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Abstract. We consider the problem of optimally quantizing rank-one matrices to low precision
floating-point arithmetic. We first explain that the naive strategy of separately quantizing the two
rank-one factors can be far from optimal, and we provide worst case error bounds to support this
observation. We characterize the optimal solution as the quantization of suitably scaled factors
of the rank-one matrix and we develop an algorithm of tractable complexity to find the optimal
scaling parameters. Using random rank-one matrices, we show experimentally that our algorithm
can significantly reduce the quantization error. We then apply this algorithm to the quantization of
butterfly factorizations, a fundamental tool that appears in many fast linear transforms. We show how
the properties of butterfly supports can be exploited to approach the problem via a series of rank-one
quantization problems and we employ our algorithm as a building block in a heuristic procedure to
quantize a product of butterfly factors. We show that, despite being only heuristic, this strategy
can be much more accurate than quantizing each factor independently or, equivalently, can achieve
storage reductions of up to 30% with no loss of accuracy.
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1. Introduction. We consider the problem of optimally quantizing rank-one
matrices: given Ft a finite set of floating-point numbers with t-bit significand and
unquantized (or high precision) vectors x ∈ Rm, y ∈ Rn, we wish to solve

min
x̂∈Fm

t ,ŷ∈Fn
t

‖xy> − x̂ŷ>‖2. (1.1)

The problem of factorizing a rank-one matrix arises in many applications in linear
algebra, signal processing, and machine learning. It is for instance a building block in
the generic problem of rank-r decomposition, which can indeed be solved by singular
value decomposition (SVD), a process that can be decomposed as a series of r rank-one
approximations [10].

The rank-one problem is also interesting on its own. For instance, it is a key
ingredient in the efficient solution of specific instances of sparse matrix factorization
(SMF), which seeks to approximate a large dense matrix Z as a product of two or
more sparse factors B1, . . . , BL, L ≥ 2 [12]. The sparse factors usually belong to a
structured family of matrices, so that the sparsity pattern can be easily exploited
to reduce the computational cost of linear operations involving the matrix Z. A
particularly useful family is that of butterfly matrices, widely used for their strong
expressivity and extreme sparsity pattern: they only have two nonzeros per row and
per column and appear for instance in the factorizations of the Hadamard and of the
Fourier matrices [1]. Due to the structure of butterfly matrices, certain partial products
of their factors can be decomposed into blocks that admit an exact representation as
rank-one matrices. This property has been used in the literature [11, 10] to design
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algorithms to approximate a given matrix Z with a butterfly product by solving a
series of rank-one problems.

Due to the growing size of matrices in such applications, optimizing the memory
usage and computational cost of algorithms involving them is important. Low precision
quantization methods have been applied in many fields to deal with the always growing
scale of models and datasets. For example, low precision floating-point arithmetic
has been exploited in linear algebra to reduce the cost of many computational tasks,
often while preserving a high accuracy thanks to mixed precision algorithms; see [8]
for a recent survey. Low precision quantization is also a key tool in the training and
inference of large deep neural networks (DNN), see for example [6]. The interest for
problem (1.1) is thus further motivated by recent work on the approximation of weight
matrices in DNN with sparse structured matrices [4, 3], especially when butterfly
factorizations are involved.

The natural strategy to attack problem (1.1) is to separately quantize the two
rank-one factors x and y by a round-to-nearest (RTN) strategy: each coefficient of x
and y is mapped to its closest floating-point neighbor. Indeed, this strategy minimizes
separately the error on the quantization of each of the two factors: see (2.7) below.
We derive an upper bound on the worst case quantization error obtained with this
RTN strategy, which is of order 2−t. Somewhat surprisingly, and importantly, we
prove in this work that the RTN strategy is not necessarily optimal, in the sense that
(potentially much) lower quantization errors on the overall product can be achieved
for some other choice of x̂ and ŷ.

The optimal quantization method that we develop in this paper is based on the
observation that the problem has a scaling invariance: for any scaling parameter
λ 6= 0, the unquantized product is independent of λ: (λx)

(
1
λy
)>

= xy>. However, the
product of the quantized versions of λx and 1

λy
> does depend on λ, and a well-chosen

λ may yield a more accurate approximation. We develop an analysis that characterizes
the optimal solution as the quantization of scaled vectors λx and µy>, where, crucially,
µ is close, but not equal to, 1/λ.

Despite the combinatorial nature of the problem—the number of possible quantiza-
tions is exponential in both t, the number of significand bits of the target floating-point
format, and the dimensions m,n—we show that the optimal scaling parameters can
be found with tractable complexity. We develop an algorithm that, by enumerating
a finite number of values for λ, achieves a complexity in O(2tmn) in time and in
O(2t min(m,n)) in space, which is thus only polynomial in the dimensions m,n. The
exponential dependence in t is tractable in a context of coarse to moderate quantization
and we tested the algorithm with success up to t = 11. For the applications that we
consider, higher values of t are not of interest.

We demonstrate both empirically and theoretically that the proposed optimal
algorithm can indeed be much more accurate than the simple strategy based on
separately quantizing x and y with RTN. Theoretically, we derive upper and lower
bounds on the worst case optimal quantization error. In particular, a theoretical
lower bound, whose numerical evaluation for t ≤ 11 is of order 2−1.6t, is obtained by
studying the properties of FtFt, the set of elements that can be written as the product
of two t-bit floating-point numbers, to which the elements of x̂ŷ> belong. Empirically,
we investigate the behavior of the proposed algorithm with random rank-one matrices.
We show that it preserves a high accuracy in the product xy> despite using a reduced
number of bits to quantize x and y.

Finally, we apply the proposed algorithm to the quantization of butterfly fac-
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torizations B1 . . . BL. As mentioned before, due to the special structure of butterfly
matrices, certain partial products of their factors can be decomposed into rank-one
blocks. We prove that in the case of two factors (L = 2), we can employ the optimal
rank-one quantization to obtain an optimally quantized butterfly factorization, whereas
optimality is no longer guaranteed for more than two factors. In this case, we propose
two heuristics that use the optimal rank-one quantization algorithm as a building block
to quantize different sets of partial products of the factors. We show experimentally
that, despite being only heuristic, this strategy can be much more accurate than
quantizing each butterfly factor independently.

The rest of this paper is organized as follows. In Section 2 we present the notations
and technical ingredients necessary for the rest of the paper, and we introduce the RTN
strategy and its corresponding error bounds. Then in Section 3 we first derive lower
and upper bounds on the worst case quantization error of a rank-one matrix; the lower
bound motivates the interest of finding an optimal solution to (1.1). In Section 4, we
characterize such an optimal solution as a rank-one matrix with suitably scaled factors.
In Section 5, we develop an algorithm to find the optimal scaling parameters with
tractable complexity. We illustrate the empirical behavior of this algorithm for random
rank-one matrices in Section 6. We then apply it to the quantization of butterfly
factorizations in Section 7. Finally, we provide our concluding remarks in Section 8.

2. Technical preliminaries and notations. We consider the problem of quan-
tizing a rank-one matrix xy>, x ∈ Rm, y ∈ Rn with t bits of precision, that is, to
map the elements of x and x from R to a finite set Ft of t-bit numbers. Denoting the
quantized x and y as x̂ and ŷ, our goal is to minimize the quantization error, that it
to solve (1.1).

We will work with floating-point arithmetic, and define Ft to be the set of floating-
point numbers with t ≥ 1 bits of significand:

Ft := {±k2e−t, k ∈ J2t−1, 2t − 1K, e ∈ Z}. (2.1)

The significand ±k can indeed be encoded with t bits: one bit for the sign, and t− 1
bits to describe k (since the most significant bit of k is implicitly fixed to one). Note
that in practice, the exponent e of floating-point numbers is restricted to a finite
range Jemin, emaxK that depends on how many bits are used to encode the exponent.
Throughout this paper, we ignore issues related to the exponent part of the floating-
point representation: we assume that a fixed number of additional bits is used for
encoding the exponent, and that it is sufficient to prevent overflow and underflow, so
that all elements in x and y belong to the representable range of the floating-point
arithmetic. We also ignore subnormal numbers (numbers with e = 0 and k smaller
than 2t−1).

We define the roundt(·) function that maps any a ∈ R to its (set of) nearest
neighbor(s) in Ft:

roundt(a) ∈ arg min
â∈Ft

|a− â|. (2.2)

Note that in most cases there is a unique nearest neighbor, except in the case of a tie,
in which case there are two of them: for this technical reason, we consider roundt(·)
to be set-valued. The unit roundoff of Ft is defined [7, Thm. 2.2] as

u = ut := 2−t, (2.3)

and the closely related quantity

v = vt :=
ut

1 + ut
, (2.4)
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bounds the maximum relative distance between any element in the representable range
and its nearest neighbor in Ft [9]:

∀a ∈ R, |roundt(a)− a| ≤ vt|a|. (2.5)

In case of a tie, observe that |roundt(a)− a| is equal for both values of roundt(a) so
that the expression is well defined. The bound is sharp [9]: there exists a > 0 such that
roundt(a)− a = vta. For brevity we will use round(·), u, and v instead of roundt(·),
ut, and vt when t is clear from context.

The round-to-nearest (RTN) strategy to quantize the product xy> consists in
mapping each element of x and y to their nearest neighbor in Ft, with some suitable
tie-breaking rule. This yields quantized x̂ and ŷ satisfying

x̂ = round(x) = x+ ∆x, ‖∆x‖ ≤ v‖x‖, (2.6a)
ŷ = round(y) = y + ∆y, ‖∆y‖ ≤ v‖y‖, (2.6b)

where round(·) is applied elementwise. It is worth noting that x̂ and ŷ are, by definition,
optimal quantizations of x and y, in the sense that they are solutions of the problems

min
x̂
‖x− x̂‖, x̂ ∈ Fmt , (2.7a)

min
ŷ
‖y − ŷ‖, ŷ ∈ Fnt . (2.7b)

However, our goal is not to solve these problems but rather to solve (1.1), which seeks
to minimize the quantization error on the overall product xy>. The following result
bounds the worst case quantization error obtained with this RTN strategy.

Lemma 2.1. For any x ∈ Rm and y ∈ Rn we have

‖xy> − round(x)round(y)>‖ ≤ (2v + v2)‖x‖‖y‖. (2.8)

This bound is sharp: there are vectors x, y for which the round-to-nearest strategy
achieves exactly an error of 2v + v2.

Proof. We prove the result in the more general case of matrices X ∈ Rm×r and
Y ∈ Rn×r, with r ≥ 1. Recall that for any matrices ‖MN‖ ≤ ‖M‖2→2 · ‖N‖ ≤
‖M‖ · ‖N‖ where ‖M‖2→2 := supx 6=0 ‖Mx‖2/‖x‖2. As a result

‖XY > − X̂Ŷ >‖ ≤ ‖X(Y > − Ŷ >)‖+ ‖(X − X̂)Ŷ >‖

≤ ‖X‖ · ‖Y > − Ŷ >‖+ ‖X − X̂‖ · ‖Ŷ >‖
= ‖X‖ · ‖∆Y ‖+ ‖∆X‖ · ‖Y + ∆Y ‖
≤ v‖X‖‖Y ‖+ v‖X‖ · (‖Y ‖+ ‖∆Y ‖) ≤ (2v + v2)‖X‖‖Y ‖.

For the converse result, given the sharpness of (2.5), consider a > 0 a real number
reaching maximal positive relative error (round(a)− a)/a = v and X, Y two matrices
filled with zeros except the upper left entry which is set to a. We have

‖XY > − X̂Ŷ >‖
‖XY >‖

=
|a2 − (round(a))2|

a2
=
|a− round(a)|

a

a+ round(a)

a

= v
round(a)− a+ 2a

a
= 2v + v2.
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3. Worst case quantization error bounds for rank-one matrices. The
RTN strategy described in the previous section is not necessarily optimal, in the sense
that lower quantization errors can be achieved for some other choice of x̂ and ŷ. In
this section, we study this problem from a theoretical perspective, by computing worst
case error bounds on the quantization of rank-one matrices. To do so, we define for
any non-empty subset S ⊂ R the set of rank-one matrices that can be decomposed
into two factors with coefficients in S,

Σ(S) := Σm×n(S) = {x̂ŷ> : x̂ ∈ Sm, ŷ ∈ Sn} ⊆ Rm×n. (3.1)

The distance from any matrix M ∈ Rm×n to any non-empty subset Σ(S) ⊆ Rm×n is

d(M,Σ(S)) := inf
M̂∈Σ(S)

‖M − M̂‖. (3.2)

We are thus particularly interested in studying d(M,Σ(Ft)) when M ∈ Σ(R).
Note that the coefficients of matrices M̂ ∈ Σ(Ft) belong to the set

FtFt := {x̂ŷ, x̂ ∈ Ft, ŷ ∈ Ft}, (3.3)

which is the set of numbers that can be written as the product of two t-bit floating-point
numbers. Therefore, in order to derive a lower bound on d(M,Σ(Ft)), we can study
the properties of this set and more specifically the worst case error when quantizing a
real number z by a number of the form ẑ = x̂ŷ ∈ FtFt.

We consider the distance of z ∈ R to a non-empty set S ⊆ R:

d(z,S) = inf
ẑ∈S
|ẑ − z|, (3.4)

which is the instantiation of (3.2) for m = n = 1 and Σ = S. Then, the worst case
relative error of quantizing an element z on a non-empty set S is given by

ε(S) := sup
z∈R\{0}

d(z,S)

|z|
. (3.5)

For example, for any t > 0 we have [7, Thm. 2.2].

ε(Ft) = vt =
2−t

1 + 2−t
. (3.6)

With this formalism, we can provide the following bounds on the worst case
relative error of optimal quantization over rank-one matrices.

Lemma 3.1. Consider integers m,n, t ≥ 1. With the notation Σ(S) ⊆ Rm×n

from (3.1), we denote

ε(Σ(R),Σ(Ft)) := sup
0 6=xy>∈Σ(R)

d(xy>,Σ(Ft))
‖xy>‖

. (3.7)

It satisfies
ε(FtFt) ≤ ε(Σ(R),Σ(Ft)) ≤ 2vt + v2

t . (3.8)

Proof. The upper bound is a direct consequence of Lemma 2.1, since an optimal
quantization will always be at least as accurate as the RTN quantization. By the very
definition of ε(FtFt), the lower bound is achieved by considering a worst case over
pairs of the form x = x1e1 ∈ Rm, y = y1f1 where x1, y1 ∈ R and e1 (resp. f1) is the
first canonical basis vector in Rm (resp. in Rn).
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1 1.2 1.4 1.6 1.8 2

Fig. 3.1: Elements of Ft, Ft+1, FtFt, F2t−1, and F2t in the interval [1, 2], for t = 3. This figure
illustrates Lemma 3.2.

To the best of our knowledge, ε(FtFt) does not have a known simple closed-form
expression as a function of t. Nevertheless, we may gain insight on its size by noting
that if S1 ⊆ S2, then ε(S1) ≥ ε(S2). We are thus interested in finding sets S1 and S2

such that S1 ⊆ FtFt ⊆ S2. The following lemma accomplishes this by using the sets of
floating-point numbers Fp.

Lemma 3.2. For any t ≥ 1, Ft ⊆ FtFt ⊆ F2t. These inclusions are sharp, in the
sense that Ft+1 * FtFt and FtFt * F2t−1 (the latter only holds for t ≥ 2).

Proof. The Ft ⊆ FtFt inclusion is trivial since 1 ∈ Ft.
To prove that FtFt ⊆ F2t, let x, y ∈ Ft such that x = ±mx2ex−t and y = ±my2ey−t.

Then
xy = ±mxmy2ex+ey−2t := ±m2e−2t.

Clearly, since mx,my ≤ 2t − 1, m satisfies the upper bound m ≤ 22t − 1. We now
distinguish two cases. If m ≥ 22t−1 then by definition of F2t we have xy ∈ F2t.
Otherwise, if m < 22t−1, then letting m′ = 2m we have m′ < 22t, i.e. m′ ≤ 22t − 1.
Moreover since mx,my ≥ 2t−1, m′ also satisfies the lower bound m′ ≥ 22t−1 ≥ 2t−1.
Therefore xy = m′2e−1−2t ∈ F2t.

To prove that Ft+1 * FtFt, observe that by Bertrand’s postulate [14, p. 371-382],
there exists a prime p such that 2t < p < 2t+1. Since p ∈ J2t, 2t+1 − 1K we have
p ∈ Ft+1 by (2.1). However p does not belong to FtFt, since it cannot be written as
m1m22f

′
, with m1,m2 ≤ 2t − 1.

Finally, to prove that FtFt * F2t−1 assuming that t ≥ 2, it suffices to consider
the example x = (2t−1 + 1)2e−t ∈ Ft and y = (2t − 1)2f−t ∈ Ft. Then xy ∈ FtFt is
given by xy = m2e+f−2t with m = 22t−1 + 2t−1 − 1. Observe that m is whole but
exceeds the required upper bound 22t−1 − 1; and that since t ≥ 2, m is odd hence for
any s ≥ 1, m/2s cannot be an integer. Thus xy /∈ F2t−1.

We illustrate Lemma 3.2 in Figure 3.1 for t = 3. Lemma 3.2 shows that ε(FtFt) lies
in between ε(Ft) = vt ≈ 2−t and ε(F2t) = v2t ≈ 2−2t. Moreover, we can numerically
compute ε(FtFt) exactly by using the following observation, which applies to S = Ft
as well as to S = FtFt.

Lemma 3.3. For any set S ⊆ R and a ∈ R denote aS := {ax : x ∈ S}. If
6



S = −S = 2S is non-empty then for any z′ ∈ R\{0} there is z ∈ [1, 2] such that

d(z′,S)

|z′|
=
d(z,S)

|z|
(3.9)

Proof. Since z′ 6= 0, there exists p ∈ Z such that z := 2p|z′| ∈ [1, 2]. Since S = −S
and S = 2S we have S = sign(z′)2−pS hence

d(z,S)

|z|
= min

ẑ∈S

|z − ẑ|
|z|

= min
ẑ∈S

|2p|z′| − 2p(ẑ2−p)|
|2pz′|

= min
ẑ′∈S

||z′| − ẑ′2−p|
|z′|

= min
ẑ′∈S

|z′ − sign(z′)ẑ′2−p|
|z′|

= min
ẑ′∈S

|z′ − ẑ′|
|z′|

=
d(z′,S)

|z′|
.

Corollary 3.4. Consider a non-empty S ⊂ R such that S = −S, S = 2S, and
S ∩ [1, 2] is finite. Denote ẑi the elements of S ∩ [1, 2] in increasing order. We have

ε(S) = max
i

ẑi+1 − ẑi
ẑi+1 + ẑi

. (3.10)

Proof. By Lemma 3.3, since S = −S = 2S, we have

ε(S) = sup
z∈[1,2]

d(z,S)

|z|
= max

i
sup

z∈[ẑi,ẑi+1]

d(z,S)

|z|
.

Now, observe that, in each interval [ẑi, ẑi+1], the relative error is expressed as

d(z,S)

|z|
=

{
1− ẑi

z , if z ∈ [ẑi,mi]
ẑi+1

z − 1 if z ∈ [mi, ẑi+1]
where mi := (ẑi+1 + ẑi)/2 (3.11)

and is thus maximized at the midpoint mi, where it is equal to

d(mi,S)

|mi|
=
mi − ẑi
mi

=
ẑi+1 − ẑi
ẑi+1 + ẑi

.

Since FtFt is stable by sign flip and by multiplication by two, Corollary 3.4 shows that
we can numerically compute ε(FtFt) simply by evaluating (3.10) for all ẑi, of which
there are at most 22t since FtFt ⊆ F2t. For modest values of t, this is tractable. We
have done this for t ≤ 11 and report the result in Figure 3.2 (left). Using a linear fit,
we observe ε(FtFt) to behave approximately as 2−1.6t. The gap between ε(Ft) and
ε(FtFt) thus increases with t.

The proof of Lemma 3.3 also suggests a simple O(22t) algorithm to find an optimal
quantized pair x̂, ŷ given x, y. A first step is to select an integer p such that 2pxy ∈ [1, 2].
Then, we can simply enumerate all elements of FtFt ∩ [1, 2] and select one minimizing
the distance to 2pxy. Denote such an element as ẑ = ab, a ∈ Ft, b ∈ Ft; then we obtain
(for example) x̂ = a and ŷ = 2−pb. Moreover, if we assume that the elements ẑi of
FtFt∩ [1, 2] are precomputed and stored in increasing order (together with their factors
ai, bi ∈ Ft, with a memory complexity O(22t), then a simple dichotomy procedure
allows to find x̂, ŷ with a time complexity O(t). Refinements of these ideas will be
at the core of the algorithm proposed in the next sections to optimally quantize xy>,
x ∈ Rm, y ∈ Rn.
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Fig. 3.2: Left: Values of the worst case relative errors ε(Ft) = vt ≈ 2−t, ε(FtFt) (computed by (3.10)),
and ε(F2t) = v2t ≈ 2−2t, as a function of t. From a linear fit ε(FtFt) ≈ 2−1.6t. Right: Values of
average relative errors η(Ft), η(FtFt) and η(F2t) (defined in (3.12), with Ω = [1, 2]), as a function of
t. From a linear fit η(FtFt) ∼ 2−1.9t.

Having analyzed the behavior of the worst case quantization error, we now explain
why the error may be even better on average. There is no standard definition of
average relative error, but we may for example define it as

η(S|Ω) =
1

|Ω|

∫
Ω

d(z,S)

|z|
dz

for any non-empty subset S ⊆ R and any measurable domain Ω ⊆ R\{0} with Lebesgue
measure 0 < |Ω| < +∞. Observe that we always have η(S|Ω) ≤ ε(S). For S = Ft or
S = FtFt, in light of Lemma 3.3 it is natural to choose Ω = [1, 2], so we define

η(S) =

∫ 2

1

d(z,S)

|z|
dz for S = Ft and for S = FtFt. (3.12)

For the standard set Ft of floating-point numbers, the average relative error η(Ft)
is not a very interesting metric, as it is within a constant factor of the worst case
relative error ε(Ft) = u/(1+u). Indeed, because of the uniform spacing of the elements
of Ft within intervals of consecutive powers of two, and in particular in [1, 2], we have

∫ 2

1

d(z,Ft) =

2t−1∑
i=1

∫ 1+2iu

1+2(i−1)u

d(z,Ft)

where, in any interval [1 + 2(i− 1)u, 1 + 2iu], d(z,Ft) has the shape of a triangle of
height u and base 2u. Hence

∫ 2

1

d(z,Ft) =

2t−1∑
i=1

u2 =
u

2

and since d(z,Ft)/2 ≤ d(z,Ft)/|z| ≤ d(z,Ft) for z ∈ [1, 2] we obtain

u

4
=

∫ 2

1

d(z,Ft)
2

dz ≤ η(Ft) ≤
∫ 2

1

d(z,Ft)dz =
u

2
. (3.13)
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(d) t = 7

Fig. 3.3: Relative errors d(z,Ft)/|z| and d(z,FtFt)/|z| for t = 4, 5, 6, 7.

As illustrated in Figure 3.1, the elements of FtFt are not uniformly spaced, and so
the concept of average relative error takes its full meaning as it can be quite different
from the worst case one. We illustrate this by plotting in Figure 3.3 the relative errors
d(z,Ft)/|z| and d(z,FtFt)/|z| for z ∈ [1, 2] and t = 4. The average relative error, given
by the area under the curves, is visibly much better for FtFt than for Ft. We now
quantify this more precisely.

Lemma 3.5. Consider a set S ⊂ R such that S ∩ [1, 2] is finite and non-empty.
Denoting ẑi the elements of S ∩ [1, 2] in increasing order, we have

η(S) =
∑
i

(ẑi log ẑi + ẑi+1 log ẑi+1 − 2mi logmi) . (3.14)

Proof. We can reuse the expression (3.11) from the proof of Corollary 3.4 to get∫ ẑi+1

ẑi

d(z, ·)
|z|

= mi − ẑi − ẑi[log z]mi

ẑi
+ ẑi+1[log z]ẑi+1

mi
− (ẑi+1 −mi)

= ẑi log ẑi − ẑi logmi + ẑi+1 log ẑi+1 − ẑi+1 logmi

= ẑi log ẑi + ẑi+1 log ẑi+1 − 2mi logmi.

We use this formula for computing η(S) for varying t and plot the result in Figure 3.2
(right). Using a linear fit, we observe the average relative error η(FtFt) to behave
approximately as O(2−1.9t), which is even better than the O(2−1.6t) behavior of the

9



worst case one ε(FtFt). This confirms that the non-uniform spacing of the elements of
FtFt∩ [1, 2] can have a significant impact on the average relative error when quantizing
on this set.

In conclusion, we have derived lower and upper bounds on the worst case quanti-
zation accuracy over rank-one matrices d(Σ(R),Σ(Ft)) in Lemma 3.1. We observe that
these bounds are independent of m,n. Moreover, the lower bound ε(FtFt) empirically
behaves as O(2−1.6t) (see Figure 3.2) while the upper bound behaves as O(2−t). We
may thus hope to achieve an optimal quantization error that behaves as ε(FtFt), rather
than the worst case RTN error 2vt + v2

t . There is no guarantee that this is possible
in general. Indeed, we will show in Subsection 6.2 that the empirical worst case
quantization error obtained with the optimal algorithm is close to the lower bound
for small values of m,n, whereas it approaches the upper bound for larger values.
Theoretically characterizing ε(Σm×n1 (R),Σm×n1 (Ft)) is an interesting challenge left to
future work. However, we will further investigate whether one of this bounds is sharp
(or at least has a sharp behavior with respect to t) empirically in Subsection 6.2.

4. Existence and characterization of an optimal quantization. In this
section, we focus on the optimal solution of problem (1.1). Assuming the problem has
a solution, finding it is not straightforward. First of all, we can note that there is no
obvious way to separate the global problem into smaller independent subproblems: for
example, at first sight we may think of using the equality

‖xy> − x̂ŷ>‖2 =

n∑
i=1

‖xiy − x̂iŷ‖2

and exploiting the analysis of the previous section to optimally quantize the elements
of xiy in FtFt, but the issue is that the optimal ŷ∗ for a given optimal x̂∗i is in general
different from the optimal ŷ∗ for an optimal x̂∗j , j 6= i. Thus we have no choice but to
tackle the global problem.

A first possibility is to use a brute-force algorithm that enumerates all possible
solutions. Even assuming that the search space could be restricted to a finite set, e.g.,
Ft ∩ [1, 2], the main challenge remains to enumerate all possible solutions. This set
contains 2t elements, and we need to test each of these values for each element of x̂, ŷ,
which yields a O(2t(m+n)) complexity, which is exponential in m+ n and thus clearly
intractable except for very small problems. We will then study the properties of this
problem to devise a more clever solution method.

When x or y is zero the existence of a minimizing pair is trivial. The extension of
this result to the case of nonzero x, y is based on the following key observation.

Lemma 4.1. Let x ∈ Rm, y ∈ Rn. Considering any x̂ ∈ Fmt , ŷ ∈ Fnt , we have

Cx,y(x̂, ŷ) ≥ Cx,y(x̂′, ŷ), ∀x̂′ ∈ round(λx) ⊂ Fmt (4.1)

where the right hand side is constant over all possible x̂′ ∈ round(λx) and

λ = λy(ŷ) :=

{
y>ŷ
‖ŷ‖2 , if ŷ 6= 0

0, otherwise.

Proof. If ŷ = 0 then λ = 0 thus round(λx) = {0m} =: {x̂′} ⊂ Fmt , hence the result
10



as Cx,y(x̂, ŷ) = ‖xy>‖2 = Cx,y(x̂′, ŷ). When ŷ 6= 0, for i ∈ [[m]]

‖xiy − x̂iŷ‖2 ≥ inf
w∈Ft

‖xiy − wŷ‖2 = inf
w∈Ft

{
‖xiy‖2 + w2‖ŷ‖2 − 2wxiy

>ŷ
}

= ‖xiy‖2 + ‖ŷ‖2 inf
w∈Ft

{
w2 − 2λxiw

}
= ‖xiy‖2 − ‖ŷ‖2λ2 + ‖ŷ‖2 inf

w∈Ft

(w − λxi)2︸ ︷︷ ︸
d2(λxi,Ft)

.

The infimum in the right hand side is achieved at each w ∈ round(λxi), hence each
x̂′ ∈ round(λx) ⊂ Fmt satisfies ‖xiy − x̂iŷ‖2 ≥ ‖xiy − x̂′iŷ‖2, i ∈ [[m]], and

Cx,y(x̂, ŷ) =

m∑
i=1

‖xiy> − x̂iŷ>‖2 ≥
m∑
i=1

‖xiy> − x̂′iŷ>‖2 = Cx,y(x̂′, ŷ).

The right hand side Cx,y(x̂′, ŷ) is constant over all possible x̂′ ∈ round(λx).

This result tells us that once ŷ is fixed, a class of vectors x̂ that minimize the
function Cx,y can be identified simply by an optimal scaling parameter λ, which is
determined by y, ŷ. Note that Lemma 4.1 remains true if we exchange the roles of x
and y. This observation yields the following key result.

Lemma 4.2. Let x ∈ Rm, y ∈ Rn. We have

inf
x̂∈Fm

t ,ŷ∈Fn
t

Cx,y(x̂, ŷ) = inf
λ∈R

f(λ), (4.2)

with
f(λ) := max

x̂∈round(λx)
Cx,y

(
x̂, round(µ(x̂)y)

)
(4.3)

where

µ(x̂) :=

{
x>x̂
‖x̂‖2 , if x̂ 6= 0

0, otherwise
(4.4)

and Cx,y
(
x̂, round(µ(x̂)y)

)
denotes the value of Cx,y

(
x̂, ŷ
)
for ŷ ∈ round(µ(x̂)y), which

does not depend on the choice of ŷ among possible ties.

Proof. Consider any x̂ ∈ Fmt , ŷ ∈ Fnt , λ = λy(ŷ) defined in (4.1), and any x̂′ ∈
round(λx). By Lemma 4.1 we have

Cx,y(x̂, ŷ) ≥ Cx,y(x̂′, ŷ). (4.5)

Since x̂′ ∈ Fmt , by the analog of Lemma 4.1 where the role of rows/columns is exchanged,
we obtain with µ(x̂′) := λx(x̂′) (this matches definition (4.4))

Cx,y(x̂′, ŷ) ≥ Cx,y(x̂′, ŷ′), ∀ŷ′ ∈ round(µ(x̂′)y) ⊂ Fnt . (4.6)

By (4.5) and (4.6) we get Cx,y(x̂, ŷ) ≥ Cx,y(x̂
′, ŷ′) for every x̂′ ∈ round(λx) and

ŷ′ ∈ round(µ(x̂′)y), hence Cx,y(x̂, ŷ) ≥ f(λ). This holds for each x̂ ∈ Fmt , ŷ ∈ Fnt ,
hence we obtain

inf
x̂∈Fm

t ,ŷ∈Fn
t

Cx,y(x̂, ŷ) ≥ inf
λ∈R

f(λ). (4.7)

For any λ, since round(λx) ⊂ Fmt and round(µ(x̂)y) ⊂ Fnt , f(λ) is lower-bounded by
the left hand side in (4.7). Thus (4.7) is indeed an equality.
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Lemma 4.2 is a key result because it allows us to reduce the problem to a scalar
one: it suffices to find an optimum λ∗ of f(λ), assuming it exists. It therefore only
remains to prove that such an optimum exists. To do so, we first show that f is
invariant by multiplication by 2 and sign flip in Lemma 4.3. This allows us to restrict
the search for an optimum to the interval [1, 2).

Lemma 4.3. Let f(λ) be defined as in (4.3); f is invariant by multiplication by
±2: f(±2λ) = f(λ) for each λ ∈ R.

Proof. For any w ∈ Fmt we have µ(±2w) = ±µ(w)/2 and round(±2w) = ±2round(w).
Defining

g(w) = Cx,y
(
w, round(µ(w)y)

)
(4.8)

we have

g(±2w) = ‖xy> − (±2w)round
(
µ(±2w)y

)
‖2

= ‖xy> − (±2w)round
(
± µ(w)y/2

)
‖2

= ‖xy> − wround
(
µ(w)y

)
‖2 = g(w).

Therefore,

f(±2λ) = max
x̂∈±2round(λx)

g(x̂) = max
x̂′∈round(λx)

g(±2x̂′) = max
x̂′∈round(λx)

g(x̂′) = f(λ).

Finally we show that, as illustrated on Figure 4.1 (left), the function f(λ) takes a
finite number of values in [1, 2), therefore proving the existence of an optimum. To do
so, we need to study the function λ 7→ round(λx) for a given x and to characterize its
breakpoints.

Definition 4.4 (Breakpoints). Let x ∈ Rm. A scalar λ ∈ R is a breakpoint of the
function λ 7→ round(λx) if there does not exist a neighborhood in which round(λx) is
constant.

Thus, breakpoints are characterized by the existence of at least one coordinate i such
that round(λxi) corresponds to a tie. For any x ∈ Rm, the function λ 7→ round(λx) is
piecewise constant, and has finitely many breakpoints in the open interval (1, 2). We
denote them λj , 1 ≤ j ≤ J in increasing order.

We are now ready to state our main result.

Theorem 4.5. Consider nonzero x ∈ Rm, y ∈ Rn, with m,n ≥ 1, and t ≥ 1.
Denote λ0 := 1 < λ1 < . . . < λJ < 2 =: λJ+1 with λj, 1 ≤ j ≤ J the breakpoints
of λ ∈ (1, 2) 7→ round(λx), and λj+1/2 := (λj + λj+1)/2, 0 ≤ j ≤ J . Problem (1.1)
admits an optimum x̂, ŷ such that

x̂ = round(λ∗x) with λ∗ = λj∗+1/2 for some 0 ≤ j∗ ≤ J, (4.9)

ŷ ∈ round(µ∗y), with µ∗ =

{
x>x̂
‖x̂‖2 , if x̂ 6= 0

0, otherwise.
(4.10)

Moreover, any λ ∈ (λj∗ , λj∗+1) yields the same x̂, ŷ and is therefore also optimal.

Proof. By Lemma 4.2, it is sufficient to show that the optimum of f(λ) is achieved
at some λ∗ ∈ (1, 2). To do so we progressively restrict the search space. To begin with,
we can exclude λ = 0 from the search space: since xy> 6= 0 there are indices i, j such
that |xiyj | > 0 and x̂ ∈ Fnt , ŷ ∈ Fmt with all entries set to zero except x̂i = sign(xi)x̃i,

12



ŷj = sign(yj)ỹj , 0 < x̃i ≤ |xi| and 0 < ỹj ≤ |yj |; we have |xiyj−x̃iỹj | = |xiyj |−x̃iỹj <
|xiyj | while for all pairs (i′, j′) 6= (i, j) |xiyj − x̃iỹj | = |xiyj |, hence

inf
λ∈R

f(λ)
(4.2)
= Cx,y(x̂, ŷ) = ‖xy> − x̂ŷ>‖2 < ‖xy>‖2 = f(0).

Moreover, by Lemma 4.3 we can restrict the search to [1, 2) and so

inf
λ∈R

f(λ) = inf
λ∈[1,2)

f(λ). (4.11)

Finally, the function λ 7→ round(λx) (and therefore λ 7→ f(λ)) is piecewise
constant, with finitely many breakpoints λj , 1 ≤ j ≤ J within the interval (1, 2).
Setting λ0 = 1, λJ+1 = 2 we consider the partition [1, 2) = ∪Jj=0[λj , λj+1) and vectors
x̂j , 0 ≤ j ≤ J such that round(λx) = {x̂j} for every λ ∈ (λj , λj+1). Considering
arbitrary interior points λj+1/2 ∈ (λj , λj+1) in each interval (for example λj+1/2 :=
(λj + λj+1)/2), this yields finitely many values f(λj+1/2) = g(x̂j), with g defined in
(4.8). For 1 ≤ j ≤ J the breakpoint λj ∈ (1, 2) corresponds to a tie hence {x̂j−1, x̂j} ⊂
round(λjx) and therefore f(λj) ≥ max(g(x̂j−1), g(x̂j)) = max(f(λj−1/2), f(λj+1/2)).
Since we are looking for a minimizer of f(λ) this allows us to exclude the breakpoints
from the search space. Similarly, λ0 = 1 can be excluded from the search space if it
corresponds to a breakpoint, and we can also exclude it if it not a breakpoint since we
then have f(λ0) = f(λ1/2). Overall we obtain infλ∈[1,2) f(λ) = min0≤j≤J f(λj+1/2).
As a last step, observe that for every j, round(λj+1/2x) is a singleton hence we can
indeed write an optimal x̂ as in (4.9). An optimal ŷ can be deduced from Lemma 4.1
and is thus expressed as in (4.10).

This theorem tells us that to find the optimum of problem (1.1) we just need to
find the optimal scaling parameter λ∗, that can be found through an extensive search
based on the finitely many breakpoints of the function λ ∈ (1, 2) 7→ round(λx). Once
λ∗ has been determined, both x̂ and ŷ can easily be found. We have thus reduced a
problem with m+ n variables to a problem with a single variable λ, whose feasible
values belong to a finite set.

1 1.2 1.4 1.6 1.8 2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1 1.2 1.4 1.6 1.8 2

6

0

2

4

6

8

10

12

14

16

18

20

;
(6

;'
(6

))
=;

O
P
T

'(6) = 1=6
'(6) = 7(6)
OPT (6$;7$)
RTN (6 = '(6) = 1)

Fig. 4.1: Left: typical shape of f(λ) = Cx,y(x̂(λ), ŷ(λ)), for x, y ∈ Rn (n = 5) drawn with random
uniform [0, 1] entries and t = 4, where x̂(λ) := round(λx), ŷ(λ) := round(µ(x̂(λ))y) and µ(·) as in (4.4).
Right: plot of ρ(λ,ϕ(λ))/ρOPT (see (4.12), (4.13)) for ϕ(λ) = 1/λ and ϕ(λ) = µ(λ) := µ(x̂(λ)), for
t = 11 and n = 16.

Importantly, while in exact arithmetic we have the scaling invariance xy> =
λx( 1

λy)>, in finite precision arithmetic, the quantization round(λx)round(µy)> has
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an accuracy that strongly depends on the two scalings λ and µ, and, crucially, the
optimal µ∗ is close to, but in general not equal to, 1/λ∗. This is illustrated numerically
in Figure 4.1 (right), which plots ρ(λ,ϕ(λ))/ρOPT with

ρOPT := ‖xy> − x̂ŷ>‖/‖xy>‖, (4.12)

ρ(λ,ϕ(λ)) :=
‖xy> − round(λx)round(ϕ(λ)y)>‖

‖xy>‖
, (4.13)

for ϕ(λ) = 1/λ and ϕ(λ) = µ(λ) := x>x̂(λ)
‖x̂(λ)‖2 . The figure shows that using ϕ(λ) = µ(λ)

provides much better quantization errors. Moreover, the figure also suggests that
finding the optimal λ∗ by simply sampling the interval [1, 2] would require a very fine
sampling, because the relative error displays large variations even in the neighborhood
of the optimum.

5. Optimal quantization algorithm. There remains to understand whether
one can find a tractable algorithm to actually compute the optimal scalar λ∗ for each
instance (x, y).

As shown on Figure 4.1 (left), the behavior of λ 7→ f(λ) on [1, 2) is not regular,
and since it is piecewise constant one cannot expect to rely on gradient descent to
find its minimizer. Fortunately, leveraging the analysis of the previous section, we can
design an algorithm of controlled complexity, based on the explicit enumeration of
the breakpoints of λ ∈ (1, 2) 7→ round(λx), rather than on enumerating all possible
x̂, ŷ. This requires an explicit characterization of the breakpoints, which the following
lemma provides.

Lemma 5.1. Given x ∈ Rm the set of breakpoints of λ ∈ (1, 2) 7→ round(λx) is
exactly B(x) := ∪i:xi 6=0B(x̄i) where for any scalar z ∈ [1, 2) we define

B(z) :=

{
(k + 1/2)2e−t

1

z
: k ∈ J2t−1, 2t − 1K, e ∈ {1, 2}

}
(5.1)

and if xi 6= 0 we define x̄i := 2pi |xi| with pi ∈ Z such that x̄i ∈ [1, 2).

Proof. First we show that B(z) is the set of breakpoints of λ ∈ (1, 2) 7→ round(λz).
For this, observe that a breakpoint is characterized by the fact that λz is equidistant
to two points of Ft. Moreover, for 1 < λ < 2 and 1 ≤ z < 2 we have 1 < λz < 4,
and if λz = 2 then λ is not a breakpoint, hence all considered breakpoints satisfy
λz ∈ (1, 2)∪ (2, 4). If λ is breakpoint such that λz ∈ (1, 2) then the points surrounding
λz in Ft (cf (2.1)) read k21−t and (k + 1)21−t with k ∈ J2t−1, 2t − 1K, hence λz =
(k+ 1/2)21−t and λ = (k+ 1/2)21−t/z. Vice-versa, this expression yields a breakpoint
such that λz ∈ (1, 2). When λz ∈ (2, 4), we repeat the argument with λ′ = λ/2 to
obtain λ = (k + 1/2)22−t/z.

Now, if xi 6= 0, observe that λ ∈ (1, 2) is a breakpoint of λ 7→ round(λxi) if,
and only if, it is a breakpoint of λ 7→ round(λx̄i); if xi = 0, λ 7→ round(λxi) has no
breakpoint. The set of breakpoints of λ 7→ round(λx) is thus B(x).

As an immediate corollary we can bound the number of breakpoints (in the result
below, ‖x‖0 denotes the number of nonzero elements of x).

Corollary 5.2. The number of breakpoints #B(x) of the function λ ∈ (1, 2) 7→
round(λx) is bounded by ‖x‖02t ≤ m2t.

Using this characterization of breakpoints, we outline in Algorithm 5.1 a method
to solve (1.1). The algorithm builds the set of breakpoints B(x), sorts it in increasing
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Algorithm 5.1 An algorithm to solve (1.1).
Input: t ≥ 1 an integer, x ∈ Rm, y ∈ Rn.
Output: x̂∗ ∈ Fmt , ŷ

∗ ∈ Fnt solutions to (1.1).
1: Initialize x̂∗ ← 0, ŷ∗ ← 0
2: if x = 0 or y = 0 then
3: exit
4: end if
5: B← B(x) as defined by Lemma 5.1.
6: Sort B in increasing order to obtain λj , 1 ≤ j ≤ J := #B, λ0 ← 1, λJ+1 ← 2.
7: for j = 1 to J + 1 do
8: λ← (λj−1 + λj)/2
9: x̂← round(λx) . There is never a tie here, and x̂ 6= 0

10: µ← x>x̂/‖x̂‖2
11: ŷ ← round(µy) . In case of tie, choose arbitrarily
12: if Cx,y(x̂, ŷ) < Cx,y(x̂∗, ŷ∗) then
13: x̂∗ ← x̂, ŷ∗ ← ŷ
14: end if
15: end for

order, and finally enumerates it to test each midpoint and find the optimal one. Some
comments are in order:

• line 8 ensures that λ is not a breakpoint, hence round(λx) is a singleton and
x̂ is well-defined in line 9;

• since line 9 can only be reached when x 6= 0 and with λ > 1, this ensures that
it also yields x̂ 6= 0; hence the expression in line 10 is well-defined;

• an arbitrary choice of ŷ ∈ round(µy), µ = x>x̂/‖x̂‖2 in line 11 is possible as
the value of Cx,y(x̂, ŷ′) is the same for every ŷ′ ∈ round(µy) (Lemma 4.2).

We next discuss the space and time cost of Algorithm 5.1. Building and sorting B(x)
has a space cost in O(m2t) and a time cost in O(m2t logm). A naive implementation
to compute Cx,y(x̂, ŷ) in line 12 at each iteration would be to explicitly build the
m×n matrix xy>− x̂ŷ>, which would cost O(mn). However since we are dealing with
rank-one matrices, denoting 〈A,B〉F := trace(A>B) the Frobenius inner-product
between m× n matrices, we have

Cx,y(x̂, ŷ) = ‖xy> − x̂ŷ>‖2 = ‖xy>‖2 + ‖x̂ŷ>‖2 − 2〈xy>, x̂ŷ>〉F (5.2)

= ‖x‖2‖y‖2 + ‖x̂‖2‖ŷ‖2 − 2(x>x̂)(y>ŷ). (5.3)

This allows us to compute Cx,y(x̂, ŷ) with cost O(m+ n). It is easy to check that the
rest of the operations performed at each iteration of Algorithm 5.1 also have a cost in
O(m+ n). Taking into account the loop over J = #B(x) breakpoints, Algorithm 5.1
therefore has a total time cost in O((m+n)#B(x)) = O((m+n)m2t) (the initial sorting
of B(x) has negligible cost). Since we can also reverse the respective roles of x and y
by looping on B(y), a time cost in O((m+n)n2t) can also be achieved, so choosing the
best of both yields O((m+ n) min(m,n)2t) = O(max(m,n) min(m,n)2t) = O(mn2t),
and so we have proved the following result.

Theorem 5.3. Algorithm 5.1 solves problem (1.1)in O(min(m,n)2t) space and
in O(mn2t) time.

Note that additional optimizations could reduce the constant in the O(mn2t)
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time cost. In particular, it is likely that from one breakpoint to the next, only a few
(possibly only one) coordinates of x change. With some bookkeeping it is thus possible
to cheaply compute x̂ and µ in lines 9 and 10, although ŷ must still be computed from
scratch.

Since it explicitly builds and stores the set of breakpoints, Algorithm 5.1 requires
O(min(m,n)2t) space. If space complexity is an issue, this can be avoided by implicitly
enumerating the breakpoints instead, using their characterization in terms of triplets
(ki, ei, x̄i) from Lemma 5.1. At each iteration, the next breakpoint can simply be found
by finding, among the m coordinates of x, which one is associated with the smallest
remaining breakpoint. This is feasible with a cost in O(m logm) at the first iteration
via sorting, and with a cost in O(1) at subsequent iterations using an adequate
data structure to maintain a list of m sorted numbers through removal/insertion.
Alternatively this can be done with a cost in O(m) at each iteration (via a simple loop
to find the minimum over m unsorted numbers), a cost that remains dominated by
the cost in O(m+n) to compute Cx,y at each iteration. Overall, if space complexity is
an issue (typically for large t), an implementation of Algorithm 5.1 with reduced space
complexity O(min(m,n)t) and maintained time complexity O(mn2t) can be achieved.

Remark 5.1. Given the rising interest in mixed precision arithmetic [8], one may
wonder whether Algorithm 5.1 can be adapted in such a context. Considering the
variant of (1.1) where we seek x̂ ∈ Fmtx , ŷ ∈ Fnty , with

1 tx, ty ∈ N ∪ {∞} two precision
levels, it is easy to check that an adaptation of the whole analysis leads to a variant of
Algorithm 5.1, where B(x) is computed in line 5 from Lemma 5.1 with t = tx, and the
rounding operation of line 9 (resp. of line 11) is performed with roundtx (resp. with
roundty). With the convention F∞ := R this enables a variant without quantization
constraint on one of the factors. This will be used in Algorithms 7.1 and 7.3.

6. Numerical validation of the optimal quantization algorithm. In this
section we validate numerically the performance of the optimal quantization algorithm
outlined in Algorithm 5.1, both in terms of accuracy of the quantization and in terms
of computational cost. We compare the solution of the optimal algorithm x̂, ŷ with the
RTN baseline solution round(x), round(y). The code to reproduce the experiments in
this section is available online2.

6.1. Experimental protocol. In all the experiments presented in this section
we consider 100 randomly generated couples x, y ∈ Rn. The entries of x and y are
drawn from the uniform [0, 1] distribution and multiplied by random exponents values
ranging from 10−2 to 102. We define

ρOPT := ‖xy> − x̂ŷ>‖/‖xy>‖,
ρRTN := ‖xy> − round(x)round(y)>‖/‖xy>‖.

We consider different values of n ≤ 1024 and t ≤ 11. We do not test any larger values
of t (such as 32-bit) as our main interest is in low precision quantization applications.

6.2. Worst case behavior. We begin by analyzing the empirical worst case
quantization error obtained with the optimal algorithm. The worst case behavior is
interesting in light of inequality (3.8) from Lemma 3.1. Indeed, to elucidate the behavior
of the true worst case quantization error ε(Σ(R),Σ(Ft)), one idea is to investigate
empirically the worst case error obtained over many random inputs. Figure 6.1 shows

1to avoid any ambiguity, in this paper we denote N = {1, 2, . . .} the set of positive integers.
2https://perso.ens-lyon.fr/elisa.riccietti/code.php, https://inria.hal.science/hal-04124171
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Fig. 6.1: Worst relative error ρOPT over 100 randomly chosen couples (x, y) ∈ Rn×n for n =
16, 128, 1024 and lower and upper bound of (3.7).

this experiment for different values of n and t. We recall from (3.8) that the worst case
error falls between ε(FtFt), which behaves as O(2−1.6t), and 2vt + v2

t , which behaves
as O(2−t). Empirically, we confirm these bounds and find the empirical worst case
error to be somewhere between them. Interestingly, while both the lower and upper
bounds do not depend on m,n, the empirical worst case error clearly increases with
m,n, getting closer and closer to its upper bound while still remaining an order of
magnitude smaller for m = n = 1024. Moreover, its behavior as a function of t, for
m,n fixed, follows that of its upper bound, O(2−t).

6.3. Average case behavior. We now turn to the empirical average case optimal
quantization error, which is more representative of the typical accuracy gains that can
be achieved by the optimal algorithm over the RTN baseline.

To gain further insight on the behavior of optimal quantization error ρOPT com-
pared with the RTN baseline error ρRTN, we perform a scatter plot of both errors
in Figure 6.2 for various values of n and t. The plot reveals two interesting trends
as n increases: the points become less dispersed, and closer to the diagonal (where
ρOPT = ρRTN, that is, when no accuracy gain is achieved by the optimal algorithm).
These trends seem to hold regardless of t, although the average accuracy gains seem
larger as t increases.

To quantify more precisely the gains that can be achieved with the optimal
algorithm, we define the accuracy gain (the larger, the better) as the percentage

100×
(

1− ρOPT

ρRTN

)
(6.1)

and we plot in Figure 6.3 some boxplots of this measure for different values of t and n.
We remind that the red line marks the median of the distribution, the bottom and top
edges of the boxes indicate the 25th and the 75th percentiles, respectively, and the
whiskers extend to the most extreme data points. As expected, the figure shows that
the gains decrease as the dimension n increases, and also seem to slightly increase as
the number of bits t increases. Overall, significant gains can be achieved; for example,
for t = 11 and n = 128, the gain is concentrated around 40% reduction of the error in
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Fig. 6.3: Boxplots of the accuracy gain (6.1) achieved by the optimal algorithm with respect to
the RTN baseline for 100 randomly chosen couples (x, y) ∈ Rn×n, for different values of t and n:
n = 16, 128, 1024 for fixed t = 8 (left), and t = 4, 8, 11 for fixed n = 128 (right).

half the cases.

6.4. Time cost. Finally we conclude these numerical experiments on the optimal
algorithm by measuring its time cost. Figure 6.4 reports the execution time for different
values of n and t. The figure confirms that the time cost of the algorithm is in O(n22t),
as predicted by Theorem 5.3. Thus, the cost of the optimal algorithm remains tractable
for a wide range of t and n values of interest.

7. Application to butterfly factorization. We now consider the application of
the optimal rank-one quantization developed in the previous section to the quantization
of butterfly factors. The code to reproduce the experiments in this section is available
online3.

3https://perso.ens-lyon.fr/elisa.riccietti/code.php, https://inria.hal.science/hal-04124171
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Fig. 6.4: Time cost of the optimal algorithm as a function of t and n.

The problem of butterfly factorization amounts to writing an n × n matrix Z,
with n = 2L, as a product B1 . . . BL, where each butterfly factor B` is an n× n sparse
matrix with a fixed sparsity pattern [12]. Such a factorization is desired to reduce
time and memory complexity for numerical methods involving the linear operator
associated to Z, for example in large-scale linear inverse problems [5]. The butterfly
factors appear in particular in fast transforms such as the discrete Fourier transform or
the Hadamard transform [1], and, thanks to their strong expressivity, find a wide range
of applications in various domains at the interface of signal processing and machine
learning [4, 3], for instance in the approximation of weight matrices in deep neural
networks.

7.1. Preliminaries on butterfly factors. Each butterfly factor B` satisfies
the fixed support constraint supp(B`) ⊆ supp(S`) for 1 ≤ ` ≤ L := log2(n), where
supp(B`) denotes the support (that is, the set of indices associated with the nonzero
elements, which can be interpreted both as a binary matrix and a set of indices) of B`
and

S` := I2`−1 ⊗
(

1 1
1 1

)
⊗ In/2` ,

with Ik the identity matrix of order k and ⊗ the Kronecker product. This leads to
highly sparse factors: each B` has exactly two nonzero elements on each row and on
each column. The support of the butterfly factors for n = 16 are depicted in Figure 7.1.

(a) S1 (b) S2 (c) S3 (d) S4

Fig. 7.1: Support of the butterfly factors, n = 16.

The butterfly supports have the interesting property that for any subset of consec-
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utive factors, the product between X := B`0 . . . B`1 ∈ Rn×n and Y > := B`1+1 . . . B`2 ∈
Rn×n, with 1 ≤ `0 ≤ `1 < `2 ≤ L, can be written as

XY > =

n∑
i=1

xiy
>
i =:

n∑
i=1

Ci, (7.1)

where the n rank-one matrices Ci := xiy
>
i ∈ Rn×n (the so-called rank-one components)

associated with the columns of X and Y have disjoint supports [11, Lemma 2], that is,

supp(Ci) ∩ supp(Cj) = ∅, i 6= j. (7.2)

Moreover the matrices Ci partially retain the sparsity of the butterfly factors: a
product of p consecutive support factors has exactly 2p nonzero elements on each row
and on each column, so that in (7.1) xi and yi satisfy ‖xi‖0 ≤ 2p and ‖yi‖0 ≤ 2q with
p := `1 − `0 + 1 and q := `2 − `1.

These are crucial properties that can be exploited to design of an efficient factor-
ization algorithm, relying on a non-trivial application of singular value decomposition
(SVD) to compute best rank-one approximations of specific submatrices, which has
bounded complexity and is endowed with exact recovery guarantees [11, 10, 15]. We
will see next how to exploit it also for the quantization of butterfly factors.

7.2. Quantization of butterfly factors. Given L := log2(n) butterfly factors
B1, . . . , BL ∈ Rn×n (that may have been obtained using an existing algorithm to
approximate some target dense matrix Z) we now seek to develop a procedure to
quantize the factors B1, . . . , BL while minimizing the error

‖B1 . . . BL − B̂1 . . . B̂L‖.

The quantized factors B̂1, . . . , B̂L must have coefficients in Ft and retain the same
support as the unquantized factors: supp(B̂`) ⊆ supp(B`), ` = 1: L.

We first discuss the case of a two-factor decomposition XY >, in which case an
optimal quantization X̂Ŷ > can be found by solving a series of rank-one problems
through our optimal Algorithm 5.1. Indeed, exploiting the decomposition (7.1) into
rank-one components with disjoint supports, it is not difficult to check that the following
optimal quantization problem

X̂, Ŷ ∈ arg min
X̂,Ŷ ∈Ft

‖XY > − X̂Ŷ >‖2, (7.3)

where Ft is the set of matrices with coefficient in Ft and the same supports as X,Y ,
decouples into n independent optimal rank-one quantization problems. Its solution can
thus be computed by n independent applications of Algorithm 5.1 and yields diagonal
matrices Λ,M ∈ Rn×n such that X̂ = round(XΛ) and Ŷ = round(YM). We will also
need a version with asymmetric quantization constraints, where tx, ty ∈ N ∪ {∞} and

X̂, Ŷ ∈ arg min
X̂∈Ftx ,Ŷ ∈Fty

‖XY > − X̂Ŷ >‖2, (7.4)

with the convention F∞ = R. The resulting process is outlined in Algorithm 7.1.
We can then use this optimal two-factor quantization algorithm as a building

block in a heuristic procedure to quantize a decomposition B1 . . . BL with more than
two factors (L > 2). We can use different parenthesizations corresponding to so-
called factor-bracketing trees [15]) of the product to sequentially divide it in a series
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Algorithm 7.1 Optimal two-factor structured quantization.
Input: tx, ty ∈ N ∪ {∞}, X,Y ∈ Rn×n satisfying (7.1),(7.2).
Output: X̂ ∈ Fn×ntx , Ŷ ∈ Fn×nty , solution to (7.4).
1: Initialize Λ = M = 0.
2: for i = 1 to n do
3: Set xi and yi to the ith columns of X and Y , respectively.
4: Quantize the rank-one matrix xiy>i via Algorithm 5.1 (see Remark 5.1 when
tx 6= ty), yielding x̂i = roundtx(λixi) and ŷi = roundty (µiyi).

5: Set Λii = λi and Mii = µi.
6: end for
7: X̂ = roundtx(XΛ), Ŷ = roundty (YM).

of two-factor products with disjoint rank-one components, to which we can apply
Algorithm 7.1. Note that the quantizations of each individual product will be optimal,
but there is no guarantee that the entire process is globally optimal.

We consider two heuristics based on different parenthesizations. The first heuristic
uses the parenthesization (B1B2)(B3B4) . . . (BL−1BL) (assuming that L is even), and
quantizations are performed on each pair of consecutive factors (B`B`+1) separately.
If the number of factors L is odd, the last factor BL is simply quantized by RTN,
B̂L = round(BL). This “pairwise” heuristic is outlined in Algorithm 7.2.

Algorithm 7.2 L-factor butterfly quantization: pairwise heuristic.
Input: t ≥ 1 an integer, B1, . . . , BL ∈ Rn×n (L = log2(n), B` are butterfly factors).
Output: B̂1, . . . , B̂L ∈ Fn×nt (with unchanged support).
1: for ` = 1 to bL/2c do
2: Quantize B2`−1B2` via Algorithm 7.1 with tx = ty = t.
3: end for
4: if L is odd then
5: B̂L = round(BL)
6: end if

Algorithm 7.3 L-factor butterfly quantization: left-to-right heuristic.
Input: t ≥ 1 an integer, B1, . . . , BL ∈ Rn×n (L = log2(n), B` are butterfly factors)
Output: B̂1, . . . , B̂L ∈ Fn×nt (with unchanged support).
1: X ← B1

2: Y > ← B2 . . . BL
3: for ` = 1 to L− 2 do
4: Quantize XY > via Algorithm 7.1 with tx = t, ty = ∞ yielding B̂` = X̂ =

round(XΛ) and Ŷ = YM for suitable diagonal scalings Λ and M .
5: X ←MB`+1

6: Y > ← B`+2 . . . BL
7: end for
8: Quantize XY > via Algorithm 7.1 with tx = ty = t, yielding B̂L−1 = X̂ =

round(XΛ) and B̂L = Ŷ > = round(YM)> for diagonal scalings Λ and M .

As the pairwise heuristic acts very locally, we also propose a second one intuitively
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expected to provide more accuracy (this will indeed be confirmed experimentally). This
second heuristic proceeds to a parenthesization from left to right (a variant from right
to left is immediate) and performs a quantization at each level of the tree by quantizing
the factors one by one in L steps. At step `, the first ` − 1 factors have already
been quantized, and the remaining factors are parenthesized as (MB`)(B`+1 . . . BL),
where the current diagonal scaling M comes from the quantization at step `− 1. The
quantized factor B̂` is obtained using the two-factor quantization in Algorithm 7.1
with X = MB` and Y > = B`+1 . . . BL. Notice that Algorithm 7.1 does not alter
the structure of the factors X, Y : the outputs X̂, Ŷ still satisfy (7.1),(7.2). This is a
crucial observation to be able to employ this algorithm in a sequential manner.

Importantly, at every step except the last, we only need to quantize the left
factor X = MB`, since the factors B`+1, . . . BL will be quantized at later steps. This
observation can be taken into account by not imposing any quantization constraint
on the right factor Y to obtain X̂ = round(XΛ) and Ŷ = YM with M the new
scaling factor that will serve at the next step. This left-to-right heuristic is outlined in
Algorithm 7.3. The choice made at line 4 of Algorithm 7.3 to not quantize the right
factor (ty =∞), compared with a variant where both factors would be constrained
to be quantized (tx = ty = t), was observed to significantly improve the accuracy of
the global quantization. We note that we have also tested a similar heuristic with a
right-to-left parenthesization and obtained equivalent results.

Complexity. The left-to-right heuristic is more expensive than the pairwise one.
Indeed, the pairwise heuristic preserves the extreme sparsity of the butterfly matrices;
in fact, it does not require forming any explicit intermediate matrix product and can
directly work in-place by replacing the butterfly factors by their quantized version.
In contrast, the left-to-right heuristic requires forming the explicit product of up
to L − 1 consecutive factors into Y >, which is an almost dense matrix. For large
n, forming this entire matrix would be untractable but, fortunately, we only need
to access one row of Y > at a time. Therefore, we can form yi (which is almost
dense), use it to quantize xi (which is sparse), and discard yi before forming yi+1. In
practice, to attain high performance, we form a block of multiple consecutive rows at a
time. Note that for both heuristics, the left factor X remains completely sparse, with
only two nonzero coefficients for each column xi; therefore, in Theorem 5.3 we have
min(m,n) = m = 2. As a result of these observations, both heuristics only require
O(nL+ 2t) = O(n log n+ 2t) space. In terms of time, the pairwise heuristic requires
O(nL) calls to Algorithm 5.1 with vectors xi, yi with at most 2 nonzero elements,
which by Theorem 5.3 yields a O(2tnL) complexity. As for the left-to-right heuristic,
we need to take into account both the cost of calling Algorithm 5.1 and that of forming
the matrices X and Y on which it is called. At step ` of Algorithm 7.3, each row y>i
of Y >, that is, each column yi of Y , is formed by the products

yi = B>L . . . B
>
`+2v

(`+1)
i

= B>L . . . B
>
`+3v

(`+2)
i

. . .

= B>L v
(L−1)
i ,

where v(`+1)
i is initialized to the ith column of B>`+1 and v

(`+2)
i , . . . , v

(L−1)
i are the

vectors formed during the intermediate computations, which satisfy ‖v(k)
i ‖0 ≤ 2k−`

for ` + 1 ≤ k ≤ L − 1. Since Bk+1 has at most two nonzero elements per row, the
cost of computing v(k+1)

i from v
(k)
i is in O(‖v(k)

i ‖0). Therefore, the cost of forming yi
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Fig. 7.2: Quantization error for butterfly factors with either the RTN baseline or pairwise or left-to-
right algorithms, as a function of t and n. Left: n = 216, t varies; right: t = 8, n varies.

at step ` is in O(
∑L−1
k=`+1 2k−`) = O(n2−`), and by Theorem 5.3 the cost of applying

Algorithm 5.1 on xi, yi is in O(2tn2−`). Summing over all rows i = 1: n and all steps
` = 1: L− 1 thus yields a total time complexity in O(2tn2).

We summarize this complexity analysis in the following theorem.

Theorem 7.1. Algorithm 7.2 and Algorithm 7.3 have time complexities in O(2tn log n)
and in O(2tn2), respectively. Both algorithms have a space complexity in O(2t+n log n).

7.3. Experiments. We conclude with some numerical experiments. We consider
a range of matrices Z ∈ Rn×n for several values of n = 2L, with L := log2(n) up to
16, where each of the L butterfly factors is generated with random uniform values in
[−1, 1].

Figure 7.2 plots the quantization error obtained for varying t (left) or n (right).
We compare three approaches: the naive RTN baseline where each factor is sepa-
rately quantized with RTN, and our two heuristic approaches (Algorithm 7.2 and
Algorithm 7.3) that use as a building block the optimal two-factor quantization. We
find that both heuristics significantly reduce the quantization error with respect to
the RTN baseline and that, as expected, the more expensive left-to-right heuristic is
more accurate than the pairwise one. Importantly, both heuristics achieve an accuracy
that behaves significantly better than the O(2−t) RTN accuracy: the pairwise and
left-to-right heuristics approximately behave as O(2−1.3t) and O(2−1.4t), respectively.
Thanks to this improved accuracy, our algorithms can achieve an accuracy equivalent
to the RTN baseline with a lower precision of t′ = t/1.4 for the left-to-right heuristic,
which represents a 1− 1/1.4 ≈ 30% reduction of storage (and similarly, the pairwise
heuristic achieves a 1− 1/1.3 ≈ 23% reduction) for the same accuracy.

Figure 7.3 compares the time cost of both heuristics. As expected, the pairwise
one is (slightly) faster than the left-to-right one. However, both heuristics have much
closer and much better time complexities than predicted by the theoretical bounds
discussed in the previous section, and both are tractable for values of t of interest
(here up to t = 11) and for reasonably large values of n (here up to n = 218 = 262144).
It remains open whether better bounds and/or more efficient implementations can be
achieved.
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8. Conclusions. We tackled the problem of optimally quantizing a rank-one
matrix xy> in a floating-point arithmetic with t bits of precision. We showed that the
apparent combinatorial nature of the problem can be overcome by characterizing the
optimal solution x̂ŷ> as the quantization of suitably scaled factors, x̂ = round(λx) and
ŷ = round(µy), see Theorem 4.5. We then devised an algorithm, see Algorithm 5.1,
that can find these optimal scaling parameters with a time complexity in O(mn2t),
which is tractable for the values of t of interest corresponding to low precisions. We
showed both theoretically and experimentally that this optimal algorithm can achieve
much more accurate quantizations than by simply quantizing x and y separately.
Finally, we explained how this optimal rank-one matrix quantization can be applied
to the quantization of butterfly factors—an important tool appearing in many areas
of scientific computing. We proposed two heuristics that employ the proposed rank-
one matrix quantization algorithm as building block, and we demonstrated their
effectiveness compared with quantizing each factor separately: we can improve the
accuracy by several orders of magnitude for the same storage budget or, equivalently,
we can reduce the storage by up to 30% with no accuracy loss.

This work opens several research questions regarding its extension to various higher
dimensional settings: the complex-valued case (where both the real and imaginary
parts are quantized in Ft); the case of rank-r matrices (with r > 1); and the case of
rank-one tensors. These problems can be decoupled into individual rank-one matrix
quantization problems that could be tackled by using the approach proposed here as
a building block; however better results are likely to be obtained by studying these
higher dimensional problems globally.

Finally, since scaling invariance—which is at the heart of our optimal rank-one
quantization algorithm—has also led to heuristic schemes to quantize deep ReLU
networks [13], an exciting challenge is to extend our principled approach in such a
setting, possibly up to extreme one-bit quantization [2].
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