1 Remainder on \((p-1)\) method

Recall that in \((p-1)\) method, the idea is to find stuff that appends modulo \(p\) but not modulo \(N\).

Consider the following quantity:

\[
X(B) = \prod_{p \leq B} p^{|\log B / \log p|}
\]

For \(a \in \mathbb{Z}/N\mathbb{Z}\), if \(\gcd(a, N) = 1\), then compute \(\gcd(a^{X(B)} - 1, N)\).

A sufficient condition for some \(q/N\) to divide also \(a^{X(B)} - 1\) is that \(q - 1\) has only small prime power factors. The algorithm can be improve with a “second phase” to deal with the case where \(q - 1\) might have ONE prime factor.

Observation 1. “Second phase” deals with the case where \(q - 1\) might have one prime factor within \([B, B^2]\). The idea is to compute all \(\gcd(a^{lX(B)} - 1, N)\) for \(l\) prime in \([B, B^2]\), and compute their product modulo \(N\).

We use the fact that if \(l < l'\) are two such consecutive primes, \(a^{lX(B)} = a^{l'X(B)}a^{(l-l')X(B)}\). If \(\beta = a^{X(B)} \mod N\), \(\beta^l = \beta^{l'}\beta^{(l-l')}\). Then, pre-compute all possible value of \(\beta^{(l-l')}\) to compute all \(a^{lX(B)} - 1\) fast. Recall that \((l - l') = O(\log^2(B))\).

2 \((p+1)\) method

This method is due to Hugh C. Williams in 1982 [Wil82].

Let \(G_d(N) = \{(a, b) \in \mathbb{Z}/N\mathbb{Z} \mid a^2 + db^2 = 1 \mod N\} \subseteq (\mathbb{Z}/N\mathbb{Z})\sqrt{-d}\).

Claim 2. There is a group structure on \(G_d(N)\) if \(N\) is prime, where:

- the neutral element is \((1, 0)\),
- product is defined as \((a, b) \times (a', b') = (aa' - dbb', ab' + a'b)\).

The idea here is to think of \((a, b)\) as \(a + b\sqrt{-d}\).

Claim 3. Let \(p\) be a prime. If \(-d\) is a square modulo \(p\), then \(\#G_d(p) = p - 1\). If \(-d\) is not a square modulo \(p\), then \(\#G_d(p) = p + 1\).
Algorithm 1 \(p + 1 \) Algorithm

Input: \(N \)

Output: A prime factor of \(N \), or fail

1. Pick \(a, b \in \mathbb{Z}/N\mathbb{Z} \) randomly
2. Put \(d = \frac{1-a^2}{b^2} \mod N \)
3. Compute \((u, v) = (a, b)^X(B)\) in \(G_d(N) \) \(\triangleright \) Is \((u, v) = (1, 0) \mod p\) for some \(p \mid N \) ?
4. \textbf{return} \(\gcd(u - 1, v, N) \)

The success condition can be:

- \(-d\) is a square, thus \(p - 1 \mid X(B) \)
- \(-d\) is not a square, thus \(p + 1 \mid X(B) \)

We are in the second case.

3 ECM (Elliptic Curve Method)

This method is due to Lenstra Jr and Hendrik W in 1987 [LJ87].

An Elliptic Curve parametrized with \(a \) and \(b \) is based on the ground set:

\[
E_{a,b}(N) = \{(x, y) \mid y^2 = x^3 + ax + b\} \cup \{\infty\}.
\]

For the curve not to be singular, we assume that \((4a^3 + 27b^2, N) = 1\).

Claim 4. When \(p \) is prime, there is a group structure over \(E_{a,b}(p) \), defined by:

- three aligned points sum to zero (counted with multiplicities),
- neutral elements is \(\infty \).

Theorem 5 (Hasse). If \(p \) is prime, \(|#E_{a,b}(p) - (p + 1)| \leq 2\sqrt{p}\).

Algorithm 2 ECM Algorithm

Input: \(N \)

Output: A prime factor of \(N \), or fail

1. Pick \((x, y) \in \mathbb{Z}/N\mathbb{Z}, \) pick \(a \) and \(b = y^2 - x^3 - ax \mod N \)
2. Check that \(\gcd(4a^3 + 27b^2, N) = 1 \)
3. Compute \((u, v) = X(B) \cdot (a, b)\)

During the computation, we hope that at some point an inverse \(\mod N \) (slope of \((PQ)\) or of tangent at \(T \)) will be impossible, meaning that the number we are trying to invert is not coprime to \(N \) (\(\Rightarrow \) often get a factor of \(N \)).

Sufficient condition of successor is that for some \(p \mid N, \#E_{a,b}(p) \mid X(B) \).
Heuristic 6 (False). For random x, y, a as in the algorithm, the probability that $E_{a,b}(p)$ is B-smooth is the same as for a random integer in $[p/2, 3p/2]$, namely

$$p_{B-smooth} \approx \frac{1}{u^u}, \text{ where } u = \frac{\log p}{\log B}.$$

The expected number of curves to get a success is one over this probability, i.e. u^u. The cost of testing one curve is $\log(X(B)) \approx Bx \log\log N$. Hence, the total cost is $Bu^u \log\log N$. The goal is now to estimate the optimal B. Let’s consider the log of this cost:

$$\log(Bu^u) = \log B + \frac{\log p}{\log B} \log \frac{\log p}{\log B}$$

Let $x = \frac{\log p}{\log B}$. Then

$$\log(Bu^u) = \frac{1}{x} \log p + x \log x \quad \text{and} \quad (\log(Bu^u))' = -\frac{1}{x^2} \log p + \log x + 1$$

Hence, the optimal value is obtained when $x^2(1 + \log x) = \log p$. For convenience, let’s look for an x such that $x^2 \log x = \log p$.

$$x = \sqrt{\frac{\log p}{\log x}} = \sqrt{\frac{\log p}{\frac{1}{2} \log \frac{\log p}{\log x}}} = \sqrt{2 \frac{\log p}{\log \log p - \log x}} \approx \sqrt{2 \frac{\log p}{\log \log p - 0}}$$

$$\log B = \frac{\log p}{x} = \sqrt{\frac{1}{2} \log p \log \log p}$$

Hence, based on the false heuristic 6, the total cost of ECM is $O\left(\exp\left(\sqrt{\frac{1}{2} \log p \log \log p} \times \log(N)\right)\right)$.

4 Congruence-based methods

Idea 7. Find (x, y) with $x \neq \pm y \mod N$, and $x^2 = y^2 \mod N$. Then N can be factorized as $N = \gcd(x-y,N) \times \gcd(x+y,N)$, hoping that both gcd are not 1 neither N.

Example 8. Let $N = 143$. To find x and y, one idea is to find some x^2 that are congruent modulo N to a small number (i.e. lower than B for some B). To find it, let’s check all first x, and consider $B = 5$ for example.

<table>
<thead>
<tr>
<th>x</th>
<th>x^2</th>
<th>$x \mod N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>169</td>
<td>26</td>
</tr>
<tr>
<td>14</td>
<td>196</td>
<td>53</td>
</tr>
<tr>
<td>15</td>
<td>225</td>
<td>82</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
<td>30</td>
</tr>
<tr>
<td>17</td>
<td>289</td>
<td>3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Doing so, we find that $17^2 = 3 \mod N$. Thus, it would be great to find y such that $y^2 = 3 \mod N$, or even of the form $y^2 = 3 \times k^2 \mod N$ for some k. Let’s continue to explore the table:

<table>
<thead>
<tr>
<th>x</th>
<th>x^2</th>
<th>$x \mod N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>15</td>
<td>225</td>
<td>82</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
<td>30</td>
</tr>
<tr>
<td>17</td>
<td>289</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>324</td>
<td>38</td>
</tr>
<tr>
<td>19</td>
<td>361</td>
<td>$75 = 3 \times 5^2$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Finally, we found that $17^2 \times 19^2 = 3 \times (3 \times 5^2) = 15^2 \mod N$, which means that $37^2 = 15^2 \mod N$. Hence, we can easily factorize $N = 143$: we have $37 - 15 = 22$ and $\gcd(22, N) = 11$; and $37 + 15 = 52$ and $\gcd(52, N) = 13$. Thus, $N = \gcd(22, N) \times \gcd(52, N) = 11 \times 13$.

Algorithm 3 Meta-Algorithm

Input: N

Output: A prime factor of N, or fail

1: B a bound, $B = \{p \leq B\}$

2: $i \leftarrow 0$

3: while $i \leq \#B$ do

4: Pick x_i

5: If $x_i^2 \mod N$ factors as $\prod_{p \in B} p_j^{u_{i,j}}$, then increment i

6: Solve the linear system $u_{i,j} \times v = 0 \mod 2$

Proposition 9. If we have:

$Y = \prod_i x_i^{v_i} \mod N$ and $Z = \prod_j p_j^{\frac{1}{2} \sum_j u_{i,j} v_i} \mod N$

then $Y^2 = Z^2 \mod N$.

Proof. Indeed,

$Y^2 = \prod_i (x_i^2)^{v_i} = \prod_i \left(\prod_j p_j^{u_{i,j}} \right)^{v_i} = \prod_j p_j^{\sum_j u_{i,j} v_i} = Z^2 \mod N$

4.1 Dixon’s algorithm

Let specify this meta-algorithm. In Dixon’s algorithm [Dix81], x_i’s are picked randomly, factorizing $x_i^2 \mod N$ is done by trial division, and solving the linear system is done by Gaussian elimination.

To analyze Dixon’s algorithm, let’s make two assumptions:
Assumption 10. Suppose that \(x_i^2 \leq N^\alpha \) for some \(\alpha \).

Assumption 11. Suppose the cost of factorizing \(x_i^2 \) is roughly \(B^\theta \).

The number of relations needed is approximatively \(\#B \approx B^{1+o(1)} \), and the cost of trying one is \(x_i = B^\theta \).

Heuristic 12. \(x_i^2 \mod N \) behaves as a random integer in \([0, N^\alpha]\). Hence, probability of success for one \(x_i \) is

\[
p_{\text{success}} = \frac{1}{u^u}, \text{ with } u = \frac{\log N^\alpha}{\log B}.
\]

Thus, the total cost is \(\max(u^u B^\theta B^{1+o(1)}, B^3) \), where \(B^3 \) comes form linear algebra solving.

This is optimal when:

\[
\log B = \sqrt{\frac{\alpha}{2(1 + \theta)} \log N \log \log N}
\]

Finally, the total cost is:

\[
\max \left(B^3, \exp \left(\sqrt{2\alpha(1 + \theta) \log N \log \log N} \right) \right)
\]

In Dixon’s algorithm, we take the values \(\alpha = 1 \) and \(\theta = 1 \), which leads to a total cost of:

\[
\max \left(B^3, \exp \left(2\sqrt{\log N \log \log N} \right) \right)
\]

One can be smarter in the choice of \(\alpha \) and \(\theta \). In the Quartic Sieve algorithm, we choose \(\alpha = 1/2 \) and \(\theta = 0 \). Hence,

\[
\log B = \sqrt{\frac{1}{4} \log N \log \log N}
\]

and the total cost becomes

\[
\max \left(\exp \left(\sqrt{\log N \log \log N} \right), \exp \left(\sqrt{\log N \log \log N} \right) \right)
\]

where the first argument of the max comes from linear algebra, and the second one come from previous relations.

Good News: the matrix of the linear system is sparse! At most \(O(\log N) \) nonzero coefficients per rows for \(\exp \left(\sqrt{\log N \log \log N} \right) \) columns \(\Rightarrow \) linear algebra can be done in \(B^{2+o(1)} \) instead of \(B^3 \)

Introduce \(P(X) = (X + \lfloor \sqrt{N} \rfloor)^2 - N \). If \(i \ll N \), then, \(P(i) \approx 2i\sqrt{N} \). So if \(i = N^{o(1)} \),

\[
P(i) \approx N^{1/2 + o(1)}
\]

(we are still in the case where \(\alpha = 1/2 \).

One can use \(P(i) \) for \(x_i \). The number of \(x_i \) used by the algo is

\[
u^u B^\theta = \exp \left(c\sqrt{\log N \log \log N} \right) = N^{o(1)}.
\]
References

