Exercise sheet 3 : Regularity properties & miscellanea (v3)

Exercise 1 — Boring but important measure theoretic stuff.

For I a nonempty set, let $\mathcal{B}(\mathbb{R})^I$ be the product σ -algebra on \mathbb{R}^I .

- (1) Recall the definition of $\mathcal{B}(\mathbb{R})^{\otimes I}$ and describe a π -system that generates it. Deduce that a probability measure on $(\mathbb{R}^I, \mathcal{B}(\mathbb{R})^{\otimes I})$ is characterized by the finite-dimensional marginals.
- (2) Show that $(X_t)_{t \in I}$ is a random variable in $(\mathbb{R}^I, \mathcal{B}(\mathbb{R})^{\otimes I})$ if and only if X_t is a random variable in \mathbb{R} for every t.
- (3) Show that when I is countable, then $\mathcal{B}(\mathbb{R})^{\otimes I}$ is the Borel σ -algebra associated with the product topology on \mathbb{R}^{I} .
- (4) Show that when I is not countable, then $\mathcal{B}(\mathbb{R})^{\otimes I} \subsetneq \mathcal{B}(\mathbb{R}^I)$.
- (5) Show that the restriction of $\mathcal{B}(\mathbb{R})^{\otimes [0,1]}$ to $\mathcal{C}([0,1])$ is the Borel σ -algebra associated with the uniform convergence topology. Same with $\mathcal{C}(\mathbb{R}_+)$ and uniform convergence on every compact set.

Exercise 2 — Indistinguishability and modifications.

We recall that a stochastic process on some probability space is a family of random variables X_t for t in some interval I. Two processes X, Y on I are said to be indistinguishable of each other if $\mathbb{P}(\forall t \in I, X_t = Y_t) = 1$. They are a modification of each other if $\forall t \in I, \mathbb{P}(X_t = Y_t) = 1$

- (1) What is the relationship between these two notions ?
- (2) Show that two continuous stochastic processes that are a modification of each other are actually indistinguishable.
- (3) Show that "X is indistinguishable from a Brownian motion" is equivalent to "X is a $\mathcal{C}(\mathbb{R}_+)$ -valued random variable (up to a.s. equality) which is distributed like a Brownian motion".

Exercise 3 — Local regularity and long-term behavior.

We recall from the last exercise session that X(t) = tB(1/t), continued at 0 with X(0) = 0, is indistinguishable from a Brownian motion.

- (1) Deduce that almost surely, |B(t)| = o(t) as $t \to \infty$.
- (2) Use bounds from the course to show that almost surely $\limsup_{t\to\infty} \frac{|B_t|}{t^{1/2-\epsilon}} = \infty$ for every $\epsilon > 0$, and that $B_t = O(\sqrt{t\log(t)})$ as $t \to \infty$, with a nonrandom $O(\cdot)$.
- (3) We want to show that B is almost surely not 1/2-Hölder at 0. Fix c > 0.
 (a) Use Fatou's lemma to show that P(lim sup_n B_{2⁻ⁿ}/√2⁻ⁿ < c) is < 1.

- (b) Show that $\{\limsup_{n \to 0} B_{2^{-n}}/\sqrt{2^{-n}} < c\}$ is a tail event for the sequence of independent random variables $(N_{n,1})_{n\geq 0}$ that appear in Lévy's construction.
- (c) Conclude. What does it say for the long-term behavior ?

Exercise 4 — Quadratic and absolute variation.

For fixed t, a partition \underline{t} is a finite sequence $0 = t_0 \leq t_1 \leq \ldots \leq t_{\#\underline{t}} = t$ and its mesh-size is $|\underline{t}| = \max_{1 \leq i \leq \#\underline{t}} |t_i - t_{i-1}|$. The absolute (resp. quadratic) variation of B between 0 and t is

$$\lim_{\epsilon \to 0} \sup_{|\underline{t}| \le \epsilon} \sum_{i=1}^{\underline{\#}\underline{t}} |B_{t_i} - B_{t_{i-1}}| \qquad \left(\text{resp.} \quad \lim_{\epsilon \to 0} \sup_{|\underline{t}| \le \epsilon} \sum_{i=1}^{\underline{\#}\underline{t}} (B_{t_i} - B_{t_{i-1}})^2 \right)$$

- (1) If $\underline{t}^{(k)}$ is a sequence of partitions with $|\underline{t}^{(k)}| \to 0$, then show that $\lim_{k\to\infty} \sum_{i=1}^{\#\underline{t}^{(k)}} (B_{t_i^{(k)}} B_{\underline{t}^{(k)}})^2$ exists in the L^2 sense. What is it ?
- (2) If $(\underline{t}^{(k)})_k$ is such that $\sum_{k=1}^{\infty} \sum_{j=1}^{\#\underline{t}^{(k)}} (t_i^{(k)} t_{i-1}^{(k)})^2 < \infty$, then the convergence is almost sure.
- (3) Deduce that the Brownian motion almost surely does not have finite absolute variation (i.e. is not a bounded variation function).

Exercise 5 — *The precise constant (Lévy, 1937).* We want to show that with probability one,

$$\limsup_{h \downarrow 0} \frac{m_B(h, [0, 1])}{\sqrt{2h \log(1/h)}} = 1$$

(1) Show that if X is standard Gaussian and x > 0, then

$$\frac{1}{\sqrt{2\pi}(x+1/x)}e^{-x^2/2} \le \mathbb{P}(X \ge x) \le \frac{1}{\sqrt{2\pi}x}e^{-x^2/2}.$$

- (2) For $c < \sqrt{2}$, show that almost surely for all $\epsilon > 0$ there exists $s, t \in [0, 1]$ with $|t s| \le \epsilon$ and $|B(t) B(s)| \ge c\sqrt{|t s|\log(1/|t s|)}$. (Hint: divide [0, 1] in intervals of length 2^{-n}).
- (3) Fix $m \ge 1$ and define the following families of intervals:

$$\Lambda_n(m) = \left\{ [(k/m - 1)2^{-n/m}, (k/m)2^{-n/m}], \quad m \le k \le m2^{n/m} \right\}, \quad n \ge 1.$$

For $c > \sqrt{2}$, show that almost surely, for *n* large enough and any interval [s, t] in the family $\Lambda_n(m)$, $|B(t) - B(s)| \le c\sqrt{|t-s|\log(1/|t-s|)}$.

- (4) Fix $\epsilon > 0$, show that there exists $m \ge 1$ such that any interval $[s, t] \subset [0, 1]$ can be approximated with an interval $[s', t'] \in \Lambda(m) = \bigcup_{n\ge 1}\Lambda_n(m)$, with $|t t'|, |s s'| \le \epsilon |t s|$, and $|t' s'| \le |t s|$.
- (5) Deduce that almost surely, for h small enough, $m_B(h, [0, 1]) \leq C\sqrt{h \log(1/h)}$, for a constant C that can be brought arbitrarily close to $\sqrt{2}$. Conclude.