TD 2 : Convolution

Exercice 1.— Densité dans L^p

- 1. Soit f une fonction localement intégrable sur \mathbb{R} (c'est-à-dire intégrable sur tout compact de \mathbb{R}) et φ une fonction de classe \mathbb{C}^{∞} à support compact. Montrer que la fonction $f * \varphi$ est bien définie sur \mathbb{R} et est de classe \mathbb{C}^{∞} .
- 2. Soit $\varphi: x \mapsto \exp(-\frac{1}{1-x^2})\mathbf{1}_{\{|x|<1\}}$. Montrer que cette fonction est de classe C^{∞} et à support compact.
- 3. En déduire que pour tout $p \in [1, +\infty[$, l'ensemble des fonctions de classe \mathbb{C}^{∞} sur \mathbb{R} est dense dans \mathbb{L}^p .

Exercice 2.— Convolution $L^p - L^q$

Soient $f \in L^p(\mathbb{R})$ et $g \in L^q(\mathbb{R})$, où $p \geq 1$ et q est l'exposant conjugué de p.

1. Montrer que si p > 1 alors

$$\lim_{|x| \to \infty} f * g(x) = 0.$$

2. Est-ce encore vrai si p=1 et $q=+\infty$? Et si l'on suppose que $g(x)\to 0$ quand $|x|\to\infty$?

Exercice 3.— L'algèbre de Banach L¹

On rappelle qu'une algèbre de Banach $(A, \|\cdot\|)$ est une algèbre A, qui est un espace de Banach pour la norme $\|\cdot\|$, et qui vérifie

$$||x \cdot y|| \le ||x|| ||y||, \, \forall x, y \in A.$$

Montrer que le produit de convolution sur L¹ en fait une algèbre de Banach commutative. Montrer que cette algèbre ne possède pas d'unité.

Indication: On pourra utiliser la convolution par la fonction $\mathbf{1}_{[0,1]}$.

Exercice 4.— convolution $L^1 - L^p$

Soient $f \in L^1(\mathbb{R})$ et $g \in L^p(\mathbb{R})$, où $p \in]1, \infty[$. Montrer que la fonction f * g est définie presque partout sur \mathbb{R} , et que

$$||f * g||_p \le ||f||_1 ||g||_p.$$

Indication : On pourra écrire $|f(x-y)g(x)| = |f(x-y)|^{1/q}|f(x-y)|^{1/p}|g(y)|$, où q est l'exposant conjugué de p.

Exercice 5.— Le Théorème de Riesz-Fréchet-Kolmogorov

Le Théorème de Riesz-Fréchet-Kolmogorov fournit un critère effectif pour déterminer si un ensemble de fonctions dans L^p est relativement compact dans L^p . C'est donc l'analogue dans le cadre L^p du Théorème d'Ascoli rappelé ci-dessous :

Théorème (Ascoli). Soient X, Y deux espaces métriques compacts. Soit C(X, Y) l'espace des fonctions continues $f: X \to Y$, muni de la toplogie de la convergence uniforme. Alors une partie bornée $A \subset C(X, Y)$ est d'adhérence compacte si elle est uniformément *équicontinue* :

$$\forall \varepsilon > 0, \exists \delta > 0, (d_{\mathbf{X}}(x, x') \leq \delta \Rightarrow \forall f \in \mathbf{A}, d_{\mathbf{Y}}(f(x), f(x')) \leq \varepsilon).$$

Voici le théorème que nous allons montrer. La notation $\omega \subset\subset \Omega$ signifie que ω est un ouvert dont l'adhérence $\overline{\omega}$ est compacte et contenue dans Ω .

Théorème (Riesz-Fréchet-Kolmogorov). Soit Ω un ouvert de \mathbb{R} , et soit \mathcal{F} une partie bornée de $L^p(\Omega)$, avec $p \in [1, \infty[$. On suppose que :

(i) Les fonctions de \mathcal{F} ne se concentrent pas sur le bord de Ω :

$$\forall \varepsilon > 0, \exists \omega \subset\subset \Omega, \ \operatorname{tq} \ \sup_{f \in \mathcal{F}} \|f\|_{\operatorname{L}^p(\Omega \setminus \omega)} \leq \varepsilon.$$

(ii) \mathcal{F} est équi-continue au sens L^p :

$$\forall \varepsilon > 0, \forall \omega \subset\subset \Omega, \exists \delta \in]0, d(\omega, \Omega^c)[, \text{ tq } |h| \leq \delta \Rightarrow \sup_{f \in \mathcal{F}} \|\tau_h f - f\|_{L^p(\omega)} \leq \varepsilon.$$

Alors \mathcal{F} est d'adhérence compacte dans $L^p(\Omega)$.

Comme pour le théorème d'Ascoli, la preuve de ce théorème repose sur le critère de compacité bien connu suivant :

Proposition. Soit (E, d) un espace métrique complet. Une partie $A \subset E$ est d'adhérence compacte si et seulement si elle est pré-compacte : pour tout $\varepsilon > 0$, il existe un recouvrement fini de A par des parties de diamètre $\leq \varepsilon$.

- 1. Fixons $\varepsilon > 0$ et $\omega \subset \subset \Omega$. Soit $(\rho_n)_{n \geq 1}$ une approximation de l'unité telle que chaque ρ_n est de classe \mathcal{C}^{∞} , et de support inclus dans $[-\frac{1}{n}, \frac{1}{n}]$. Pour $f \in \mathcal{F}$, on note \tilde{f} la fonction f prolongée à tout \mathbb{R} par 0. Montrer à l'aide du théorème d'Ascoli, que pour tout $n \geq 1$, la famille $\mathcal{F}_n = \{(\tilde{f} * \rho_n)_{|\omega}, f \in \mathcal{F}\}$ est d'adhérence compacte dans $L^p(\omega)$.
- 2. Montrer que pour n assez grand,

$$\sup_{f \in \mathcal{F}} \|\tilde{f} * \rho_n - f\|_{L^p(\omega)} \le \varepsilon.$$

- 3. En déduire que l'ensemble $\mathcal{F}_{|\omega}$ est pré-compact.
- 4. Conclure la preuve du théorème de Riesz-Fréchet-Kolmogorov.

Pour terminer, voici une application (de la question 3):

Soit \mathcal{F} un sous-ensemble borné de $L^p(\mathbb{R})$ et $g \in L^1(\mathbb{R})$. Pour ω ouvert borné de \mathbb{R} , on définit

$$\mathcal{G}_{\omega} = \{ (f \star g)_{|\omega}, f \in \mathcal{F} \}.$$

Montrer que \mathcal{G}_{ω} est d'adhérence compacte dans $L^{p}(\omega)$.