FINAL EXAM ANSWER KEY.

Tuesday, April 25. 2pm-5pm.

You may answer in either english or french. Your lecture notes are authorized, but we remind below some useful results:

• If B is standard one-dimensional Brownian motion and $\lambda \in \mathbb{R}$, then the process

$$\left(e^{\lambda B_t - \frac{\lambda^2}{2}t}\right)_{t \ge 0}$$

is a martingale.

• If B is a d-dimensional Brownian motion with $d \ge 3$ started from some x with |x| > r > 0, then

$$\mathbb{P}_x(\exists t \ge 0, |B_t| = r) = \left(\frac{r}{|x|}\right)^{d-2}$$

• If B is standard one-dimensional Brownian motion starting from 0 and $T_x = \inf\{t \ge 0, B_t = x\}$ for some $x \in \mathbb{R}$, then T_x has the same law as x^2/N^2 , where N is a standard centered gaussian random variable.

Exercice 1 — Hitting an affine line.

Let (B_t) be a standard one-dimensional Brownian motion started from 0. For a, b > 0, we write

$$T := \inf\{t \ge 0, B_t = at + b\}.$$

(1) Compute the probability of T being finite.

Answer: We consider the exponential martingale

$$M_t := e^{2aB_t - 2a^2t}.$$

We know that M_t/t tends to 0 a.s., and thus M_t tends a.s. to $M_{\infty} = 0$. The process $(M_{t\wedge T})_{t\geq 0}$ is a nonegative martingale, started from $M_0 = 1$ and bounded by e^{2ab} , using the inequality $B_t \leq at + b$ which is satisfied for $t \leq T$. Thus it is a uniformly integrable martingale, closed by its almost sure limit $M_T = M_T \mathbb{1}_{T<+\infty} =$ $e^{2ab} \mathbb{1}_{T<+\infty}$. The stopping theorem for closed martingales gives $\mathbb{E}[M_T] = 1$ and thus

$$\mathbb{P}(T < +\infty) = e^{-2ab}$$

(2) Deduce the value of $\mathbb{E}[\sup\{B_t - at, t \ge 0\}]$. Answer: We deduce that $\sup\{B_t - at, t \ge 0\}$ is exponentially distributed with parameter 2a and thus has expectation 1/2a.

Exercice 2 — *Hitting a high-dimensional curve.*

Let (B_t) be a Brownian motion started from 0 in \mathbb{R}^d for some $d \ge 4$. Let $f : [0, 1] \to \mathbb{R}^d \setminus \{0\}$ be a (deterministic) function assumed to be α -Hölder for some $\alpha \in (0, 1]$, namely

$$\exists C > 0, \quad \forall 0 \le s, t \le 1, \quad |f(t) - f(s)| \le C|t - s|^{\alpha}$$

(1) Under the condition $\alpha(d-2) > 1$, show that the Brownian motion a.s. never hits the image of f.

Hint: For $n \ge 1$ large, cover the image of f by n balls of radius at most $C(2n)^{-\alpha}$. Answer: Write $r = \min\{|f(t)|, 0 \le t \le 1\}$, and consider n large enough so that $r_n := C(2n)^{-\alpha} < r$. For $1 \le k \le n$, write D_k for the closed ball centered at f((2k-1)/2n) and of radius r_n , so that the image of f is included in $\cup_{1\le k\le n} D_k$. We have

$$\mathbb{P}(T_{\Im f} < \infty) \leq \sum_{k} \mathbb{P}(T_{D_{k}} < +\infty)$$
$$\leq \sum_{k} \left(\frac{r_{n}}{r}\right)^{d-2}$$
$$\leq n \left(\frac{r_{n}}{r}\right)^{d-2},$$

which tends to 0 as $n \to \infty$ under the hypothesis $\alpha(d-2) > 1$, whence the result.

(2) Deduce that in dimension $d \ge 5$, two independent Brownian motions B and B with distinct starting points almost surely have nonintersecting images, namely:

$$\mathbb{P}(\exists s, t \ge 0, B_s = B_t) = 0.$$

Answer: By translation, we can suppose B starts from 0 and \tilde{B} has a different starting condition. Then, almost surely, the function $\tilde{B} : \mathbb{R}_+ \to \mathbb{R}^d$ never hits 0 and is α -Hölder on every time interval [k, k+1] with $k \in \mathbb{N}$ and $\alpha = 2/5 < 1/2$. The condition $\alpha(d-2) > 1$ is satisfied, and we can then apply the previous question to deduce that the brownian motion B a.s. never hits the image of $B_{|[k,k+1]}$, whence the result.

Exercice 3 — An extension of Liouville's theorem.

In this exercice we work in dimension $d \ge 2$ and consider a point $\mathbf{z} = (r, 0, \ldots, 0) \in \mathbb{R}^d$ for some r > 0. We suppose that $(B_t)_{t\ge 0}$ is a *d*-dimensional Brownian motion started from \mathbf{z} under the probability measure $\mathbb{P}_{\mathbf{z}}$. We will write x_i for the *i*-th coordinate of a point $\mathbf{x} \in \mathbb{R}^d$, and $|\mathbf{x}|$ for its euclidean norm, namely $\mathbf{x} = (x_1, \ldots, x_d)$ and $|\mathbf{x}| = (x_1^2 + \ldots x_d^2)^{1/2}$. For R > r, we consider the hyperplanes

$$H := \{ \mathbf{x} = (x_1, \dots, x_d) \in \mathbb{R}^d, x_1 = 0 \},\$$
$$H_R := \{ \mathbf{x} = (x_1, \dots, x_d) \in \mathbb{R}^d, x_1 = R \},\$$
$$L_R := \{ \mathbf{x} = (x_1, \dots, x_d) \in \mathbb{R}^d, x_2 = R \}.$$

We also consider the sphere $C_{R\sqrt{d}} := \{\mathbf{x} \in \mathbb{R}^d, |\mathbf{x}| = R\sqrt{d}\}$. We write T_H for the hitting time H, and similarly T_{H_R} , aso.

(1) Compute the probability $\mathbb{P}_{\mathbf{z}}(T_{H_R} < T_H)$.

Answer: This is the probability that the first coordinate, started from r, reaches R before reaching 0, famously known to be equal to r/R.

(2) Show that we have

$$\mathbb{P}_{\mathbf{z}}(T_{L_R} < T_H) = \frac{2}{\pi} \arctan \frac{r}{R}.$$

Answer: Observe that T_H is the hitting-time of 0 for the first coordinate (started from r), and T_{L_R} is the hitting-time of R for the second coordinate (started from 0). The two coordinates are independent, and we thus can compute

$$\mathbb{P}_{\mathbf{z}}(T_{L_R} < T_H) = \mathbb{P}(\frac{R^2}{N^2} < \frac{r^2}{N'^2}),$$

where N and N' are two independent standard gaussian random variables. If we write in polar coordinates $(N, N') = (X \cos \theta, X \sin \theta)$ with $X \ge 0$ and $\theta \in (-\pi, \pi]$, then θ is uniform, as the law of (N, N') (which is also $\mathcal{N}(0, I_2)$) is invariant under the isometries of \mathbb{R}^2 . We can thus further compute

$$\mathbb{P}_{\mathbf{z}}(T_{L_R} < T_H) = \mathbb{P}(|\tan \theta| \le \frac{r}{R}) = \frac{2}{\pi} \arctan \frac{r}{R}$$

(3) Deduce the upper bound

$$\mathbb{P}_{\mathbf{z}}(T_{C_{R\sqrt{d}}} < T_H) \le \frac{r}{R} + \frac{4(d-1)}{\pi} \arctan \frac{r}{R}.$$

If the process hits $C_{R\sqrt{d}}$ before H, one of its coordinate has to hit the value R or -R before the process hits H. The probability that the first coordinate hits R before time T_H is r/R by question (1), and the probability it hits -R is before time T_H is of course 0. For any other coordinate, the probability that it hits R or -R before time T_H is bounded by $\frac{4}{\pi} \arctan \frac{r}{R}$ by question (2). The result follows.

(4) If h is a harmonic function on \mathbb{R}^d satisfying $\frac{|h(\mathbf{x})|}{|\mathbf{x}|} \to 0$ as $|\mathbf{x}| \to +\infty$, show that h is constant.

Answer: We proceed as in the proof of Liouville's theorem. Take h as in the question, and choose $y \neq z$ in \mathbb{R}^d , and x the center of the segment [yz]. We aim to show h(y) = h(z). By spatial translation and an isometry, we can suppose $z = (r, 0, \ldots, 0)$ and y = -z. For R > r, we let D_R be the half-disk domain containing z and delimited by H and $C_{R\sqrt{d}}$. We then have

$$h(z) = \mathbb{E}_{z}[h(B_{T_{\partial D_{R}}})]$$

= $\mathbb{E}_{z}[h(B_{T_{H}}) \mathbb{1}_{T_{H} < T_{C_{R}\sqrt{d}}}] + \mathbb{E}_{z}[h(B_{T_{C_{R}\sqrt{d}}}) \mathbb{1}_{T_{C_{R}\sqrt{d}} < T_{H}}]$
= $\mathbb{E}_{y}[h(B_{T_{H}}) \mathbb{1}_{T_{H} < T_{C_{R}\sqrt{d}}}] + \sup\{|h(x)|, |x| = R\sqrt{d}\} \mathbb{P}_{z}(T_{C_{R}\sqrt{d}} < T_{H})$

where we used an obvious symmetry of the problem to replace z by y in the last equality. We have a similar expression for h(y), and it remains to prove that the second term after the last equality tends to 0 as $R \to +\infty$. This follows from last question and the hypothesis $\sup\{|h(x)|, |x| = R\sqrt{d}\} = o(R)$.

Exercice 4 — $Az\acute{e}ma$ -Yor embedding.

Let B be a one-dimensional Brownian motion. Given a real-valued random variable X with $\mathbb{E}[X] = 0$ and $\operatorname{Var} X < +\infty$, Skorokhod embedding problem stems at finding some stopping-time T with $\mathbb{E}[T] < +\infty$ such that B_T and X have the same law.

- (1) We first suppose $\mathbb{P}_X = \frac{1}{4}\delta_{-3} + \frac{1}{4}\delta_{-1} + \frac{1}{2}\delta_2$.
 - (a) We define $S := \inf\{t \ge 0, B_t \notin (-3, 1)\}$ and $T := \inf\{t \ge S, B_t \notin (-1, 2)\}$. Show that T is a solution to Skorokhod embedding problem.

Answer: We have $\mathbb{P}(B_S = -3) = 1/4$ and $\mathbb{P}(B_S = 1) = 3/4$. Further, on the event $B_S = -3$, we have T = S and $B_T = -3$. On the event $B_S = 1$, we have $B_T \in \{-1, 2\}$, with

$$\mathbb{P}(B_T = 2) = \mathbb{P}(B_S = 1) \mathbb{P}(B_T = 2 | B_S = 1) = \frac{3}{4} \frac{2}{3} = \frac{1}{2}.$$

Finally the law of B_T is \mathbb{P}_X . Furthermore, $\mathbb{E}[T] < +\infty$, for example because $T \leq T_{\{-3,2\}}$. By Wald's second lemma, we then necessarily have $\mathbb{E}[T] = \mathbb{E}[B_T^2] = \mathbb{E}[X^2]$.

(b) Write explicitly the similar construction of the solution \tilde{T} of Skorokhod embedding problem as provided by the approach seen in the lecture. Do we have $\mathbb{E}[\tilde{T}] = \mathbb{E}[T]$? Do you think T and \tilde{T} have the same law?

Answer: In the construction given in the lecture, we first decide wether we will take a positive or a negative value. We then take \tilde{S} the hitting time of $\{-2, 2\}$ and then

$$\tilde{T} = \inf\{t \ge \tilde{S}, B_T \in \{-3, -1, 2\}\}.$$

We see the two constructions differ, and there is no reason to believe that Tand \tilde{T} have the same law, however $\mathbb{E}[T] = \mathbb{E}[\tilde{T}] = \mathbb{E}[X^2]$.

(2) We suppose now that X (is still centered and) takes only finitely many values

$$x_1 < \ldots < x_n.$$

For $0 \le k \le n-1$, define $y_k := \mathbb{E}[X \mid X \ge x_{k+1}]$ and

$$Y_k := \begin{cases} y_k & \text{if } X \ge x_{k+1} \\ X & \text{if } X \le x_k, \end{cases}$$

so in particular $Y_0 = y_0 = 0$, while $y_{n-1} = x_n$ and $Y_{n-1} = X$.

(a) Show that $(Y_k)_{0 \le k \le n-1}$ is a martingale. Answer: Defining $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_k = \sigma(\{X \le x_i, i \le k\})$, we see that $(\mathcal{F}_k)_{0 < k < n-1}$ is a filtration and $Y = \mathbb{E}[X|\mathcal{F}_k]$, whence Y is a martingale. (b) We define recursively the stopping times $T_0 = 0$ and for $1 \le k \le n-1$,

$$T_k = \inf\{t \ge T_{k-1}, B_t \notin (x_k, y_k)\}.$$

For $1 \leq k \leq n-1$, show that the law of B_{T_k} given $B_{T_{k-1}} = y_{k-1}$ coincides with the law of Y_k given $Y_{k-1} = y_{k-1}$. Deduce that the random variables B_{T_k} and Y_k have the same law, and then T_{n-1} is a solution to Skorokhod embedding problem.

Answer: The law of B_{T_k} given $B_{T_{k-1}} = y_{k-1}$ has support $\{x_k, y_k\}$ and expectation y_{k-1} . The same holds for the law of Y_k given $Y_{k-1} = y_{k-1}$. Thus the two conditional laws coincide. Furthermore, on the event $B_{T_{k-1}} < y_{k-1}$, we have $B_{T_k} = B_{T_{k-1}}$, and again a similar statement holds for Y. We deduce that the processes $(Y_k)_{0 \le k \le n-1}$ and $(B_{T_k})_{0 \le k \le n-1}$ have the same law. In particular, $B_{T_{n-1}}$ has the same law as X, and $\mathbb{E}[T_{n-1}] < +\infty$, for example because $T_{n-1} \le T_{\{x_1, x_n\}}$.

(c) Show that an equivalent definition of T_{n-1} is

$$T_{n-1} := \inf\{t \ge 0, B_t^* \ge \psi(B_t)\}$$

where $\psi(x)$ is defined as $\psi(x) = \mathbb{E}[X | X \ge x]$ if $\mathbb{P}(X \ge x) > 0$, and $\psi(x) = 0$ otherwise.

Hint: To this end, you may observe that on the event $\{B_{T_{n-1}} = x_k\}$ for some $k \leq n-1$, we have $T_{n-1} = T_k$, and consider separately times $t \in [T_{i-1}, T_i)$ for $i \leq k$ and time T_k .

Answer: We first work on the event $B_{T_{n-1}} = x_k$ for $k \leq n-1$, as in the hint. We then have $T_k = T_{n-1}$, as well as $B_{T_i} = y_i$ for i < k and $B_{T_k} = x_k$. It follows that for times t in $[T_{i-1}, T_i)$, we have $B_t^* \in [y_{i-1}, y_i)$. We now treat the two cases separately: For $t \in [T_{i-1}, T_i)$ with i < k, we have $B_t > x_i$ and thus $\psi(B_t) \geq \psi(x_{i+1}) = y_i$, while $B_t^* < y_i$, and thus $B_t^* < \psi(B_t)$. At time T_k , we have $B_{T_k} = x_k$ and thus $\psi(B_{T_k}) = y_{k-1}$, while $B_{T_k}^* \geq y_{k-1}$. Whence the result.

(3) In the general case, we still define $\psi(x)$ as $\psi(x) = \mathbb{E}[X | X \ge x]$ if $\mathbb{P}(X \ge x) > 0$, and $\psi(x) = 0$ otherwise. We admit that there is a sequence or centered random variables (X_n) taking only finitely many values such that X_n converges to X in distribution and τ_n converges almost surely to τ , where

$$\psi_n(x) = \begin{cases} \mathbb{E}[X_n | X_n \ge x] & \text{if } \mathbb{P}(X_n \ge x) > 0, \\ 0 & \text{otherwise.} \end{cases}$$

$$\tau_n = \inf\{t \ge 0, B_t^* \ge \psi_n(B_t)\}, \\ \tau = \inf\{t \ge 0, B_t^* \ge \psi(B_t)\}. \end{cases}$$

Show that τ is a solution to Skorokhod embedding problem.

Answer: By previous work, we have that B_{τ_n} has the same law as X_n and $\mathbb{E}[\tau_n] = \mathbb{E}[X_n^2]$. We admit that we also can request $\mathbb{E}[X_n^2] \to \mathbb{E}[X^2]$. As τ_n tends to τ a.s., we have that B_{τ_n} tends to B_{τ} a.s. and thus in law, thus B_{τ} has the same law as X.

Furthermore, by Fatou lemma,

$$\mathbb{E}[\tau] \le \liminf \mathbb{E}[\tau_n] = \liminf \mathbb{E}[X_n^2] = \mathbb{E}[X^2] < +\infty.$$

Exercice 5 — Estimate of the tail of a random walk hitting time.

In this exercice, we consider S_n a simple random walk on \mathbb{Z} , supposed to be started from x under the probability measure \mathbb{P}_x . For $a \in \mathbb{Z}$, we write T_a for the hitting time $T_a := \inf\{n \ge 0, S_n = a\}$. The main purpose is to obtain estimates on the probability of the tail event $\{T_{-1} > n\}$ with the help of Brownian motion.

(1) (a) For $x \in \mathbb{N}$, recall briefly why we have

$$\mathbb{P}_0(T_x < T_{-1}) = \frac{1}{1+x}.$$

Answer: This is again gambler's ruin problem, but in the context of the random walk.

(b) Show $(S_n^2 - n)$ is a martingale, and deduce $\mathbb{E}_0[T_x \wedge T_{-1}] = x$ and further, for $t \in \mathbb{N}^*$,

$$\mathbb{P}_0(t \le T_x \land T_{-1}) \le \frac{x}{t}$$

- (2) We suppose $x_n \sim a\sqrt{n}$ and $t_n \sim bn$, with $a, b \in \mathbb{R}^*_+$.
 - (a) Show that we have

$$\mathbb{P}_{x_n}(T_{-1} > t_n) = \mathbb{P}_0(T_{-x_n-1} > t_n) \to \mathbb{P}(\inf\{B_t, 0 \le t \le b\} \le -a),$$

where B is a standard 1-dimensional brownian motion started from 0. Hint: You may first suppose $t_n = n$ and argue that $\mathbb{P}(\inf\{B_t, 0 \le t \le 1\} = -a) = 0$.

Answer: We apply Donsker theorem, first with $x_n = a\sqrt{n}$ and $t_n = bn...$ (b) Show that we also have

$$\mathbb{P}(\inf\{B_t, 0 \le t \le b\} \le -a) = \mathbb{P}(|N| \le \frac{a}{\sqrt{b}}) \sim \sqrt{\frac{2}{\pi}} \frac{a}{\sqrt{b}},$$

where N is standard gaussian and the equivalent is as a/\sqrt{b} tends to 0. Answer: For the first equality, we use that

$$|\inf\{B_t, 0 \le t \le b\}| \stackrel{law}{=} |B_b| \stackrel{law}{=} \sqrt{b}|N|.$$

The equivalent follows from the fact that the density of the normal distribution at 0 is $1/\sqrt{2\pi}$.

(3) We now consider the random walk started from 0. For given $x_n \ge 0$ and $t_n \ge 0$, justify the inclusions of events

$$\{T_{-1} > n\} \supset \{T_{x_n} < T_{-1}\} \cap \{T_{-1}(S^{(T_{x_n})}) > n\},\$$

$$\{T_{-1} > n\} \subset \left(\{T_{x_n} < T_{-1}\} \cap \{T_{-1}(S^{(T_{x_n})}) > n - t_n\}\right) \cup \{t_n \le T_{x_n} \land T_{-1}\},\$$

where $S^{(t)}$ is the usual notation for the process $(S_{n+t})_{n\geq 0}$, and $T_x(S^{(t)})$ is its hitting time of x.

Answer: For the first inclusion, we simply observe that the event in the RHS implies that the process stays nonnegative at least until time $T_{x_n} + n > n$. The second inclusion misses the hypothesis $t_n \leq n$. On the event $T_{-1} < n$, either

the process stays within $[0, x_n - 1]$ up until time t_n , or the process hits x_n before time t_n , and then after time T_{x_n} it has to stay nonnegative up until time $n - T_{x_n} \ge n - t_n$, whence the second inclusion.

(4) Choosing, for $\varepsilon > 0$, sequences (x_n) and (t_n) that satisfy $x_n \sim \varepsilon \sqrt{n}$ and $t_n \sim \sqrt{\varepsilon n}$, deduce that we have

$$\mathbb{P}_0(T_{-1} > n) \sim \sqrt{\frac{2}{\pi n}}$$

Answer: We choose $\varepsilon > 0$ and use the first inclusion, in which the events in the RHS are independent, to deduce

$$\mathbb{P}(T_{-1} > n) \ge \frac{1}{1+x_n} \mathbb{P}_{x_n}(T_{-1} > n).$$

We deduce

$$\liminf \sqrt{n} \mathbb{P}(T_{-1} > n) \ge \frac{1}{\varepsilon} \mathbb{P}(|N| \le \varepsilon).$$

Taking $\varepsilon \to 0$, we deduce the lower bound $\sqrt{2/\pi}$. Similarly, the second inclusion provides the upper bound

$$\limsup \sqrt{n} \mathbb{P}(T_{-1} > n) \le \frac{1}{\varepsilon} \mathbb{P}\left(|N| \le \frac{\varepsilon}{\sqrt{1 - \sqrt{\varepsilon}}} \right) + \sqrt{\varepsilon}.$$

Taking $\varepsilon \to 0$ provides the upper bound $\sqrt{2/\pi}$ and allows to conclude.

- (5) Provide similar asymptotics for $\mathbb{P}_0(T_{-k} > n)$ for given k > 0. In this question and the next, you may skip details and just explain briefly how to adapt the proof to that case.
- (6) Treat similarly the case of any random walk whose jump distribution is centered and supported on $\{-1, 0, 1, \ldots, l\}$ for some finite $l \ge 1$.