Solutions for \mathbb{E} xercise sheet 1 : Conditional probability distributions, first properties of the Brownian Motion.

- **Solution 0** Gaussian vectors. (1) The parameters are the mean $\mu \in \mathbb{R}$ and the variance $\sigma^2 \geq 0$. When $\sigma^2 = 0$, the distribution is just the Dirac in μ , and when $\sigma^2 > 0$, it has pdf $f(t) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-t^2/(2\sigma^2)}$. In both cases the characteristic function is $\phi(t) = e^{i\mu t \sigma^2/2t^2}$.
 - (2) This is immediate to check. By decomposing on the standard Euclidean basis it turns out that $m_i = \mathbb{E}[X_i]$ and $\Sigma_{i,j} = \text{Cov}(X_i, X_j)$. We call those the mean vector and the covariance matrix of X.
 - (3) We have that $\langle t, X \rangle$ is a Gaussian of mean $\langle t, m \rangle$ and variance $\langle t, \Sigma t \rangle$. So by taking the characteristic function of $\langle t, X \rangle$ at point 1 we get $\mathbb{E}[e^{i\langle t,X \rangle}] = \exp(i\langle t,m \rangle - \frac{1}{2}\langle t,\Sigma t \rangle)$. So the distribution of X is completely characterized by the parameters m and Σ .
 - (4) Compute $\mathbb{E}[e^{i\langle t,Ax\rangle}] = \mathbb{E}[e^{i\langle \mathsf{T}At,x\rangle}] = \exp(i\langle \mathsf{T}At,m\rangle \frac{1}{2}\langle \mathsf{T}At,\Sigma^{\mathsf{T}}At\rangle) = \exp(i\langle t,Am\rangle \frac{1}{2}\langle t,A\Sigma^{\mathsf{T}}At\rangle)$. Gaussianity and identification of the parameters follows.
 - (5) If we have the independence condition, then for $t \in V_1$ and $s \in V_2$, we have $\operatorname{Cov}[\langle t, X \rangle, \langle s, X \rangle] = 0$ by Fubini's theorem (justified since everybody is in L^2). But the converse is also true: Suppose that for every $t \in V_1$ and $s \in V_2$, we have $\operatorname{Cov}[\langle t, X \rangle, \langle s, X \rangle] = 0$. Let f_1, \ldots, f_m be a finite family in V_1 followed by a finite family in V_2 . Set $Y = (\langle f_1, X \rangle, \ldots, \langle f_m, X \rangle) = (Y_1, Y_2)$. Then, by computing covariances, we see that the covariance matrix of Y is block-diagonal. This means that we have a product decomposition $\mathbb{E}[e^{i\langle t_1, Y_1 \rangle + \langle t_2, Y_2 \rangle}] = \mathbb{E}[e^{i\langle t_1, Y_1 \rangle}]\mathbb{E}[e^{i\langle t_2, Y_2 \rangle}]$. By injectivity of the characteristic distribution, we have identified the distribution of (Y_1, Y_2) as one of an independent couple of two Gaussian vectors. Now because by definition the σ -algebra spanned by a family of variables is generated by the finite subfamilies, we get the independence of the two σ -algebras.
 - (6) The classic example : set (X, A) to be an independent couple of a standard Gaussian and a Rademacher variable (uniform on $\{\pm 1\}$). Set Y = AX. Then Y is not independent of X ($\mathbb{P}(X > 0, Y > 0) = 0 \neq 1/4$). Yet $Cov(X, Y) = \mathbb{E}[AX^2] = \mathbb{E}[A]\mathbb{E}[X^2] = 0 \times 1 = 0$.
 - (7) If $X = (X_1, \ldots, X_n)$ then we compute $\mathbb{E}[e^{i\langle t, X \rangle}] = e^{-\frac{1}{2}\langle t, t \rangle}$. So it's Gaussian. For m a vector and Σ a semi-definite positive matrix, use the spectral theorem to write $\Sigma = {}^{\mathsf{T}}ODO$, and consider $Y = m + {}^{\mathsf{T}}O\sqrt{D}X$. It should have the prescribed parameters.

Solution 1 — Conditioning and independence.

• Set $u(x) = \mathbb{E}[f(x,Y)] = \int f(x,y) d\mathbb{P}_Y(y)$. According to Fubini's theorem, u(x) is defined \mathbb{P}_X -a.e. Let us check that the almost-surely defined random variable u(X) satisfies the universal property required from the conditional expectation $\mathbb{E}[f(X,Y) \mid \mathcal{G}]$.

Let Z be a \mathcal{G} -measurable bounded random variable. Then $Zf(X,Y) \in L^1$, and since Y is independent of (X, Z), which means $\mathbb{P}_{(X,Z,Y)} = \mathbb{P}_{(X,Z)} \otimes \mathbb{P}_Y$.

We deduce

$$\mathbb{E}[Zf(X,Y)] = \int zf(x,y)d\mathbb{P}_{(X,Z,Y)}(x,z,y) = \int zf(x,y)d(\mathbb{P}_{(X,Z)}\otimes\mathbb{P}_Y)(x,z,y)$$
$$= \int z\left(\int f(x,y)d\mathbb{P}_Y(y)\right)d\mathbb{P}_{(X,Z)}(x,z) \text{ (Fubini)}$$
$$= \mathbb{E}[Zu(X)].$$

This proves the claim. I often write this very basic claim about conditional expectations as follows :

$$\mathbb{E}[f(X,Y) \mid \mathcal{G}] = \mathbb{E}[f(x,Y)]_{x=X}.$$

• We may now interpret this as a conditional distribution. Let $\mu(x, \cdot)$ denote the distribution of f(x, Y). Then for every bounded measurable ϕ ,

$$\mathbb{E}[\phi(f(X,Y))|\mathcal{G}] = \mathbb{E}[\phi(f(x,Y))]_{x=X} = \left(\int \phi(u)\mu(x,du)\right)_{x=X} = \int \phi(u)\mu(X,du)$$

This implies that the distribution of f(X, Y) given \mathcal{G} is $\mu(X, \cdot)$. In other words, μ is a conditional probability kernel for f(X, Y) given X.

Solution 2 — Gaussian conditional distribution and Bayesian statistics 101. (1) To do this, we project X on $\sigma(Y)$ to write

$$X = \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(Y)}Y + \left(X - \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(Y)}Y\right),$$

the two terms of this sum being uncorrelated hence independent, as they themselves form a Gaussian vector. Writing Z the second term, we end up with

$$X = \frac{\rho}{\sigma_Y^2} Y + Z$$

, where Z is independent of Y. We deduce $\operatorname{Var}(X) = \frac{\rho^2}{\sigma_Y^4} \operatorname{Var}(Y) + \operatorname{Var}(Z)$ (Pythagora's !), and hence $\operatorname{Var}(Z) = \sigma_X^2 - \frac{\rho^2}{\sigma_Y^2}$. Using the previous exercise, we deduce that the conditional probability kernel of X given Y is

$$(y,\cdot) \mapsto \mathbb{P}(\frac{\rho}{\sigma_Y^2}y + Z \in \cdot) = \mathcal{N}(\frac{\rho}{\sigma_Y^2}y, \sigma_X^2 - \frac{\rho^2}{\sigma_Y^2})(\cdot).$$

(3) Applying the previous question, we get that

$$\mathbb{P}_{\theta|\overline{X}=\overline{x}} = \mathcal{N}\left(\frac{\overline{x}}{1+\frac{\sigma^2}{n\tau^2}}, \frac{1}{\frac{n}{\sigma^2}+\frac{1}{\tau^2}}\right)$$

- (4) (a) The limit as $\sigma \to \infty$ is $\mathcal{N}(0, \tau^2)$. When the observations are very random, they give no information about θ .
 - (b) The limit as $\sigma \to 0$ is $\mathcal{N}(\overline{x}, 0) = \delta_{\overline{x}}$. When the observations are not random, they equal θ almost surely, hence the distribution of θ given the observations is not random.
 - (c) The limit as $\tau \to \infty$ is $\mathcal{N}(\overline{x}, \sigma^2/n)$. The prior distribution of θ is very random hence contains no information. That is why the conditional distribution given \overline{X} is not biased towards 0 anymore. Note that we recover the point of view of *inferential statistics*: when θ is unknown but deterministic, we indeed have $\theta - \overline{x} \sim \mathcal{N}(0, \sigma^2/n)$.
 - (d) The limit as $\tau \to 0$ is $\mathcal{N}(0,0) = \delta_0$. Indeed since the prior distribution of θ becomes deterministically equal to 0, then the posterior does too.
- (5) We may interpret this as follows: a real-world parameter θ must be measured. Prior (theoretical or based on the past) knowledge gives us its *a priori* distribution $\mathcal{N}(0, \tau^2)$. We are also given noisy measurements X_1, \ldots, X_n of this parameter, and wonder what the distribution of θ becomes after adding this supplementary information.
- (6) It turns out that the conditional distribution of θ given (X_1, \ldots, X_n) is the same as the one given \overline{X} . Indeed if we replay the proof of question 1 and project θ on \overline{X} , we get

$$\theta = \frac{n\tau^2}{n\tau^2 + \sigma^2}\overline{X} + Z,$$

and it turns out that not only $\operatorname{Cov}(\overline{X}, Z) = 0$ but also $\operatorname{Cov}(X_i, Z) = 0, 1 \le i \le n$. Hence we may continue as in question 1.

Solution 3 - Borel-Kolmogorov paradox.

We start by computing the joint distribution of (θ, ϕ) .

$$\mathbb{E}[h(\theta_P, \phi_P)] = \int h(\theta_p, \phi_p) \mathbb{P}_P(dp)$$

= $\frac{3}{4\pi} \int_{B_{\mathbb{R}^3}(0,1)} h(\theta_{p/|p|}, \phi_{p/|p|}) \text{Leb}_3(dp)$
= $\frac{3}{4\pi} \int_0^1 r^2 dr \int_{-\pi}^{\pi} d\theta \int_{-\pi/2}^{\pi/2} \cos(\phi) d\phi h(\theta, \phi)$
= $\int_{-\pi}^{\pi} \frac{d\theta}{2\pi} \int_{-\pi/2}^{\pi/2} \frac{\cos(\phi) d\phi}{2} h(\theta, \phi),$

where we applied Lebesgue's change of variable theorem in line 3, setting

$$p = (r\cos(\theta)\cos(\phi), r\sin(\theta)\cos(\phi), r\sin(\phi)),$$

which gives

$$Leb_{3}(dp) = r^{2} \cos(\phi) dr d\theta d\phi$$
$$\theta_{p/|p|} = \theta$$
$$\phi_{p/|p|} = \phi.$$

On the last line, we read that ϕ_P and θ_P are independent, θ has uniform distribution on $[-\pi,\pi]$, while ϕ has density $\cos(\phi)/2$ on $[-\pi/2,\pi/2]$.

- (1) With a step further in the computation above, we may deduce that $(\theta_P \mod \pi, \operatorname{sign}(\theta_P), \phi_P)$ are independent random variables whose respective distributions are : uniform in $[0, \pi]$, uniform in $\{-1, 1\}$, and with density $\cos(\phi)/2$. From exercise 1, we deduce that conditional on $\theta_P \mod \pi = \theta$, the distribution of P is that of a point of latitude uniformly chosen in $\{\theta, \theta \pi\}$ and longitude chosen in $[-\pi/2, \pi/2]$ with density $\cos(\phi)/2$.
- (2) It comes directly from exercise 1 that conditional on $\phi_P = \phi$, the distribution of P is that of a point with latitude ϕ and uniform longitude.
- (3) A conditional probability kernel given some variable Z is only defined up to $\mathbb{P}_{Z^{-1}}$ almost-everywhere equality, so it does not really make sense to specialize it at a given point z. However, if there is a continuous representative (i.e. $z \mapsto \mu(z, \cdot)$ is continuous in the space of probability measures), then it is unique. Hence specialization makes sense. This is the case for the two conditional probability kernels defined above.
- (4) The paradox is that both procedures yield a probability measure on some great circle of the sphere, that are really different. In one case the measure is the image of the Lebesgue measure in S¹, while in the other case it is not. It comes from the fact that conditioning on negligible events is not well-defined.

Solution 4 — Transformations.

We first consider the finite-dimensional marginals of the new process $(X_t)_t$ in these two cases. Remark at first that they still form centered Gaussian vectors, since they are each obtained by a very simple linear transform of some f.d.m. of *B*. Now we only need to compute covariances.

(1)
$$\operatorname{Cov}(X_s, X_t) = \operatorname{Cov}(\lambda^{-1/2}B_{\lambda s}, \lambda^{-1/2}B_{\lambda t}) = \lambda^{-1}\operatorname{Cov}(B_{\lambda s}, B_{\lambda t}) = \lambda^{-1}(\lambda s \wedge \lambda t) = s \wedge t.$$

(2) For $0 \le s, t \le 1$, $\operatorname{Cov}(X_s, X_t) = \operatorname{Cov}(B_1 - B_{1-s}, B_1 - B_{1-t}) = \operatorname{Cov}(B_1, B_1) - \operatorname{Cov}(B_1, B_{1-t}) - \operatorname{Cov}(B_{1-s}, B_1) + \operatorname{Cov}(B_{1-s}, B_{1-t}) = 1 - (1-t) - (1-s) + (1-s) \wedge (1-t) = 1 + (t-1) \wedge (s-1) = t \wedge s.$

Now since those processes are continuous on their domain of definition, they are Brownian motions.

Solution 5 - A nowhere continuous version of the Brownian motion.

Let $(X_t)_t$ be a Brownian motion and $(U_i)_i$ be an independent sequence of independent exponential random variables with parameter 1.

Let us show the following property: with probability one, $(U_i)_i$ is dense in $[0, \infty)$. Let $a < b \in \mathbb{Q}$. $\mathbb{P}(U_1 \notin [a, b], \ldots, U_n \notin [a, b]) = \mathbb{P}(U_1 \notin [a, b])^n \to 0$ as $n \to \infty$. So $\mathbb{P}(U_i \notin [a, b] \forall i) = 0$. We have shown $\forall a < b \in \mathbb{Q}^2$, almost surely, [a, b] intersects $(U_i)_i$. Because \mathbb{Q}^2 is countable, we can invert \forall and almost surely, and we get that almost surely, $(U_i)_i$ is dense.

Now we define $B_t = X_t + \mathbb{1}_{t \notin \{U_i, i \in \mathbb{N}\}}$. By the previous property, this process is almost surely nowhere continuous, and we can check that the f.d.m's of B and X are equal almost surely (so have the same distribution) because for fixed t_1, \ldots, t_k , the probability that $\{t_1, \ldots, t_k\}$ intersects $\{U_i, i \in \mathbb{N}\}$ is 0 (once again by countable union).

Now we modify B on the negligible set where it is still continuous despite all our efforts, by setting $B = \mathbb{1}_{\mathbb{Q}}$, finishing the exercise.

Solution 6 — Brownian motion is nowhere monotonous.

Let us fix $a < b \in \mathbb{Q}$ and $a < t_0 < \ldots < t_k < b$. If the Brownian motion is increasing, it implies that $B_{t_i} - B_{t_{i_1}} \ge 0$ for every $1 \le i \le k$. So $\{B \text{ increasing on } [a, b]\} \subset \bigcap_{1 \le i \le k} \{B_{t_i} - B_{t_{i_1}} \ge 0\}$. This last event has probability 2^{-k} by independence. So $\{B \text{ increasing on } [a, b]\}$ can be included in an event of probability 0. So by countable union

 $\{B \text{ increasing on some interval }\} \subset \bigcup_{a < b \in \mathbb{Q}} \{B \text{ increasing on } [a, b]\}$

can be included in an event of probability 0. So the complement property "B is increasing on no nontrivial interval" is almost sure. Same for "decreasing" by symmetry.

Remark: We did not need to show that the property "*B* is monotonous on no nontrivial interval" is indeed an event (i.e. is a measurable set), because the property of being almost sure or negligible can be defined for non-measurable subsets of Ω . But we can check that it is an event because of the assumption that paths are always continuous.

Solution 7 — The stationary Ornstein-Uhlenbeck process.

Firstly, $Cov(X_t, X_s) = e^{-|t-s|}$. So at each time t, X_t is a standard Gaussian. It does not have independent increments as a quick computation shows.