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Solutions for Exercise sheet 11: Miscellanea

Solution 1 — Capacity and Hausdorff dimension.
Let f be a positive function on R? called potential. The energy of a measure i is [ () =
[[ f(z — y)pu(dz)pu(dy). The capacity of some set A is

Cap;(A) = [inf{I;(u) : p probability measure on A}]™"

At some point you will see that a closed set is polar in dimension d > 2 if and only if it
has zero capacity for the radial potential f(e) = |log(e)| if d = 2 and f(e) = €>~¢ if d > 3.
We wish to show a connexion between the notion of capacity and Hausdorff dimension.

(1) Let (U;); € P(A)N be such that for all 4, diam(U;) < § and the (U;); forms a partition
of A.
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by Cauchy-Schwarz, yielding the desired inequality. Taking the infimum on all (U;);
then the limit 6 — 0 yields
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Hence for a set of nonzero finite a-capacity, by definition there exists g > 0 such
that [[, p(de)pu(dy)|z — y|~* < oo, so the right-hand-side is bounded below away

from 0. Hence H*(A) > 0 and the Hausdorff dimension is larger than o.
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(2) Assume wlog that the segment is [0, 1]. Let C' be the a-Hélder constant. For n > 1
take Uy = f([k/n, (k+ 1)/n]) for 0 <k <n —1. Then it is a cover of f([0,1]) and
diam(Uy) < C(1/n)*. Hence Y, diam(U;)"Y* < Y, CY*1/n < CY. So we found
arbitrarily fine covers with bounded a-sum. Hence H*(A) < oo and dimy(A) <e.

(3) If d =1 B([0,1]) almost surely contains a ball so has Hausdorff dimension 1.

If d > 2, we use question 2 and the fact that B is almost surely (1/2 — €)-Holder
on [0,1] to show that dimy (B([0,1])) < 2. For the lower bound we consider the
(random) occupation measure p = B, Lebyg ;. If we take o < 2 and compute

U/ o AN _a]:E[//m,md”dy(B(f)—B(y))-a

_ //[0,1]2 dzdy E[(B(z) — B(y))™°]
_ / /[ | dauo - y) " E[(B(1)"]

This is a product of two integrals, the first one boils down to fol r=2dr < oo,
the second one to [~ ri=lp=ae=*/2dr < o, since @ < 2. Hence the random
variable [/ B(0.1])? p(dz)p(dy)(x — y)~* has finite expectation and is almost surely

finite. Hence almost surely dimy (B([0,1])) > a. Hence dimy(B([0, 1])) = 2 almost
surely.

Solution 2 — Some more boundary value problems.
In this exercise we admit that for z,y € R% ¢t > 0, we have Op;(z,y) = %Aypt(m,y).
(Fokker-Planck equation)

(1) This process has clearly independent increments, so we need only show that it is
centered.
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Where we used Fubini, Lebesgue’s differentiation theorem, and integration by part
(the fact that f has compact support makes the boundary term vanish). Hence
E.[X;] = E,[X,] and we are done.
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Once again we need only show that the increments are centered. We want to reuse
question 1. Let € > 0 and ¢, a C* approximation of unity with support contained
in B(0,€). Let also D. = R\ B(DE,¢). Set f. = (Lp,, * ¢eja)f. Then f. verifies
the hypotheses of question 1. Hence, setting 7, to be the hitting time of DE, and
using the optional stopping theorem for f.(B;) — fot Af.(Bs)ds at stopping time
t N1, we get
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where we used the fact that f and f. coincide on D, at the second line, and the
continuity of paths with the dominated convergence theorem at the last line (this
uses the boundedness of f and its derivatives, along with integrability of the first
exit time of bounded domains). This finishes the question.
Show that in the sense of distributions, we have AG(x,-) = §,, where G is the
Green function of the Brownian motion in the whole of R? or in a bounded domain
of R2.

Let D be the domain in which we are working, possibly R? for d > 3. We need
to show that for ¢ C* and compactly supported (in particular ¢ vanishes at the
boundary of D), we have

/ Ad(y)Glz, y)dy = —2 / 6. (9)0(y)dy = —26(x).

But by definition of G, for all 0, [0(y)G(z,y)dy = E, [fOT 6(B;)ds]. Hence if we go
back to the result of question 2, we have

o(c) = E, {qb(BMT) = " Agb(BS)ds]
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which is what we wanted. We used a dominated convergence theorem at line 2:
e when D is bounded the almost sure convergence is immediate, and when D
is unbounded, in dimension > 3, it comes from the transience of Brownian
motion and compactness of supp(¢).

e the domination is by ||¢|c + ||A¢]s fOT 1 B, csupp(s) A5, Whose expectation is
bounded by C | @) G(z,y)dy < .

supp



We also used the fact that ¢ vanishes at the boundary of D at line 3.

(4) This is only a matter of applying question 2 to u and once again the dominated
convergence theorem as ¢t — oo.

(5) The fact that u is continuous at the boundary follows from the same proof as for
the Laplace problem, using the Poincaré cone condition.
To show that Au = f, it is a simple matter from the previous question that this
holds in the weak sense, using Fubini. For the strong sense, see the book mentioned
in the remark...

Solution 3 — Transition probabilities and Green’s function on the disc.
To be updated when I know how to do this exercise!



