Speed-ups and time–memory trade-offs for tuple lattice sieving

Gottfried Herold, Elena Kirshanova, Thijs Laarhoven

ENS de Lyon, Eindhoven University of Technology

PKC 2018
Our results

- Improved time-memory trade-offs for k-tuple sieve
- Asymptotically faster k-tuple sieve with Near Neighbour search
Our results

- Improved time-memory trade-offs for k-tuple sieve
- Asymptotically faster k-tuple sieve with Near Neighbour search

Shortest Vector Problem

Given a lattice $\mathcal{L} \in \mathbb{R}^n$, find $v \neq 0 \in \mathcal{L}$ s.t. $\|v\|_2$ is small.

Asymptotically best known (heuristic) algorithms for SVP are sieving algorithms. They run in time $2^{c_1n+o(n)}$ using $2^{c_2n+o(n)}$ space. Goal: improve the constants c_1, c_2, trade c_i for c_j.
Sieving [AKS01,NV08,MV10]

Basic idea: saturate space with lattice points until they give short pairs

\[L_1 \pm L_2 = \ldots = \text{poly}(n) \]

\(L_{\text{out}} \) short

Speed-ups for tuple sieve G.Herold, E.Kirshanova, T.Laarhoven 4
Sieving [AKS01,NV08,MV10]

Basic idea: saturate space with lattice points until they give short pairs
Sieving [AKS01, NV08, MV10]

Basic idea: saturate space with lattice points until they give short pairs

\[L_1 \leq L_2 = \ldots = \text{poly}(n) \]

\[L_{\text{out}} \] short

Speed-ups for tuple sieve

G. Herold, E. Kirshanova, T. Laarhoven
Sieving [AKS01,NV08,MV10]

Basic idea: saturate space with lattice points until they give short pairs

\[L_1 = L_1 \]
\[L_2 = L_2 \]

\[x_1 \pm x_2 \]

Speed-ups for tuple sieve

G.Herold, E.Kirshanova, T.Laarhoven
Sieving [AKS01, NV08, MV10]

Basic idea: saturate space with lattice points until they give short pairs

\[L_1 \quad \text{is} \quad L_1 \]
\[x_1 \pm x_2 \quad \text{is} \quad L_2 = L_2 \]
\[\text{poly}(n) \quad \text{is} \quad \text{short} \]

Speed-ups for tuple sieve
G. Herold, E. Kirshanova, T. Laarhoven
k-Sieve [BLS16, HK17]

Basic idea: saturate space with lattice points until they give short pairs.

k-tuples

List-size determined by $|L| = |L|_k$

Pr[$||x_1 + \ldots + x_k||$ short]

List-size decreases with k

Runtime increases with k (except from $k=2$ to $k=3$)

Speed-ups for tuple sieve G.Herold, E.Kirshanova, T.Laarhoven
k-Sieve [BLS16, HK17]

Basic idea: saturate space with lattice points until they give short pairs

\[x_1 \pm x_2 \]

\[L' \]

\[L \]

\[x_1 \pm x_2 \pm \ldots \pm x_k \]

\[L' \]

\[L \]

\[L' \]

\[L \]

- List-size determined by
 \[|L| = |L|^k \Pr[||x_1 + \ldots + x_k|| \text{ short }] \]

- List-size decreases with \(k \)

- Runtime increases with \(k \) (except from \(k = 2 \) to \(k = 3 \))
Most of the tuples x_1, \ldots, x_k s.t. $\|x_1 + \ldots + x_k\| \leq 1$ are concentrated around one specific configuration: their Gram matrix is

$$C = (\langle x_i, x_j \rangle)_{1 \leq i, j \leq k} = \begin{pmatrix}
1 & -\frac{1}{k} & \cdots & -\frac{1}{k} \\
-\frac{1}{k} & 1 & \cdots & -\frac{1}{k} \\
\vdots & \vdots & \ddots & \vdots \\
-\frac{1}{k} & -\frac{1}{k} & \cdots & 1
\end{pmatrix}$$
Algorithm v.1

We have explicit formulas for runtime T and memory M for fixed k.

Speed-ups for tuple sieve

G. Herold, E. Kirshanova, T. Laarhoven
New idea

- The previous algorithm is optimized for memory

- If we increase the size of initial lists $|L_i|$, we only need to find an exponential fraction of solutions

- We know that a random k-tuple satisfies a given Gram-matrix C with probability $\mathcal{O}((\det C)^{n/2})$.
New idea

- The previous algorithm is optimized for memory
- If we increase the size of initial lists $|L_i|$, we only need to find an exponential fraction of solutions
- We know that a random k-tuple satisfies a given Gram-matrix C with probability $O((\det C)^{n/2})$.
- Certain configurations turn out to be easier to find
- The problem of finding a configuration that satisfies a given bound on T and M is an optimization problem.
Algorithm v.1

For tuple sieve of G. Herold, E. Kirshanova, T. Laarhoven
Algorithm v.2: the target configuration C is unbalanced
Time-memory trade-off

\[
\log_2(\text{Time}) = \frac{1}{n} \log_2(\text{Space})
\]

- Memory optimal: \(k=7 \), \(n \), \(k=6 \), \(k=5 \), \(k=4 \), \(k=3 \)

Speed-ups for tuple sieve

G. Herold, E. Kirshanova, T. Laarhoven
Near Neighbour problem on a sphere

Given a list L_2 of iid points on a sphere, preprocess L_2, s.t. given a query point x_1, one can quickly find $x_2 \in L_2$ with $\langle x_1, x_2 \rangle \approx c$.
Locality-sensitive filtering [BDGL16]

Speed-ups for tuple sieve

G. Herold, E. Kirshanova, T. Laarhoven
Locality-sensitive filtering [BDGL16]
Locality-sensitive filtering [BDGL16]

The more u's we have, the faster the search but the more memory is needed. This gives rise to another optimization problem.

Speed-ups for tuple sieve

G. Herold, E. Kirshanova, T. Laarhoven
Locality-sensitive filtering [BDGL16]

TM trade-off:
The more u's we have, the faster the search but the more memory is needed.

Gives rise to another optimization problem.
Algorithm v.3

\[\langle x_1, x_2 \rangle \approx -1/k \]
More time-memory trade-offs

<table>
<thead>
<tr>
<th>Tuple size (k)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>0.292</td>
<td>0.304</td>
<td>0.339</td>
<td>0.346</td>
<td>0.406</td>
</tr>
<tr>
<td>Space</td>
<td>0.292</td>
<td>0.304</td>
<td>0.218</td>
<td>0.255</td>
<td>0.243</td>
</tr>
</tbody>
</table>
Conclusions

- Estimating SVP hardness by lower-bounding memory for $k = 2$-sieve is unjustified.
- Instead one should fix a memory bound, find the best k for this memory regime and use the complexity of the chosen k-sieve.
Conclusions

- Estimating SVP hardness by lower-bounding memory for $k = 2$-sieve is unjustified.
- Instead one should fix a memory bound, find the best k for this memory regime and use the complexity of the chosen k-sieve.

Thank you for your attention!