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functions and measures

Solution 1 — Conformal invariance in dimension 2.
We recall that a map U ⊂ Rn → Rn is conformal if it is differentiable and its differential
is the multiple of an isometry at every point. For n = 2, a map is conformal if and only if
it is holomorphic.

(1) We could proceed by computations, but we will use the classic fact that an har-
monic function on a simply connected domain is the real part of some holomorphic
function. Let x ∈ U and B(x, ε) be a small ball contained in U small enough so that
φ maps B(x, r) inside some other small ball B(y, δ) inside V . On B(y, δ), we can

rewrite h = Ref with f holomorphic. Hence on B(x, ε), we have h̃ = h◦φ = Ref ◦φ,
and h is harmonic at x.

(2) Let D, D̃ be two open sets verifying the Poincaré cone condition, with φ : D → D̃
an homeomorphism which restricts to a conformal homeomorphism between D and

D̃. For x ∈ D, show that φ∗µ∂D(x, ·) = µ∂D̃(φ(x), ·). (Hint: verify this for bounded
continuous functions).

As hinted it is sufficient to verify that for every f : ∂D̃ → R bounded continuous,∫
f(y)φ∗µ∂D(x, dy) =

∫
f(y)µ∂D̃(φ(x), dy). But∫

f(y)φ∗µ∂D(x, dy) =

∫
f(φ(y))µ∂D(x, dy) = Ex[f(φ(BT∂D))] = u(x)(A)

where u is the unique harmonic function on D with boundary value f ◦ φ. At the
same time, ∫

f(y)µ∂D̃(φ(x), dy) = Eφ(x)[f(BT
∂D̃

)] = ũ(φ(x))(B)

where ũ is the unique harmonic function on D̃ with boundary value f . But now by
question 1 we know that ũ◦φ is harmonic on D, continuous on D and has boundary
values f ◦ φ. Thus by the maximum principle ũ ◦ φ = u, hence (A) equals (B), and
we are done.

(3) Using the fact that an unbounded domain that verifies the Poincaré cone condition,
and a continuous and bounded boundary condition, the Brownian expectation still
defines a continuous solution of the Dirichlet problem, the above proof transfers
without modification to the present situation.
When x = i, φ(x) = 0, and by rotation invariance ofB we know that µ∂D(0, ·) = ν0,1,
the uniform measure on the circle. Furthermore we can check that for x ∈ R = ∂H,
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φ(x) = e−2i arctanx. Hence for f bounded continuous D→ R,∫
∂D
f(y)µ∂D(0, dy) =

1

2π

∫ π

−π
f(eiπt)dt∫

R
f(y)φ∗µ∂H(i, dy) =

∫
R
f(φ(u))µ∂H(i, du) =

∫
R
f(e−2i arctanu)µ∂H(i, du)

By the previous question, these two expressions are equal. Hence∫
R
f(e−2i arctanu)µ∂H(i, du) =

1

2π

∫ π

−π
f(eiπt)dt =

∫
f(e−2i arctanu)

1

π(1 + u2)
du

where the last equality is obtained through a change of variables. Hence the mea-
sures µ∂H(i, du) and 1

π(1+u2)
du are equal when tested against all functions of the

form u 7→ f(e−2i arctanu). This space of functions containts in particular all continu-
ous functions with compact support on R, which is enough to characterize equality.
Hence µ∂H(i, du) = 1

π(1+u2)
du, the Cauchy distribution.

Remark: the Cauchy distribution for the hitting point on a line was already obtained in
a previous exercise by direct computations.

Solution 2 — Singularity removal.

Assume without loss of generality that U is a ball centered at x. Let h̃(y) = Ey[h(BT )],

where T = TU{ . This is well defined because almost surely BT ∈ ∂U , and of course h̃ is

harmonic on the whole of U . To show that h(y) = h̃(y) forall y 6= x, proceed as follows.
Define Tε = TU{∪B(x,ε). Then by harmonicity of h, h(y) = Ey[h(BTε)]. Furthermore, since
almost surely x is not hit by B, we have BTε → BT as ε → 0. Applying the dominated

convergence theorem yields h(y) = Ey[h(BTε)] −→
ε↓0

Ey[h(BT )] = h̃(y) and we are done.

Whith the relaxed condition that u(x+ ε) = o(f(ε)) where f is a fundamental solution, we

define the same T, h̃, Tε. Now

h(y) = Ey[h(BTε)] = Ey[1Tε<T h(BTε)] + E[1Tε=T h(BT )]

The first term is bounded by C
f(ε)

o(f(ε))→ 0 and the second term goes to Ey[h(BT )] = h̃(y).

Hence we still have h(y) = h̃(y).

Solution 3 — Inversions in all dimensions.
If I find a more interesting way than just computing the Laplacian I will update this
solution!


