one, etc. Oral presentations
can still convey ideas more effectively or, at least, nicely supplement the write-ups. We have already
given several talks and tutorials on twin-width, most of which have been recorded and are publicly
available (for instance [50, 41]). Throughout the project, we will give many more presentations. If
at some point it becomes helpful, we will organize the recorded talks, as well as short zoom-ins on
important proof elements, in a convenient fashion (playlist, virtual mind map, etc.). A couple of
classes in a second-year master course by R. Watrigant, S. Thomassé, and the coordinator, opening
next September [21] will be devoted to twin-width.

Let us finally mention that cleaning the theory can also be motivated by concrete questions. For
instance, we currently have at least three proofs that planar graphs have bounded twin-width: via
Kt-minor freeness, via the queue number, and directly via the product structure theorem [18]. All
these approaches use at some point Theorem 2 (or rather a sparse version of it) and therefore only
provide a gigantic upper bound. In the following, we primarily ask for an elementary proof not
using Theorem 2 and, thereby, the Marcus-Tardos theorem.

Question 10. Find a better upper bound of the twin-width of planar graphs.

UPDATE: Jacob and Pilipczuk [34] prove that planar graphs have twin-width at most
183, and B., Kwon, and Wood [20] show that planar graphs have reduced-bandwidth
(where the bound on the red graphs is on the bandwidth rather than on the degree) at
most 466, and that classes of genus g have reduced-bandwidth O(g).

Getting the exact value, which most likely has a single digit, is currently very much out of reach.
We do not have a particularly good lower bound: The dodecahedron tells us that the twin-width of
planar graphs is at least 4, and we do not know of an example with twin-width at least 5. Related to
that particular challenge, a more general question is to tighten the connection between mixed freeness
and twin-width.

Question 11. Obtain an improved twin-width bound in Theorem 2.

A single-exponential dependence should be obtainable for sparse classes. In general classes, though,
this will require more effective, and hopefully simpler, arguments. Improving the dependence signifi-
cantly further is impossible due to a randomized construction by Fox [23].

Either Theorem 2 or Theorem 4 allows us to derive that bounded twin-width is preserved under
taking (non-induced) subgraphs in Kt,t-free graph classes. An alternative and elementary proof of that
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fact would lead to a good bound for the twin-width of planar graphs (even apex-minor-free graphs),
via the product structure theorem.

Question 12. Give a direct reason why the twin-width of subgraphs of G is bounded by a function
of twin-width and biclique number of G.

1.4 WP2: Theoretical applications

We detail some promising areas of application for twin-width, what we know, and possible ways forward.

1.4.1 Model checking and finite model theory

As previously stated, first-order (FO) model-checking can be solved efficiently (in fixed-parameter
linear time and quasi-linear time, respectively) on binary structures given with an O(1)-sequence and
on nowhere dense classes. On general graphs, this problem is AW[∗]-complete, a strong indication
that fixed-parameter algorithms –in the size of the sentence to check– are impossible. A class C is
monadically dependent (or monadically NIP) if there is no first-order transduction from C onto the
class of all graphs [1], and monadically independent otherwise. There is an optimistic, yet believable,
conjecture (see for instance in [25]) that every monadically dependent class admits a fixed-parameter
tractable FO model checking. If true, this is likely to be as far as one can get on hereditary classes:
FO model checking is “morally”6 as hard on monadically independent classes as it is on general graphs.

Question 13. Is FO model checking fixed-parameter tractable on every monadically NIP class?

To start somewhere with this ambitious conjecture, a natural thing to do is to look for monadically
NIP common generalizations of bounded twin-width and nowhere dense classes, still capturing some
favorable features of either or both kinds of classes. As a first step, algorithms for superclasses of
bounded twin-width and bounded expansion, or even bounded twin-width and bounded degree, would
be interesting. There are several avenues to explore.

One of them is the notion of low twin-width covers. Generally a class C has low X covers if there
are functions f and g, and for every integer k, the vertex set of any G ∈ C can be covered by f(k)
sets A1, . . . , Af(k), such that every subset of V (G) of size k lies entirely in one Aj , and every G[Ai] has
parameter X bounded by g(k). Classes with low twin-width covers obviously generalize bounded twin-
width (by taking f(k) = 1 and g(k) = O(1)) and classes of bounded expansion (which coincide with
low treedepth covers). The same lift of nice properties from bounded treedepth to bounded expansion
classes [19, 27], may also work from bounded twin-width to low twin-width covers. Notably, though,
it is not immediate that classes with low twin-width covers are monadically dependent; which is a
necessary condition for this approach to be fruitful.

Another direction is to relax the twin-width definition. Instead of requesting the contraction
sequence to end at a single vertex, we can ask for a partial sequence of contractions reaching a target
class of trigraphs, such as bounded degree. Indeed a partial O(1)-sequence to a bounded degree graph
allows, by Gaifman locality theorem [24] combined with Theorem 3, to solve efficiently FO model
checking on the original graph. Whether that still holds when the target class is of bounded expansion
or nowhere dense is more challenging.

A class C of finite structures is stable if it cannot interpret arbitrarily long linear orders. More
concretely, no first-order formula φ(x, y) is such that for every integer h, there is Gh ∈ C and h distinct
vertices a1, . . . , ah ∈ V (Gh), with Gh |= φ(ai, aj) holding if and only if i 6 j. NIP classes (which,
for binary structures, may coincide with monadically NIP ones) comprise all the stable classes, such

6Some technicalities come in the way of a formal statement and proof, stemming from the coloring of the transduction
and the fact that one could potentially require graphs from the monadically independent class of size superpolynomial
in n to produce all the n-vertex graphs.
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as bounded-degree graphs, as well as “structured” unstable classes, like unit interval graphs or classes
with bounded clique-width. The intuition that NIP structures consist of a stable and an order-like
parts is made precise by Simon [47]. This decomposition happens at the level of the types, that is, sets
of formulas holding on the structure for a fixed tuple and set of constants (or parameters). Bounded
twin-width, which is orthogonal to stability and fundamentally rests upon a linear order, certainly
qualifies as “order-like”. This motivates the following question.

Question 14. Is FO model checking on (monadically) NIP classes Turing-reducible to itself on
bounded twin-width and on stable classes?

A positive answer to Question 14 would bring us three steps away from resolving Question 13. The
three last steps would consist of settling Question 1, obtaining an algorithm for structurally nowhere
dense classes (that is, transductions of nowhere dense classes), and confirming the conjecture that
stability coincides with structurally nowhere denseness.

1.4.2 Approximation algorithms

If we have a fairly good understanding of the computational edge that O(1)-sequences give as far as
exact algorithms are concerned, we know far less about approximation algorithms. Maximum Inde-
pendent Set is a notoriously inapproximable problem on general graphs. For any ε > 0, a polytime
n1−ε-approximation implies that P = NP [31, 51]. If we obtained constant-factor approximations for
Minimum Dominating Set on graphs given with an O(1)-sequence [5], the approximability status
of Maximum Independent Set on bounded twin-width graphs remains totally elusive.

Question 15. What is the best polytime approximation factor achievable for Maximum Inde-
pendent Set on bounded twin-width graphs given with an O(1)-sequence?

Even an O(
√
n)-approximation would be new and seems non-trivial, while it is ruled out on general

graphs. Interestingly any constant-approximation for this problem can be turned into an approximation
scheme [5], that is, a family of approximation algorithms with ratio arbitrarily close to 1. On every
standard class shown to have bounded twin-width, at least a constant-approximation can be routinely
obtained. Yet we are skeptical that such an approximation algorithm is generalizable to every graph
of twin-width at most d. We then wonder where the hard instances hide.

Question 15 is also intended as a meta-question. One can ask the same for any optimization problem
that is first-order definable. In such a framework, one tries to minimize or maximize the size of X such
that ϕ(X) holds, where ϕ is a first-order formula with a single free set-variable, X. The stark contrast
observed between Maximum Independent Set and Minimum Dominating Set indicates that this
question may have a rich answer, in the form of a classification splitting formulas ϕ(X) for which, say,
a constant-approximation is possible from formulas for which such an algorithm is unlikely. It is also
interesting to see whether we can find better approximations for Integer Linear Programming on
bounded twin-width matrices.

1.4.3 Finitely generated groups

Twin-width can be generalized to infinite (possibly uncountable) graphs due to its characterization
with vertex orderings excluding unbounded mixed minors. We showed that the boundedness of twin-
width for finitely generated Cayley graphs do not depend on the set of generators [4]. Thus we may
speak of the twin-width of a finitely generated group. This is interesting on its own and relevant to
a conjecture we previously made on hereditary classes with small growth. Every bounded twin-width
class is small [4], in the sense that there are at most n!cn n-vertex labeled members of the class, for
some constant c. We previously conjectured there that the converse holds for hereditary classes, and
proved it in the case of linearly ordered classes [7].
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Question 16. [small conjecture, now refuted] Are all hereditary small classes of bounded twin-
width?

In particular, this would have implied that the finite induced subgraphs of any bounded-degree
infinite Cayley graph have bounded twin-width. Very recently, we ruled out this option thereby dis-
proving the small conjecture [6]: There are small hereditary classes of unbounded twin-width. Our
counterexample is based on a group-theoretic construction due to Osajda [42], in turn refining a classic
construction of so-called Gromov monsters [29]. Osajda builds a finitely generated infinite Cayley
graph that isometrically contains infinitely many graphs from any sequence of finite bounded-degree
graphs whose girth and diameter diverge with the same speed. This result allows us to refute Ques-
tion 16 because on one hand, n-vertex cubic graphs with girth and diameter Θ(log n) almost surely
have superconstant twin-width, and on the other hand, the class of all the finite induced subgraphs of
a bounded-degree Cayley graph is small [4], and by design, hereditary.

As a side note related to Section 1.4.1, the following could still receive a positive answer.

Question 17. Is FO model checking fixed-parameter tractable on small hereditary classes?

As another side note, the counterexample to Question 16 being probabilistic, we still do not know
of an explicit small family of bounded-degree graphs with unbounded twin-width. Now more related to
the current section, we henceforth know that the property of having bounded twin-width non-trivially
splits the finitely generated groups in two categories.

Question 18. Does bounded/unbounded twin-width reflect a known dichotomy of finitely generated
groups?

As we previously conjectured that only the bounded twin-width case were populated, it goes without
saying that the first examples that come to mind have bounded twin-width. For instance, the free
groups (infinite r-ary trees), Zd (infinite d-dimensional grids), the Lamplighter group, products of two
bounded twin-width groups, Abelian groups, all have bounded twin-width. Thus we can order a wide
variety of groups (but not all) in such a way that the trace of every group element on its corresponding
Cayley table (or rather its infinite equivalent) avoids a fixed pattern. This property should not help
solving the classical problems from algorithmic group theory (word problem, subgroup membership,
knapsack, etc.), as they tend to remain undecidable on very simple groups (like direct products of free
groups). However this somewhat unexpected combinatorial property shared by the “non-pathological”
finitely generated groups should be of some use. We hope that our exchanges with group theorists (like
Romain Tessera with whom we started a collaboration [6]) will reveal one, or a solution to Question 18.

1.4.4 Labeling schemes

An adjacency labeling scheme (or labeling scheme, for short) formalizes the compression of graph
encodings, when graphs come from a fixed class C. It consists of a decoding function A : {0, 1}∗ ×
{0, 1}∗ → {0, 1} and for every G ∈ C a labeling function ` : V (G)→ {0, 1}∗, such that A(`(u), `(v)) = 1
if and only if uv is an edge of G. One then tries to make the words encoding the vertices (the images
of `), called labels, as short as possible. An f(n)-bit labeling scheme is such that |`(v)| 6 f(n) for
every n-vertex graph G ∈ C and every v ∈ V (G). Bounded twin-width classes admit O(log n)-bit
labeling schemes [4]. There are three directions in which we want to improve this result: efficiency,
compactness, and generality.

A labeling scheme is algorithmically useful if one can encode and decode quickly. A typical quan-
titative delineation is to further require that the labeling (encoding function) can be computed in
polynomial time, and the decoding function, in constant time in the word RAM model with words of
size Θ(log n). Such a labeling scheme is then said efficient.
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Question 19. Do bounded twin-width classes have efficient O(log n)-bit labeling schemes?

Our labeling scheme has neither of the two efficiency properties. The encoding requires an O(1)-
sequence of the graph, thus currently cannot be done in polynomial time. It is to be expected that
every labeling scheme of bounded twin-width graphs shares that requirement. Therefore Question 19
is tied to Question 1. However a positive answer to Question 1 does not settle Question 19 just yet.
Indeed the decoding takes O(log n) time. Getting that time down to O(1), at least in average, should
involve a data structure useful in several places (see for instance Section 1.4.5). Let us illustrate that
point with a direct and closely related question. Every n-vertex graph with twin-width O(1) can be
compressed in a sparse structure on 2n − 1 vertices: namely, an n-leaf binary tree augmented by
O(n) “transversal” edges [4, 5, 11]. Given only the sparse representation, we can query edges in time
O(log n).

Question 20. Can n-vertex graphs of bounded twin-width be represented by binary structures with
O(n) edges, and adjacency queries done in amortized constant time?

UPDATE: Pilipczuk, Sokołowski, and Zych-Pawlewicz [44] have obtained a linear-sized
data structure (computable in quasilinear time from O(1)-mixed free adjacency matrices)
which enables queries in time O(log log n).

Bounded twin-width classes are small, and as such, may in principle have labeling schemes using
only (1+o(1)) log n bits. The product structure theorem has recently yielded (1+o(1)) log n-bit labeling
schemes for flat classes [16], a particular case of sparse classes with bounded twin-width. Flat classes
include apex-minor free graphs, Kt-minor free graphs with bounded degree, and k-planar graphs, but
K6-minor free graphs do not make a flat class.

Question 21. Do bounded twin-width classes have (1 + o(1)) log n-bit labeling schemes?

A first step is to ask Question 21 for Kt-minor free graphs. The twin-width and the product
structure theories tell two new stories on (some) proper minor-closed classes. The former is perhaps
too general whereas the latter is not general enough. There might be a third story fitting proper minor-
closed classes more tightly, a looser decomposition than subgraphs of strong products but stronger than
mixed-minor free adjacency matrices.

Let us now move on in the direction of greater generality. The implicit graph conjecture asserts that
every hereditary factorial class (i.e., with growth nO(n)) has an O(log n)-bit labeling scheme. As already
stated, we showed the implicit graph conjecture in the special case of bounded twin-width classes [4].
Interval graphs are an example of an unbounded twin-width factorial class with a straightforward
2 log n-bit labeling scheme. If we want to make significant further progress on the implicit graph
conjecture with the twin-width approach, we should be able to unify these two results. Is there any
“decomposition” of interval graphs into bounded twin-width pieces? This voluntarily vague question
could be useful in other contexts, depending on the nature of the decomposition. For instance, it could
extend our unified understanding of χ-bounded classes.

UPDATE: Hatami and Hatami [32] have refuted the implicit graph conjecture.

1.4.5 Linear algebra

The linear-time dependency of our exact algorithms [10, 5] renders twin-width an interesting parameter,
not only for NP-hard problems, but for problems within P. For instance, we showed how to compute in
O(n)-time single-source shortest paths of n-vertex graphs given with an O(1)-sequence [5]. Since these
graphs can be dense, this is sublinear in the number of edges of the input. This is made possible by a
succinct representation of total size O(n) alluded to in Section 1.4.4. We can compute in quasi-linear
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time the product of two matrices given with such a succinct representation [8]. It would be better to
require a mere contraction sequence, and in principle, a linear-time dependency is possible.

Question 22. Is there an O(n)-time algorithm to multiply two n × n matrices of bounded twin-
width given with an O(1)-sequence?

More generally, we need a fast algorithm (ideally in linear time) to go from a contraction sequence to
a succinct representation. Question 22 deals with ordered matrices, on which we can find in polynomial
time O(1)-sequences when they exist. To make a positive answer to Question 22 totally genuine, we
need to find a sequence in time linear in the input size (as discussed in the first task of WP1). Only
then, we can claim to have an O(n)-time algorithm to multiply two sparse n× n matrices of bounded
twin-width. A linear-time Gaussian elimination of systems described by bounded twin-width matrices
may lead to faster algorithms for Maximum Matching in planar graphs (see [39]).

1.4.6 Computational geometry

One can export structural (hyper)graph parameters, such as clique-width, to point sets. A purely
combinatorial approach is to consider the clique-width of the ordered 3-uniform hypergraph formed
by all the triples of points oriented clockwise [13]. After we get a satisfying notion of twin-width
for ordered hypergraphs (see second task of WP1), we can follow this approach and see how general
point sets of bounded twin-width are. We can then ask for efficient algorithms solving hard geometric
problems for which only the order types count (like visibility ones), on inputs of bounded twin-width.

For metric problems, however, the actual point coordinates matter. In that context, we want a
contraction sequence that takes distances into account. This brings us back to graphs, by considering
the twin-width of (unit) disk graphs. Although one can imagine that, for some applications such as
clustering, it would make sense to keep a purely geometric viewpoint. For instance, contracting two
points p, q would (delete them and) create a new point at the weighted barycenter of p and q.

Question 23. Can we define successful notions of twin-width for point sets?

We also think that the Marcus-Tardos theorem, despite his geometric flavor (sufficiently dense point
sets on the integer lattice are “two-dimensional”), have not been leveraged all that much in geometric
problems. This is just a couple of the several questions that we want to investigate at the interface
between geometry and twin-width.

1.5 WP3: Practical applications

1.5.1 Heuristics and algorithms to find contraction sequences

The first step of WP3 is to confirm (or challenge) our intuition that the twin-width of most real-life
networks is small. Large social networks typically contain dense communities of hundreds or thousands
of nodes. That alone makes their treewidth at least of that order, thus not directly useful for exact
computation [37]. We estimate that their twin-width is one or two orders of magnitude smaller. Road
networks tend to contain large grid-like structures, thus even their rank-width is high. Their planarity
(or near-planarity) makes them of low twin-width.

We want to compute lower and upper bounds of twin-width for the usual benchmarked networks.
In addition to calibrating our expectations regarding what algorithms based on twin-width can achieve,
this will initiate a healthy interplay between the theory and the practice of approximating twin-width.

1.5.2 Implementing specific twin-width-based algorithms

If the algorithm generically solving FO model checking is clearly not a practical one, specific central
problems like k-Independent Set, admit reasonable, single-exponential algorithms [5]. More pre-
cisely, the latter problem has an O(k2d2kn)-time algorithm on n-vertex graphs given with a d-sequence.
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The hidden constant of this algorithm is good, and the dependency in d and k should in practice be
somewhat better than the worst-case analysis bound of k2d2k. We wish to implement this algo-
rithm and compare its execution time to the ones of exact algorithms based on other parameteri-
zations or approaches. If the selected problem for the edition of the programming contest PACE
(https://pacechallenge.org/) coinciding with the postdoc employment is amenable to the twin-
width approach, we will participate in the challenge.

Twin-width may also be useful for classical (non-parameterized) problems, like Max Independent
Set. If there are excellent solvers for the latter problem based on branch-and-reduce (intertwined
kernelization and branch-and-bound) [36], these algorithms do not perform well in dense instances.
It would be interesting to see how our approach fares in practice on real-life dense instances. In the
context of twin-width-based algorithms for classical problems, the contraction sequences should now
minimize the number of connected subgraphs in what is induced by the red edges (rather than the
maximum red degree) [5].

1.5.3 Possible connections with other areas

Hierarchical clustering. In data mining, hierarchical clustering aims to organize datapoints at the
leaves of a rooted binary tree in such a way that the datapoints of every rooted subtree constitutes
a cluster. The similarity between datapoints is modeled by a weighted graph. Then, hierarchical
clustering can be turned into a precise combinatorial problem by specifying a cost function that the
tree should minimize. There is a tempting parallel to draw with our contraction sequences. We do
benefit from considering the contraction process sometimes forward (parameterized algorithms, etc.)
and sometimes backward (χ-boundedness, etc.), very much like hierarchical clustering benefits from the
agglomerative (bottom-up) and divisive (top-down) approaches. Twin-width can loosely be thought
of as a hierarchical clustering where similarity is based on the neighborhood’s closeness. Admittedly,
in the definition of twin-width, the order in which clusters are aggregated/divided is important. We
want to determine whether this is just a vague resemblance or this has more profound ties.

Image compression. The succinct representation of bounded twin-width graphs (see Section 1.4.4)
compresses an n-vertex graph with possibly Θ(n2) edges into a word of length O(n). As we have a
notion of twin-width for matrices on finite alphabets, we may talk of the twin-width of an image. We
want to investigate if dynamic schemes similar to twin-width are already known and used for image
compression, how small the twin-width of typical images is, and whether the twin-width approach can
be performant in that context.
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