
ENS de Lyon — Math Department Master 1 — Spring 2018
Brownian Motion and Stochastic Processes E. Jacob & M. Maazoun

Solutions for Exercise sheet 1 : Review of Gaussian vectors and
conditional expectation, and a first approach of Brownian

Motion.

Solution 1 — Gaussian vectors. (1) The parameters are the mean µ ∈ R and the vari-
ance σ2 ≥ 0. When σ2 = 0, the distribution is just the Dirac in µ, and when
σ2 > 0, it has pdf f(t) = 1√

2πσ2
e−t

2/(2σ2). In both cases the characteristic function

is φ(t) = eiµt−σ
2/2t2 .

(2) This is immediate to check. By decomposing on the standard Euclidean basis it
turns out that mi = E[Xi] and Σi,j = Cov(Xi, Xj). We call those the mean vector
and the covariance matrix of X.

(3) We have that 〈t,X〉 is a Gaussian of mean 〈t,m〉 and variance 〈t,Σt〉. So by taking
the characteristic function of 〈t,X〉 at point 1 we get E[ei〈t,X〉] = exp(i〈t,m〉 −
1
2
〈t,Σt〉). So the distribution of X is completely characterized by the parameters
m and Σ.

(4) Compute E[ei〈t,Ax〉] = E[ei〈
ᵀAt,x〉] = exp(i〈ᵀAt,m〉− 1

2
〈ᵀAt,ΣᵀAt〉) = exp(i〈t, Am〉−

1
2
〈t, AΣᵀAt〉). Gaussianity and identification of the parameters follows.

(5) If we have the independence condition, then for t ∈ V1 and s ∈ V2, we have
Cov[〈t,X〉, 〈s,X〉] = 0 by Fubini’s theorem (justified since everybody is in L2).
But the converse is also true: Suppose that for every t ∈ V1 and s ∈ V2, we have
Cov[〈t,X〉, 〈s,X〉] = 0. Let f1, . . . fm be a finite family in V1 followed by a finite
family in V2. Set Y = (〈f1, X〉, . . . , 〈fm, X〉) = (Y1, Y2). Then, by computing
covariances, we see that the covariance matrix of Y is block-diagonal. This means
that we have a product decomposition E[ei(〈t1,Y 1〉+〈t2,Y2〉] = E[ei〈t1,Y1〉]E[ei〈t2,Y2〉]. By
injectivity of the characteristic distribution, we have identified the distribution of
(Y1, Y2) as one of an independent couple of two Gaussian vectors. Now because by
definition the σ-algebra spanned by a family of variables is generated by the finite
subfamilies, we get the independence of the two σ-algebras.

(6) The classic example : set (X,A) to be an independent couple of a standard Gaussian
and a Rademacher variable (uniform on {±1}). Set Y = AX. Then Y is not
independent of X (P(X > 0, Y > 0) = 0 6= 1/4). Yet Cov(X, Y ) = E[AX2] =
E[A]E[X2] = 0× 1 = 0.

(7) If X = (X1, . . . Xn) then we compute E[ei〈t,X〉] = e−
1
2
〈t,t〉. So it’s Gaussian. For

m a vector and Σ a semi-definite positive matrix, use the spectral theorem to
write Σ = ᵀODO, and consider Y = m + ᵀO

√
DX. It should have the prescribed

parameters.
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Solution 2 — Central Limit Theorem and random walks. (1) We have

S̃n(ti)− S̃n(ti−1) =
1

σ
√
n

bntic∑
k=bnti−1c+1

Xk.

These form independent random variables thanks to independence of the (Xk)k and
the grouping lemma.

(2) The increment S̃n(ti) − S̃n(ti−1) is distributed like 1
σ
√
n

∑bntic−bnti−1c
p=1 Xp, which we

rewrite as bntic−bnti−1c√
n

× 1
bntic−bnti−1c

∑bntic−bnti−1c
p=1 Xp. Now the first factor is a de-

terministic sequence of numbers that converges to
√
ti − ti−1, and the second one is

a sequence of random variables that converge in distribution to a standard Gauss-
ian Z thanks to the CLT. The convergence in distribution of the increment to√
ti − ti−1Z ∼ N (0, ti − ti−1) follows from the following lemma.

Lemma. If cn is deterministic, Xn is random, cn → c and Xn
d−→ X, then

cnXn
d−→ cX.

Proof. The joint convergence in distribution (cn, Xn)
d−→ (c,X) follows from either

Slutsky’s lemma (look it up!) or the ”basic fact” about convergence in distribution

of independent variables stated below. From that we get the convergence cnXn
d−→

cX by the continuous mapping property of the convergence in distribution (indeed
multiplication is continuous). �

To prove convergence in distribution of (X1, . . . Xn), we use:
Basic fact. If for every n, (X1

n, . . . , X
k
n) form an independent vector of random

variables, and for every 1 ≤ i ≤ k we have X i
n

d−→ X i, then (X1
n, . . . , X

k
n)

d−→
(Y 1, . . . , Xk), where Y 1 d

= X1, . . . , Y k d
= Xk, and the (Y i)i are independent.

Proof. Characteristic functions �

From there we get that the vector of increments converges to a vector (Y1 . . . Yk)
of k independent Gaussians, of respective variances t1 − t0, . . . , tk − tk−1.

(3) (S̃n(t0), . . . , S̃n(tk)) is the linear transform by, say, A (the lower triangular matrix
of ones) of the vector of increments. So by the continuous mapping theorem it con-
verges to AY (which we call(Bt0 , . . . , Btk)). It is a centered Gaussian vector as the
linear transform of the centered Gaussian vector Y. Now we compute covariances:
Cov(Bti , Btj) = Cov(

∑i
p=1 Yp,

∑j
p=1 Yp) =

∑i∧j
p=1 Var(Yp) = ti∧j = ti ∧ tj.

(4) Indeed(B1/2, B1) is distributed like (U, V ) = ( X√
2
, X√

2
+ Y√

2
), because this is a centered

Gaussian vector with the desired covariances. To rewrite this distribution as the
distribution of (something, X), we project the vector ( 1√

2
, 0) onto ( 1√

2
, 1√

2
). This

yields

(†) (
1√
2
, 0) =

1

2
(

1√
2
,

1√
2

) +
1

2
(

1√
2
,− 1√

2
).
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We set W = ( 1√
2
,− 1√

2
). Equation (†) translates immediately into X = 1

2
V + 1

2
W .

But we can show that (V,W ) is also a standard Gaussian and (X, Y ) = (1
2
V +

1
2
W,V )

d
= (1

2
X + 1

2
Y,X).

Solution 3 — Limit in distribution of Gaussian vectors.
We restrict ourselves to gaussian variables. It is rather easy to lift this up to vectors
afterwards. Let µn and σn be the parameters of Xn If we have convergence in distribution,
then we have convergence of the characteristic functions to the one of the limit. So there

exists a characteristic function f : R→ R such that for all t ∈ R, fn(t) = eiµnt−
σ2n
2
t2 → f(t).

Now taking the modulus then the log yields σ2
n → − 2

t2
log(|f(t)|) = σ2 ≥ 0. We deduce

that |f(t)| = e−
σ2

2
t2 . Now eiµnt = e

σ2n
2
t2fn(t) → e

σ2

2
t2f(t) = u(t), which is a continuous

function in C of modulus 1 (with u(0) =: 1). So it can be lifted up to a continuous real
function, i.e. there exists h continuous with h(0) = 0 such that u(t) = eih(t) for all t. We
have

ei(µnt−h(t)) → 0.

We shall now show that (µn)n is bounded. This important step is treated with a proba-
bilistic proof: we use the fact that the distribution of Xn is symmetric about its mean1.
Suppose there is an increasing subsequence mkn → ∞. Then P(Xkn ≥ mkn) = 1/2 for
all n, and P(Xkn ≥ mkp) ≥ 1/2 for all n ≥ p. So by taking n → ∞ with fixed p we get
P(X ≥ mkp) ≥ 1/2 for all p, which is absurd as mkp →∞.
So (mn)n is bounded above and the symmetric argument allows to show that it is bounded
below.
Back to our problem, we shall now show that A = {t ∈ R : µnt→ h(t)} is the whole of R.

• It is nonempty as it contains 0.
• It is closed because of the uniform control of µn in n.
• It is open: let t ∈ A. For s ∈ R we have ei(µnt−h(t)−µns+h(s))→ 0. By the bound on
µn and continuity of h we can find ε > 0 such that for all s ∈ (t− ε, t+ ε) and all n,
|µnt− h(t)− µns+ h(s)| < π/2. But for |θ| < π/2, θ 7→ eiθ is an homeomorphism.
We deduce µnt− h(t)− µns+ h(s)→ 0 and hence s ∈ A.

We conclude by connectedness of R. We get that for every t 6= 0, µn → h(t)/t, so µn

converges to some µ and h(t) = µt. This proves that f(t) = eiµt−
σ2

2
t2 , so X is a Gaussian

with parameters µ = limµn and σ2 = limσ2
n. Conversely these convergences directly imply

convergence in distribution.

Solution 4 — Conditional Fubini’s theorem.
Set u(x) = E[f(x, Y )] =

∫
f(x, y)dPY (y). According to Fubini’s theorem, u(x) is defined

PX-a.e. Let us check that the almost-surely defined random variable u(X) satisfies the
universal property required from the conditional expectation E[f(X, Y ) | G].

1Since we know that σn is bounded, we could as well use the fact that Xn concentrates around its mean
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Let Z be a G-measurable bounded random variable. Then Zf(X, Y ) ∈ L1, and since Y is
independent of (X,Z), which means P(X,Z,Y ) = P(X,Z)⊗PY . We deduce

E[Zf(X, Y )] =

∫
zf(x, y)dP(X,Z,Y )(x, z, y) =

∫
zf(x, y)d(P(X,Z)⊗PY )(x, z, y)

=

∫
z

(∫
f(x, y)dPY (y)

)
dP(X,Z)(x, z) (Fubini)

= E[Zu(X)].

This proves the claim. I often write this very basic claim about conditional expectations
as follows :

E[f(X, Y ) | G] = E[f(x, Y )]x=X .

Solution 5 — ”Conditional probability”. (1) We know from the first exercise that (B1/2, B1)

is distributed as (B1

2
+ Y

2
), where Y is a standard Gaussian independent of B1. Then

E[f(B1/2, B1) | B1] = E[f(B1

2
+ Y

2
, B1) | B1] = E[f(u

2
+ Y

2
, u)]u=B1 by the previous

exercise. We sum this up by saying that the conditional distribution of (B1/2, B1)
given B1 = u is that of a (u/2 +N (0, 1/4), u).


