Exercise sheet 3: stopping times and Markov property

Exercise 1 — Stopping times.

Let (T_n) be a sequence of stopping times for a filtration \mathcal{F} . We call \mathcal{F}^+ the right-continuous version of \mathcal{F} .

- (1) Assume that for every ω , the sequence $(T_n(\omega))$ is increasing with limit $T(\omega)$. Show that T is a \mathcal{F} -stopping time.
- (2) Assume that for every ω , the sequence $(T_n(\omega))$ is decreasing with limit $T(\omega)$. Show that T is a \mathcal{F}^+ -stopping time.
- (3) Assume that for every ω , the sequence $(T_n(\omega))$ is decreasing and is eventually equal to $T(\omega)$. Show that T is a \mathcal{F} -stopping time.

Exercise 2 — Measurability of the stopped process.

Let B be a \mathcal{F} -Brownian motion and T a \mathcal{F} -stopping time. Show that $(T, B_{\min(t,T)})_{t\geq 0}$ is \mathcal{F}_T -measurable.

Exercise 3 — Counter-example.

Show that the first hitting time by B of the maximum of B on [0, 1] is not a stopping time.

Exercise 4 — Another counter-example.

Let $X_t = AB_t$ where B is a Brownian motion started from 1 and A an independent balanced Bernoulli.

- (1) Show that X is a Markov process and give its transition kernel.
- (2) Show that it does not verify the strong Markov property.

Exercise 5 — Brownian motion on the circle.

Define a Brownian motion on the circle \mathbb{S}^1 by setting $X_t = e^{iB_t}$ for $t \ge 0$. What is the distribution of the last point hit by X in \mathbb{S}^1 ?

Exercise 6 — The set of zeros of B is perfect.

Let B be a Brownian motion, and $Z = \{t \ge 0 : B_t = 0\}$. Show that almost surely, Z is a closed set without isolated points.