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Exercise 1 — Capacity and Hausdorff dimension.
Let f be a positive function on Rd called potential. The energy of a measure µ is If (µ) =∫∫

f(x− y)µ(dx)µ(dy). The capacity of some set A is

Capf (A) = [inf{If (µ) : µ probability measure on A}]−1

At some point you will see that a closed set is polar in dimension d ≥ 2 if and only if it
has zero capacity for the radial potential f(ε) = | log(ε)| if d = 2 and f(ε) = ε2−d if d ≥ 3.
We wish to show a connexion between the notion of capacity and Hausdorff dimension.

(1) Show that if µ is a measure on A ⊂ Rd,

inf
(Ui)i∈P(A)N
∀i,diam(Ui)≤δ⋃

i Ui=A

(∑
i∈N

diam(Ui)
α

)
≥ µ(A)2∫∫

|x−y|<δ µ(dx)µ(dy)|x− y|−α

and deduce that a set of nonzero capacity for f(ε) = ε−α has Hausdorff dimension
≥ α.

(2) Show also that the image of a segment by a α-Hölder function is of Hausdorff
dimension bounded by 1

α
.

(3) What is the Hausdorff dimension of B([0, 1]) in Rd ?

Exercise 2 — Some more boundary value problems.
In this exercise we will admit that for x, y ∈ Rd, t > 0, we have ∂tpt(x, t) = 1

2
∆ypt(x, y).

(Fokker-Planck equation)

(1) Show that if f is C2 with compact support, then under Px, (f(Bt)− 1
2

∫ t
0

∆f(Bs)ds)t
is a martingale. (Dynkin’s formula)

(2) Let D be a bounded domain and f : D → R continuous and C2 on the interior with
bounded second derivatives. Let T be the hitting time of the complement of D.

Show that (f(Bt∧T )− 1
2

∫ t∧T
0

∆f(Bs)ds)t is a martingale (Hint : use a regularization
procedure to apply question 1).

(3) Show that in the sense of distributions, we have ∆G(x, ·) = −2δx, where G is the
Green function of the Brownian motion in the whole of R3 or in a bounded domain
of R2.
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(4) Show that in a bounded domain D ⊂ Rd with f continuous, a solution of the
Poisson problem

∆u = f on D

u = 0 on ∂D

must verify u(x) = −1
2
Ex[
∫ T
0
f(Bs)ds].

(5) Conversely, if f is Hölder and D is bounded and verifies the Poincaré cone condition,
show that this formula (which can be rewritten u(x) = −1

2

∫
f(y)G(x, y)dy) gives

a solution of the Poisson problem.
B It is doable to verify that u is continuous at the boundary and solves the Poisson
problem in the weak sense (see solution). To extend this to the strong sense seems
harder. It is done in S. Port, Brownian Motion and Classical Potential Theory,
from page 114 onwards (available at the library). Maybe there is a simpler way but
I haven’t found it yet!

Exercise 3 — Transition probabilities and Green’s function on the disc.
B This is taken from Mörters-Peres, lemma 3.36, lemma 3.37 and exercise 3.12. I actually
don’t know how to do question 3 (I don’t understand their proof of lemma 3.37), so for now
I can’t help you with this rather boring exercise...
Let p∗(t, x, y) be the transition probabilities for the Brownian killed when exiting the Disc
B(0, 1), verifying

Ex[f(Bt)1t≤T ] =

∫
f(y)p∗(t, x, y)dy

and G(x, y) =
∫
p∗(t, x, y)dt the Green function.

(1) Show that p∗(t, x, y) = pt(x, y)− Ex[pt−T (B(T ), y)1T<t]
(2) Show that

∫∞
0
ps(x, y)− ps(0, 1)ds = − 1

π
log |x− y|.

(3) Deduce that G(x, y) = − 1
π

log |x− y| − Ex[− 1
π

log |B(T )− y|].
(4) Compute this with Poisson’s formula.

Appendix A. Hausdorff dimension

Let (E, d) be a metric space. For α ≥ 0 and A ⊂ E, we define the α-dimensional Hausdorff
measure of A follows:

Hα(A) := lim
δ→0

 inf
(Ui)i∈P(E)N

∀i,diam(Ui)≤δ⋃
i Ui⊃A

(∑
i∈N

diam(Ui)
α

) .

It is well defined because the lim is actually a sup, and verifies the following property:
Lemma Let α ∈ [0,∞).If Hα(A) <∞ then for β > α Hβ(A) = 0. If Hα(A) > 0 then for
β < α Hβ(A) =∞.
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This tells us that there is a transition point α ∈ [0,∞] where the Hausdorff measure jumps
from ∞ to 0, and we want to call that point the Hausdorff dimension of A.

dimH(A) := sup{α,Hα(A) =∞} = inf{α,Hα(A) = 0}.
This α is the only dimension for which A admits a possibly non-trivial Hausdorff measure
(but it may still be 0 or ∞ in some cases).
For instance, in Rd, the d-dimensional Hausdorff measure is equal to the Lebesgue measure
(you probably constructed the Lebesgue measure this way), and open sets have necessarily
Hausdorff dimension d. Of course sets with 0 Lebesgue measure might have a strictly
smaller Hausdorff dimension.


