Multilevel Physics Informed Neural Networks (MPINNs)

E. Riccietti (LIP-ENS, Lyon)

Joint work with: V. Mercier, S. Gratton (IRIT-INP, Toulouse)

13th JLESC Workshop 14-16 December 2021

Context: solution of PDEs by neural networks

PDE:
$$D(z, u(z)) = f(z), z \in \Omega$$
 BC: $u(z) = g(z), z \in \partial \Omega$

Context: solution of PDEs by neural networks

PDE:
$$D(z, u(z)) = f(z), z \in \Omega$$
 BC: $u(z) = g(z), z \in \partial \Omega$

Idea: approximate the solution u(z) of the PDE by a neural network by exploiting the physics of the problem:

Physics Informed Neural Networks (PINNs)

PDE: $D(z, u(z)) = f(z), z \in \Omega$ BC: $u(z) = g(z), z \in \partial \Omega$ PINNs training problem: find the network weights p by minimizing

$$\mathcal{L}(p) = RMSE_{res}(p) + RMSE_{data}(p)$$
$$RMSE_{res}(p) = \frac{\lambda^{r}}{N^{r}} \|D(z, \hat{u}_{N}(p; z^{r})) - f(z^{r})\|^{2},$$
$$RMSE_{data}(p) = \frac{\lambda^{m}}{N^{m}} \|\hat{u}_{N}(p; z^{m}) - u(z^{m})\|^{2},$$

given training points $z^r \in \Omega$ and measurement points $z^m \in \Omega \cup \partial \Omega$

Advantages

- No need of discretization: we get an analytical expression of the solution, with good generalization properties (also for points outside the interval)
- Natural approach for solving nonlinear equations
- Alleviate the curse of dimensionality
- Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations (2018).
- Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations (2019)
 - Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data (2018)

Usually trained by SGD:

- convergence may be slow
- convergence depends on the choice of the learning rate
- training is time consuming

Usually trained by SGD:

- convergence may be slow
- convergence depends on the choice of the learning rate
- training is time consuming

Idea: transpose acceleration methods classically used for PDEs to neural networks Focus on multigrid methods Discretization on grid h: large-scale linear system $A_h u_h = f_h$.

- Relaxation methods fails to eliminate smooth components of the error efficiently.
- Smooth components projected on a coarser grid appear to be more oscillatory.

Ingredient 1: coarse grid

Want to solve $A_h u_h = f_h$. Exploit a coarser discretization H. Get a lower dimensional problem: $A_H u_H = f_H$.

Ingredient 2: iterative refinement

Given some approximation v to u, we define

$$e = u - v,$$

 $r = f - Av,$
 $Ae = r$ (residual equation)

To improve v, we solve the residual equation and set v = v + e.

V-cycle on two levels

- Relax ν_1 times on $A_h u_h = f_h$ to obtain an approximation v_h
- Compute the residual $r_h = f_h Av_h$.
- Project the residual on the coarse level $r_H = Rr_h$
- Relax ν_2 times on the residual eq. $A_H e_H = r_H$ to obtain e_H
- Correct the fine level approximation $v_h = v_h + Pe_H$

V-cycle on two levels

- Relax ν_1 times on $A_h u_h = f_h$ to obtain an approximation v_h
- Compute the residual $r_h = f_h Av_h$.
- Project the residual on the coarse level $r_H = Rr_h$
- Relax ν_2 times on the residual eq. $A_H e_H = r_H$ to obtain e_H
- Correct the fine level approximation $v_h = v_h + Pe_H$

State-of-the art method for the solution of PDEs: superior to one-level relaxation methods already on two-levels

• Two discretization levels

MG: Two grids h, HMPINN: $\hat{u}_h(p_h; z_h), \hat{u}_H(p_H; z_H)$

• Fine problem

MG: $A_h u_h = f_h$ MPINN: $\min_{p_h} \mathcal{L}_h(p_h) = \frac{1}{N_h^r} \|D(z_h^r, \hat{u}_h(p_h; z_h^r)) - f(z_h^r)\|^2$

• Residual equation

MG: $A_H e_H = r_H$ MPINN $\min_{p_H} \mathcal{L}_H(p_H) = \frac{1}{N_H^r} \|D(z_H^r, \hat{u}_H(p_H; z_H^r)) - r(z_H^r)\|^2$

• Fine solution update

MG: $v_h = v_h + Pe_H$ MPINNs: $\hat{u}_h(p_h; z_h) = \hat{u}_h(p_h; z_h) + \mathcal{P}(\hat{u}_H(p_H; z_H))$ The training in this case follows the following scheme:

- Perform ν_1 epochs on the fine problem, get $\hat{u}_h(p_h, z)$ of u(z)
- Compute the residual $r_h(z_h^r) = f(z_h^r) D(z_h^r, \hat{u}_h)$
- Project the residual on the coarse level $r_H = \mathcal{R}(r_h)$
- Perform ν_2 epochs on the residual problem, get $\hat{u}_H(p_H, z)$
- Correct the fine level approximation $\hat{u}_h(p_h, z_h) + \mathcal{P}(\hat{u}_H(p_H, z_H)).$

MG: linear operators

Figure 3.2: Interpolation of a vector on coarse grid Ω^{2h} to fine grid Ω^{h} .

MPINN: the variables of the optimization problem p don't possess an evident geometry: apply them to the underlying geometrical variable z, and thus we define:

$$\mathcal{R}(\hat{u}_h(p_h, z_h)) \coloneqq \hat{u}_H(p_H, R_{MG}z_h)$$
$$\mathcal{P}(\hat{u}_H(p_H, z_H)) \coloneqq \hat{u}_h(p_h, P_{MG}z_H)$$

Restriction is still a neural network, with less parameters and evaluated on a smaller set of grid point

Preliminary results 1D: ADAM

Figure: α = 3, ADAM

MPINNs are less sensible to the choice of the learning rate

Preliminary results 1D: BFGS

Figure: α = 7, BFGS

α	MPINN	PINN h	PINN \tilde{h}		
8	3.0e-3, 3.0e-3	1.5e-2, 2.2e-2	1.7e-2, 3.0e-2		
10	1.0e-2, 3.1e-2	1.3e-1, 2.8e-1	4.0e-2, 1.8e-1		
12	3.0e-2, 1.0e-1	1.0e-1, 3.5	1.7e-1, 1.4		

Other tests

Nonlinear 2D: $-\Delta u + \alpha e^u = f$ in $\Omega = [0, 1] \times [0, 1]$

- Promising preliminary results
- Need for a deeper numerical investigation (other problems, deeper V-cycles)
- Need for an efficient implementation
- Need for theoretical convergence theory

Thank you for your attention!

Preprint available soon:

Multilevel physics informed neural networks (MPINNs) E.Riccietti, V. Mercier, S. Gratton, 2021

Previous work:

On a multilevel Levenberg-Marquardt method for the training of artificial neural networks and its application to the solution of partial differential equations, H. Calandra, S. Gratton, E. Riccietti X. Vasseur, SIOPT, 2021.

Hyperparameters tuning

Figure: α = 3, N_H number of training points, H number of neurons in the coarse network

	N _H		25	50) (50	70	100	150	
_	RMS	δE	2.3	8.0e	-4 9.4	1e-4	2.8e-4	4.5e-4	4 2.3e-4	_
	Ор		0.85	0.8	8 0	.89	0.84	0.94	1	
E	1	1	0	25	50		60	70	100	150
RM	SE	3.2	e-3	7.8e-4	4.6e	-4 1.	7e-4	3.1e-4	1.6e-4	2.4e-4
0	p.	0.	88	0.89	0.9	1 0	.93	0.96	0.98	1