
ENS de Lyon — Math Department Master 1 — Spring 2019
Brownian Motion and Stochastic Processes E. Jacob & M. Maazoun

Solutions for Exercise sheet 1 : Conditional probability
distributions, first properties of the Brownian Motion.

Solution 0 — Gaussian vectors. (1) The parameters are the mean µ ∈ R and the vari-
ance σ2 ≥ 0. When σ2 = 0, the distribution is just the Dirac in µ, and when
σ2 > 0, it has pdf f(t) = 1√

2πσ2
e−t

2/(2σ2). In both cases the characteristic function

is φ(t) = eiµt−σ
2/2t2 .

(2) This is immediate to check. By decomposing on the standard Euclidean basis it
turns out that mi = E[Xi] and Σi,j = Cov(Xi, Xj). We call those the mean vector
and the covariance matrix of X.

(3) We have that 〈t,X〉 is a Gaussian of mean 〈t,m〉 and variance 〈t,Σt〉. So by taking
the characteristic function of 〈t,X〉 at point 1 we get E[ei〈t,X〉] = exp(i〈t,m〉 −
1
2
〈t,Σt〉). So the distribution of X is completely characterized by the parameters
m and Σ.

(4) Compute E[ei〈t,Ax〉] = E[ei〈
ᵀAt,x〉] = exp(i〈ᵀAt,m〉− 1

2
〈ᵀAt,ΣᵀAt〉) = exp(i〈t, Am〉−

1
2
〈t, AΣᵀAt〉). Gaussianity and identification of the parameters follows.

(5) If we have the independence condition, then for t ∈ V1 and s ∈ V2, we have
Cov[〈t,X〉, 〈s,X〉] = 0 by Fubini’s theorem (justified since everybody is in L2).
But the converse is also true: Suppose that for every t ∈ V1 and s ∈ V2, we have
Cov[〈t,X〉, 〈s,X〉] = 0. Let f1, . . . fm be a finite family in V1 followed by a finite
family in V2. Set Y = (〈f1, X〉, . . . , 〈fm, X〉) = (Y1, Y2). Then, by computing
covariances, we see that the covariance matrix of Y is block-diagonal. This means
that we have a product decomposition E[ei(〈t1,Y 1〉+〈t2,Y2〉] = E[ei〈t1,Y1〉]E[ei〈t2,Y2〉]. By
injectivity of the characteristic distribution, we have identified the distribution of
(Y1, Y2) as one of an independent couple of two Gaussian vectors. Now because by
definition the σ-algebra spanned by a family of variables is generated by the finite
subfamilies, we get the independence of the two σ-algebras.

(6) The classic example : set (X,A) to be an independent couple of a standard Gaussian
and a Rademacher variable (uniform on {±1}). Set Y = AX. Then Y is not
independent of X (P(X > 0, Y > 0) = 0 6= 1/4). Yet Cov(X, Y ) = E[AX2] =
E[A]E[X2] = 0× 1 = 0.

(7) If X = (X1, . . . Xn) then we compute E[ei〈t,X〉] = e−
1
2
〈t,t〉. So it’s Gaussian. For

m a vector and Σ a semi-definite positive matrix, use the spectral theorem to
write Σ = ᵀODO, and consider Y = m + ᵀO

√
DX. It should have the prescribed

parameters.

1



2

Solution 1 — Conditioning and independence.

• Set u(x) = E[f(x, Y )] =
∫
f(x, y)dPY (y). According to Fubini’s theorem, u(x)

is defined PX-a.e. Let us check that the almost-surely defined random variable
u(X) satisfies the universal property required from the conditional expectation
E[f(X, Y ) | G].

Let Z be a G-measurable bounded random variable. Then Zf(X, Y ) ∈ L1, and
since Y is independent of (X,Z), which means P(X,Z,Y ) = P(X,Z)⊗PY .

We deduce

E[Zf(X, Y )] =

∫
zf(x, y)dP(X,Z,Y )(x, z, y) =

∫
zf(x, y)d(P(X,Z)⊗PY )(x, z, y)

=

∫
z

(∫
f(x, y)dPY (y)

)
dP(X,Z)(x, z) (Fubini)

= E[Zu(X)].

This proves the claim. I often write this very basic claim about conditional expec-
tations as follows :

E[f(X, Y ) | G] = E[f(x, Y )]x=X .

• We may now interpret this as a conditional distribution. Let µ(x, ·) denote the
distribution of f(x, Y ). Then for every bounded measurable φ,

E[φ(f(X, Y ))|G] = E[φ(f(x, Y ))]x=X =

(∫
φ(u)µ(x, du)

)
x=X

=

∫
φ(u)µ(X, du).

This implies that the distribution of f(X, Y ) given G is µ(X, ·). In other words, µ
is a conditional probability kernel for f(X, Y ) given X.

Solution 2 — Gaussian conditional distribution and Bayesian statistics 101. (1) To do
this, we project X on σ(Y ) to write

X =
Cov(X, Y )

Var(Y )
Y +

(
X − Cov(X, Y )

Var(Y )
Y

)
,

the two terms of this sum being uncorrelated hence independent, as they themselves
form a Gaussian vector. Writing Z the second term, we end up with

X =
ρ

σ2
Y

Y + Z

, where Z is independent of Y . We deduce Var(X) = ρ2

σ4
Y

Var(Y )+Var(Z) (Pythagora’s

!), and hence Var(Z) = σ2
X −

ρ2

σ2
Y

. Using the previous exercise, we deduce that the

conditional probability kernel of X given Y is

(y, ·) 7→ P(
ρ

σ2
Y

y + Z ∈ ·) = N (
ρ

σ2
Y

y, σ2
X −

ρ2

σ2
Y

)(·).
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(3) Applying the previous question, we get that

Pθ|X=x = N

(
x

1 + σ2

nτ2

,
1

n
σ2 + 1

τ2

)
(4) (a) The limit as σ → ∞ is N (0, τ 2). When the observations are very random,

they give no information about θ.
(b) The limit as σ → 0 is N (x, 0) = δx. When the observations are not random,

they equal θ almost surely, hence the distribution of θ given the observations
is not random.

(c) The limit as τ →∞ is N (x, σ2/n). The prior distribution of θ is very random
hence contains no information. That is why the conditional distribution given
X is not biased towards 0 anymore. Note that we recover the point of view
of inferential statistics : when θ is unknown but deterministic, we indeed have
θ − x ∼ N (0, σ2/n).

(d) The limit as τ → 0 is N (0, 0) = δ0. Indeed since the prior distribution of θ
becomes deterministically equal to 0, then the posterior does too.

(5) We may interpret this as follows: a real-world parameter θ must be measured.
Prior (theoretical or based on the past) knowledge gives us its a priori distribution
N (0, τ 2). We are also given noisy measurements X1, . . . , Xn of this parameter,
and wonder what the distribution of θ becomes after adding this supplementary
information.

(6) It turns out that the conditional distribution of θ given (X1, . . . Xn) is the same as
the one given X. Indeed if we replay the proof of question 1 and project θ on X,
we get

θ =
nτ 2

nτ 2 + σ2
X + Z,

and it turns out that not only Cov(X,Z) = 0 but also Cov(Xi, Z) = 0, 1 ≤ i ≤ n.
Hence we may continue as in question 1.

Solution 3 — Borel-Kolmogorov paradox.
We start by computing the joint distribution of (θ, φ).

E[h(θP , φP )] =

∫
h(θp, φp)PP (dp)

=
3

4π

∫
BR3 (0,1)

h(θp/|p|, φp/|p|)Leb3(dp)

=
3

4π

∫ 1

0

r2dr

∫ π

−π
dθ

∫ π/2

−π/2
cos(φ)dφ h(θ, φ)

=

∫ π

−π

dθ

2π

∫ π/2

−π/2

cos(φ)dφ

2
h(θ, φ),
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where we applied Lebesgue’s change of variable theorem in line 3, setting

p = (r cos(θ) cos(φ), r sin(θ) cos(φ), r sin(φ)),

which gives

Leb3(dp) = r2 cos(φ)drdθdφ

θp/|p| = θ

φp/|p| = φ.

On the last line, we read that φP and θP are independent, θ has uniform distribution on
[−π, π], while φ has density cos(φ)/2 on [−π/2, π/2].

(1) With a step further in the computation above, we may deduce that (θP mod π, sign(θP ), φP )
are independent random variables whose respective distributions are : uniform in
[0, π], uniform in {−1, 1}, and with density cos(φ)/2. From exercise 1, we deduce
that conditional on θP mod π = θ, the distribution of P is that of a point of
latitude uniformly chosen in {θ, θ − π} and longitude chosen in [−π/2, π/2] with
density cos(φ)/2.

(2) It comes directly from exercise 1 that conditional on φP = φ, the distribution of P
is that of a point with latitude φ and uniform longitude.

(3) A conditional probability kernel given some variable Z is only defined up to PZ-
almost-everywhere equality, so it does not really make sense to specialize it at a
given point z. However, if there is a continuous representative (i.e. z 7→ µ(z, ·) is
continuous in the space of probability measures), then it is unique. Hence special-
ization makes sense. This is the case for the two conditional probability kernels
defined above.

(4) The paradox is that both procedures yield a probability measure on some great
circle of the sphere, that are really different. In one case the measure is the image
of the Lebesgue measure in S1, while in the other case it is not. It comes from the
fact that conditioning on negligible events is not well-defined.

Solution 4 — Transformations.
We first consider the finite-dimensional marginals of the new process (Xt)t in these two
cases. Remark at first that they still form centered Gaussian vectors, since they are each
obtained by a very simple linear transform of some f.d.m. of B. Now we only need to
compute covariances.

(1) Cov(Xs, Xt) = Cov(λ−1/2Bλs, λ
−1/2Bλt) = λ−1 Cov(Bλs, Bλt) = λ−1(λs∧λt) = s∧t.

(2) For 0 ≤ s, t ≤ 1, Cov(Xs, Xt) = Cov(B1 − B1−s, B1 − B1−t) = Cov(B1, B1) −
Cov(B1, B1−t)−Cov(B1−s, B1) + Cov(B1−s, B1−t) = 1− (1− t)− (1− s) + (1− s)∧
(1− t) = 1 + (t− 1) ∧ (s− 1) = t ∧ s.

Now since those processes are continuous on their domain of definition, they are Brownian
motions.
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Solution 5 — A nowhere continuous version of the Brownian motion.
Let (Xt)t be a Brownian motion and (Ui)i be an independent sequence of independent
exponential random variables with parameter 1.
Let us show the following property: with probability one, (Ui)i is dense in [0,∞). Let
a < b ∈ Q. P(U1 /∈ [a, b], . . . , Un /∈ [a, b]) = P(U1 /∈ [a, b])n → 0 as n → ∞. So
P(Ui /∈ [a, b]∀i) = 0. We have shown ∀a < b ∈ Q2, almost surely, [a, b] intersects (Ui)i.
Because Q2 is countable, we can invert ∀ and almost surely, and we get that almost surely,
(Ui)i is dense.
Now we define Bt = Xt+1t/∈{Ui,i∈N}. By the previous property, this process is almost surely
nowhere continuous, and we can check that the f.d.m’s of B and X are equal almost surely
(so have the same distribution) because for fixed t1, . . . , tk, the probability that {t1, . . . , tk}
intersects {Ui, i ∈ N} is 0 (once again by countable union).
Now we modify B on the negligible set where it is still continuous despite all our efforts,
by setting B = 1Q, finishing the exercise.

Solution 6 — Brownian motion is nowhere monotonous.
Let us fix a < b ∈ Q and a < t0 < . . . < tk < b. If the Brownian motion is increasing, it
implies that Bti−Bti1

≥ 0 for every 1 ≤ i ≤ k. So {B increasing on [a, b]} ⊂
⋂

1≤i≤k{Bti−
Bti1
≥ 0}. This last event has probability 2−k by independence. So {B increasing on [a, b]}

can be included in an event of probability 0. So by countable union

{B increasing on some interval } ⊂ ∪a<b∈Q{B increasing on [a, b]}
can be included in an event of probability 0. So the complement property ”B is increasing
on no nontrivial interval” is almost sure. Same for ”decreasing” by symmetry.
Remark: We did not need to show that the property ”B is monotonous on no nontrivial
interval” is indeed an event (i.e. is a measurable set), because the property of being almost
sure or negligible can be defined for non-measurable subsets of Ω. But we can check that
it is an event because of the assumption that paths are always continuous.

Solution 7 — The stationary Ornstein-Uhlenbeck process.
Firstly, Cov(Xt, Xs) = e−|t−s|. So at each time t, Xt is a standard Gaussian. It does not
have independent increments as a quick computation shows.


