Processus de Markov, Équations différentielles stochastiques

Soient σ et b deux fonctions continues de $\mathbb{R}_+ \times \mathbb{R}$ dans \mathbb{R} , et K-lipschitziennes en la variables x. Dans le cours, vous avez vu que sous ces conditions sur σ et b, il y a unicité trajectorielle pour $E(\sigma,b)$ et existence d'une solution forte pour $E_x(\sigma,b)$, pour tout x. On se propose de prouver que la solution de $E_x(\sigma,b)$ "dépend continûment de x", et plus encore...

Soit $(C(\mathbb{R}_+, \mathbb{R}), W)$ l'espace de Wiener, et B le processus des coordonnées, qui est défini par $B_t(w) = w(t)$ et est un mouvement brownien (sous W). Soit aussi (\mathcal{G}) l'augmentation habituelle de la filtration canonique de B. Pour tout $x \in \mathbb{R}$, on notera X^x une solution de $E_x(\sigma, b)$ sur $(C(\mathbb{R}_+, \mathbb{R}), \mathcal{G}_{\infty}, \mathcal{G}_t, W)$. Cette solution existe et est unique à indistinguabilité près. On peut voir $(X^x)_{x \in \mathbb{R}}$ comme un processus à valeur dans $C(\mathbb{R}_+, \mathbb{R})$. On va donc naturellement montrer qu'il en existe une modification continue. Comment ? Par le lemme de Kolmogorov, bien entendu!

I. Une modification continue

1. Pour pouvoir utiliser le lemme de Kolmogorov, on a besoin d'une notion de distance sur $C(\mathbb{R}_+, \mathbb{R})$. Soit $(\alpha_n)_{n\geq 1}$ une famille sommable de réels strictement positifs. Vérifier que la topologie de l'espace $C(\mathbb{R}_+, \mathbb{R})$ est induite par la distance

$$d(\mathbf{w}, \mathbf{w}') = \sum_{n=1}^{\infty} \alpha_n \left(\sup_{s \le n} |\mathbf{w}'(s) - \mathbf{w}(s)| \wedge 1 \right).$$

Pour l'instant, on ne fixera pas la suite α_n .

2. Soit $x, y \in \mathbb{R}$. Soit $p \geq 2$. Il nous faut donc une borne sur le moment d'ordre p de $d(X^x, X^y)$. On introduit T_N le temps d'arrêt défini par

$$T_N := \inf\{t \ge 0, |X_t^x| \ge N \text{ ou } |X_t^y| \ge N\}.$$

Montrer que, pour $t \geq 0$, l'inégalité suivante est vérifiée :

$$\mathbb{E}\left[\sup_{s \leq t} \left| X_{s \wedge T_N}^x - X_{s \wedge T_N}^y \right|^p \right]$$

$$\leq C_p \left(\left| x - y \right|^p + C_p' \mathbb{E}\left[\left| \int_0^{t \wedge T_N} (\sigma(r, X_{r \wedge T_N}^x) - \sigma(r, X_{r \wedge T_N}^y))^2 dr \right|^{p/2} \right]$$

$$+ \mathbb{E}\left[\sup_{s \leq t} \left| \int_0^{s \wedge T_N} (b(r, X_{r \wedge T_N}^x) - b(r, X_{r \wedge T_N}^y) dr \right|^p \right] \right),$$

où C_p et C'_p sont des constantes ne dépendant que de p.

3. Montrer que pour $n \ge 1$ et $t \le n$, on a encore

$$\mathbb{E}\left[\sup_{s\leq t}\left|X_{s\wedge T_{N}}^{x}-X_{s\wedge T_{N}}^{y}\right|^{p}\right]\leq C_{p}''\left(\left|x-y\right|^{p}+n^{p}\int_{0}^{t}\mathbb{E}\left[\left|X_{s\wedge T_{N}}^{x}-X_{s\wedge T_{N}}^{y}\right|^{p}\right]\mathrm{d}r\right),$$

où C''_n ne dépend que de p et K.

4. Montrer que l'inégalité

$$\mathbb{E}\left[\sup_{s < t} |X_s^x - X_s^y|^p\right] \le C_p'' |x - y|^p \exp(C_p'' n^p t)$$

est vérifiée pour tous x, y, et tous $0 < t \le n$.

5. Déterminer une suite (α_n) qui permette d'utiliser le lemme de Kolmogorov, et conclure.

II. La solution sur tout espace et pour toute condition initiale

Soit donc \tilde{X}^x une version continue des solutions de $E_x(\sigma, b)$ sur $(C(\mathbb{R}_+, \mathbb{R}), \mathcal{G}_\infty, \mathcal{G}_t, W)$. On notera $F_x(w) = \tilde{X}^x(w)$, de sorte que pour x donné, F_x est une application de $C(\mathbb{R}_+, \mathbb{R})$ dans $C(\mathbb{R}_+, \mathbb{R})$. Par construction, pour tout w, l'application $x \mapsto F_x(w)$ est continue. De plus, l'application $w \mapsto F_x(w)$ est mesurable de $C(\mathbb{R}_+, \mathbb{R})$ muni de la tribu \mathcal{G}_∞ dans $C(\mathbb{R}_+, \mathbb{R})$ muni de la tribu borélienne $\sigma(w(s), s \ge 0)$.

- 1. Soit \mathcal{N} la classe des sous-ensembles W-négligeables de $C(\mathbb{R}_+, \mathbb{R})$. Pour tout $t \geq 0$, montrer que $\mathcal{G}_t = \sigma(\mathbf{w}(s), 0 \leq s \leq t) \vee \mathcal{N}$ et en déduire que $\mathbf{w} \mapsto F_x(\mathbf{w})_t$ coïncide $W(\mathrm{dw})$ -p.s. avec une fonction mesurable de $(\mathbf{w}(s), 0 \leq s \leq t)$.
- 2. Montrer que pour une suite (n_k) bien choisie, on a

$$F_x(\mathbf{w})_t = x + \lim_{k \to \infty} \sum_{i=0}^{2^{n_k} - 1} \sigma(\frac{it}{2^{n_k}}, F_x(\mathbf{w})_{it/2^{n_k}}) \left(\mathbf{w}(\frac{(i+1)t}{2^{n_k}}) - \mathbf{w}(\frac{it}{2^{n_k}}) \right) + \int_0^t b(s, F_x(\mathbf{w})_s ds, t) ds$$

W(dw)-p.s.

- 3. Soit $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ espace de probabilité quelconque sur lequel est défini un \mathcal{F}_t mouvement brownien B. Montrer que le processus $F_x(B)$ est (la) solution de $E_x(\sigma, b)$ sur cet espace. En déduire qu'il y a unicité faible de la solution à $E_x(\sigma, b)$. On notera P_x la loi solution.
- 4. Soit Z une v.a. \mathcal{F}_0 -mesurable. On définit

$$H(Z,B)_t = F_Z(B)_t - Z - \int_0^t b(s, F_Z(B)_s) ds$$

$$H_n(Z,B)_t = \sum_{i=0}^{2^n-1} \sigma(\frac{it}{2^n}, F_Z(B)_{it/2^n}) (B_{(i+1)t/2^n} - B_{it/2^n}).$$

Montrer que pour t fixé, $H_n(Z, B)_t$ converge en probabilité vers $H(Z, B)_t$ et en déduire que $F_Z(B)$ est (la) solution de l'équation $E(\sigma, b)$ avec condition initiale Z.

III. Propriété de Markov forte de la solution

On suppose désormais que σ et b ne dépendent pas du temps. Soit X une solution de $E(\sigma, b)$ sur un espace de probabilité filtré $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ muni du \mathcal{F}_t -mouvement brownien B. Soit T un temps d'arrêt fini p.s. On introduit $X'_t = X_{T+t}$, $B'_t = BT + t - B_T$ et $\mathcal{F}'_t = \mathcal{F}_{T+t}$.

1. Montrer que pour tout processus continu adapté h, on a

$$\int_{T}^{T+t} h_s(\omega) dB_s = \int_{0}^{t} h_{T+u}(\omega) dB'_u.$$

- 2. En déduire que X' est (la) solution de $E(\sigma, b)$ sur l'espace de probabilité filtré $(\Omega, \mathcal{F}, \mathcal{F}'_t, P)$ muni du \mathcal{F}'_t -mouvement brownien B'.
- 3. Montrer que la loi conditionnelle de X' sachant \mathcal{F}_T est P_{X_T} et interpréter.