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Context: solution of PDEs by neural networks

PDE: D(z ,u(z)) = f (z), z ∈ Ω BC: u(z) = g(z), z ∈ ∂Ω
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Idea: approximate the solution u(z) of the PDE by a neural
network by exploiting the physics of the problem:

Physics Informed Neural Networks (PINNs)
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Physics informed neural networks (PINNs)

PDE: D(z ,u(z)) = f (z), z ∈ Ω BC: u(z) = g(z), z ∈ ∂Ω
PINNs training problem: find the network weights p by minimizing

L(p) = RMSEres(p) + RMSEdata(p)

RMSEres(p) =
λr

N r
∥D(z , ûN(p; z r)) − f (z r)∥2,

RMSEdata(p) =
λm

Nm
∥ûN(p; zm) − u(zm)∥2,

given training points z r ∈ Ω and measurement points zm ∈ Ω ∪ ∂Ω
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Physics informed neural networks (PINNs)

Advantages

No need of discretization: we get an analytical expression of
the solution, with good generalization properties (also for
points outside the interval)

Natural approach for solving nonlinear equations

Alleviate the curse of dimensionality

Overcoming the curse of dimensionality in the numerical approximation of
semilinear parabolic partial differential equations (2018).

Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations (2019)

Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework
for Assimilating Flow Visualization Data (2018)
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Limitations

Usually trained by SGD:

convergence may be slow

convergence depends on the choice of the learning rate

training is time consuming

Idea: transpose acceleration methods classically used for PDEs to
neural networks

Focus on multigrid methods
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Classical multigrid methods

Discretization on grid h: large-scale linear system Ahuh = fh.

Relaxation methods fails to eliminate smooth components of
the error efficiently.

Smooth components projected on a coarser grid appear to be
more oscillatory.
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Multigrid methods

Ingredient 1: coarse grid

Want to solve Ahuh = fh. Exploit a coarser discretization H. Get a
lower dimensional problem: AHuH = fH .

Ingredient 2: iterative refinement

Given some approximation v to u, we define

e = u − v ,

r = f −Av ,

Ae = r (residual equation)

To improve v , we solve the residual equation and set v = v + e.
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Classical multigrid scheme

V-cycle on two levels

Relax ν1 times on Ahuh = fh to obtain an approximation vh

Compute the residual rh = fh −Avh .

Project the residual on the coarse level rH = Rrh

Relax ν2 times on the residual eq. AHeH = rH to obtain eH

Correct the fine level approximation vh = vh + PeH

State-of-the art method for the solution of PDEs: superior to
one-level relaxation methods already on two-levels
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Multilevel physics informed neural networks (MPINNs)

Two discretization levels
MG: Two grids h,H
MPINN: ûh(ph; zh), ûH(pH ; zH)
Fine problem
MG: Ahuh = fh
MPINN: minph Lh(ph) =

1
Nr
h
∥D(z rh, ûh(ph; z rh)) − f (z rh)∥

2

Residual equation
MG: AHeH = rH
MPINN minpH LH(pH) = 1

Nr
H
∥D(z rH , ûH(pH ; z rH)) − r(z rH)∥2

Fine solution update
MG: vh = vh + PeH
MPINNs: ûh(ph; zh) = ûh(ph; zh) +P(ûH(pH ; zH))
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MPINNs training

The training in this case follows the following scheme:

Perform ν1 epochs on the fine problem, get ûh(ph, z) of u(z)
Compute the residual rh(z rh) = f (z rh) −D(z rh, ûh)
Project the residual on the coarse level rH =R(rh)
Perform ν2 epochs on the residual problem, get ûH(pH , z)
Correct the fine level approximation
ûh(ph, zh) +P(ûH(pH , zH)).
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Transfer operators

MG: linear operators

MPINN: the variables of the optimization problem p don’t possess
an evident geometry: apply them to the underlying geometrical
variable z , and thus we define:

R(ûh(ph, zh)) ∶= ûH(pH ,RMG zh)
P(ûH(pH , zH)) ∶= ûh(ph,PMG zH)

Restriction is still a neural network, with less parameters and
evaluated on a smaller set of grid point
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Preliminary results 1D: ADAM

u′′(z) − u(z) = f (z), z ∈ [−1,1]
with f (z) = −(π2 + 1) sin(πz) − (α2π2 + 1) sin(απz).

Figure: α = 3, ADAM
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Preliminary results 1D: ADAM

(h,H) MPINN PINN h PINN h +H

(50,25) 1.3e-04, 3.1e-04 1.3e-04, 1.2e-04 7.0e-04, 4.3e-03

(200,100) 2.0e-04, 3.1e-04 1.1e-03, 2.9e-03 2.0e-03, 2.5e-03

(300,150) 1.4e-03, 5.2e-03 6.1e-03, 9.5e-1 > 1

Table: α = 3. Median and IQR for the RMSE

MPINNs are less sensible to the choice of the learning rate
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Preliminary results 1D: BFGS

Figure: α = 7, BFGS

α MPINN PINN h PINN h̃

8 3.0e-3, 3.0e-3 1.5e-2, 2.2e-2 1.7e-2, 3.0e-2

10 1.0e-2, 3.1e-2 1.3e-1, 2.8e-1 4.0e-2, 1.8e-1

12 3.0e-2, 1.0e-1 1.0e-1, 3.5 1.7e-1, 1.4
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Other tests

Nonlinear 2D: −∆u + αeu = f in Ω = [0,1] × [0,1]

Burger’s equation:
∂u

∂t
+ u

∂u

∂x
= ν ∂

2u

∂x2
.

MPINN PINN 40 PINN 30

RMSE 1.3e-1,0.4e-1 1.8e-1, 0.4e-1 1.7e-1, 1.5e-2
Operations 1 6.1 3.5
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Conclusions and perspectives

Promising preliminary results

Need for a deeper numerical investigation (other problems,
deeper V-cycles)

Need for an efficient implementation

Need for theoretical convergence theory

16 / 16



Thank you for your attention!

Preprint available soon:

Multilevel physics informed neural networks (MPINNs) E.Riccietti,
V. Mercier, S. Gratton, 2021

Previous work:

On a multilevel Levenberg-Marquardt method for the training of
artificial neural networks and its application to the solution of partial
differential equations, H. Calandra, S. Gratton, E. Riccietti X.
Vasseur, SIOPT, 2021.
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Hyperparameters tuning

Figure: α = 3, NH number of training points, H number of neurons in the
coarse network

NH 25 50 60 70 100 150

RMSE 2.3 8.0e-4 9.4e-4 2.8e-4 4.5e-4 2.3e-4
Op. 0.85 0.88 0.89 0.84 0.94 1

H 10 25 50 60 70 100 150

RMSE 3.2e-3 7.8e-4 4.6e-4 1.7e-4 3.1e-4 1.6e-4 2.4e-4
Op. 0.88 0.89 0.91 0.93 0.96 0.98 1
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