
ENS de Lyon — Mathematic department Master 1 — Spring 2023
Stochastic processes E. Jacob

FINAL EXAM ANSWER KEY.

Tuesday, April 25. 2pm-5pm.

You may answer in either english or french. Your lecture notes are authorized, but we
remind below some useful results:

• If B is standard one-dimensional Brownian motion and λ ∈ R, then the process(
eλBt−

λ2

2
t
)
t≥0

is a martingale.
• If B is a d-dimensional Brownian motion with d ≥ 3 started from some x with
|x| > r > 0, then

Px(∃t ≥ 0, |Bt| = r) =

(
r

|x|

)d−2
.

• If B is standard one-dimensional Brownian motion starting from 0 and Tx =
inf{t ≥ 0, Bt = x} for some x ∈ R, then Tx has the same law as x2/N2, where
N is a standard centered gaussian random variable.

Exercice 1 — Hitting an affine line.
Let (Bt) be a standard one-dimensional Brownian motion started from 0. For a, b > 0, we
write

T := inf{t ≥ 0, Bt = at+ b}.
(1) Compute the probability of T being finite.

Answer: We consider the exponential martingale

Mt := e2aBt−2a
2t.

We know that Mt/t tends to 0 a.s., and thus Mt tends a.s. to M∞ = 0. The
process (Mt∧T )t≥0 is a nonegative martingale, started from M0 = 1 and bounded by
e2ab, using the inequality Bt ≤ at + b which is satisfied for t ≤ T . Thus it is a
uniformly integrable martingale, closed by its almost sure limit MT = MT 1T<+∞ =
e2ab 1T<+∞. The stopping theorem for closed martingales gives E[MT ] = 1 and thus

P(T < +∞) = e−2ab.

(2) Deduce the value of E[sup{Bt − at, t ≥ 0}].
Answer: We deduce that sup{Bt − at, t ≥ 0} is exponentially distributed with

parameter 2a and thus has expectation 1/2a.
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Exercice 2 — Hitting a high-dimensional curve.
Let (Bt) be a Brownian motion started from 0 in Rd for some d ≥ 4. Let f : [0, 1]→ Rd\{0}
be a (deterministic) function assumed to be α−Hölder for some α ∈ (0, 1], namely

∃C > 0, ∀0 ≤ s, t ≤ 1, |f(t)− f(s)| ≤ C|t− s|α.

(1) Under the condition α(d− 2) > 1, show that the Brownian motion a.s. never hits
the image of f .

Hint: For n ≥ 1 large, cover the image of f by n balls of radius at most C(2n)−α.
Answer: Write r = min{|f(t)|, 0 ≤ t ≤ 1}, and consider n large enough so

that rn := C(2n)−α < r. For 1 ≤ k ≤ n, write Dk for the closed ball centered at
f((2k − 1)/2n) and of radius rn, so that the image of f is included in ∪1≤k≤nDk.
We have

P(T=f <∞) ≤
∑
k

P(TDk < +∞)

≤
∑
k

(rn
r

)d−2
≤ n

(rn
r

)d−2
,

which tends to 0 as n→∞ under the hypothesis α(d− 2) > 1, whence the result.
(2) Deduce that in dimension d ≥ 5, two independent Brownian motions B and B̃ with

distinct starting points almost surely have nonintersecting images, namely:

P(∃s, t ≥ 0, Bs = B̃t) = 0.

Answer: By translation, we can suppose B starts from 0 and B̃ has a different
starting condition. Then, almost surely, the function B̃ : R+ → Rd never hits 0 and
is α−Hölder on every time interval [k, k + 1] with k ∈ N and α = 2/5 < 1/2. The
condition α(d− 2) > 1 is satisfied, and we can then apply the previous question to
deduce that the brownian motion B a.s. never hits the image of B|[k,k+1], whence
the result.

Exercice 3 — An extension of Liouville’s theorem.
In this exercice we work in dimension d ≥ 2 and consider a point z = (r, 0, . . . , 0) ∈ Rd for
some r > 0. We suppose that (Bt)t≥0 is a d-dimensional Brownian motion started from
z under the probability measure Pz. We will write xi for the i-th coordinate of a point
x ∈ Rd, and |x| for its euclidean norm, namely x = (x1, . . . , xd) and |x| = (x21 + . . . x2d)

1/2.
For R > r, we consider the hyperplanes

H := {x = (x1, . . . , xd) ∈ Rd, x1 = 0},
HR := {x = (x1, . . . , xd) ∈ Rd, x1 = R},
LR := {x = (x1, . . . , xd) ∈ Rd, x2 = R}.
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We also consider the sphere CR
√
d := {x ∈ Rd, |x| = R

√
d}. We write TH for the hitting

time H, and similarly THR , aso.

(1) Compute the probability Pz(THR < TH).
Answer: This is the probability that the first coordinate, started from r, reaches

R before reaching 0, famously known to be equal to r/R.
(2) Show that we have

Pz(TLR < TH) =
2

π
arctan

r

R
.

Answer: Observe that TH is the hitting-time of 0 for the first coordinate (started
from r), and TLR is the hitting-time of R for the second coordinate (started from
0). The two coordinates are independent, and we thus can compute

Pz(TLR < TH) = P(
R2

N2
<

r2

N ′2
),

where N and N ′ are two independent standard gaussian random variables. If we
write in polar coordinates (N,N ′) = (X cos θ,X sin θ) with X ≥ 0 and θ ∈ (−π, π],
then θ is uniform, as the law of (N,N ′) (which is also N (0, I2)) is invariant under
the isometries of R2. We can thus further compute

Pz(TLR < TH) = P(| tan θ| ≤ r

R
) =

2

π
arctan

r

R
.

(3) Deduce the upper bound

Pz(TCR√d < TH) ≤ r

R
+

4(d− 1)

π
arctan

r

R
.

If the process hits CR
√
d before H, one of its coordinate has to hit the value R or

−R before the process hits H. The probability that the first coordinate hits R before
time TH is r/R by question (1), and the probability it hits −R is before time TH is
of course 0. For any other coordinate, the probability that it hits R or −R before
time TH is bounded by 4

π
arctan r

R
by question (2). The result follows.

(4) If h is a harmonic function on Rd satisfying |h(x)||x| → 0 as |x| → +∞, show that h

is constant.
Answer: We proceed as in the proof of Liouville’s theorem. Take h as in the

question, and choose y 6= z in Rd, and x the center of the segment [yz]. We aim
to show h(y) = h(z). By spatial translation and an isometry, we can suppose
z = (r, 0, . . . , 0) and y = −z. For R > r, we let DR be the half-disk domain
containing z and delimited by H and CR

√
d. We then have

h(z) = Ez[h(BT∂DR
)]

= Ez[h(BTH )1TH<TC
R
√
d
] + Ez[h(BTC

R
√
d
)1TC

R
√
d
<TH ]

= Ey[h(BTH )1TH<TC
R
√
d
] + sup{|h(x)|, |x| = R

√
d}Pz(TCR√d < TH)
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where we used an obvious symmetry of the problem to replace z by y in the last
equality. We have a similar expression for h(y), and it remains to prove that the
second term after the last equality tends to 0 as R → +∞. This follows from last
question and the hypothesis sup{|h(x)|, |x| = R

√
d} = o(R).

Exercice 4 — Azéma-Yor embedding.
Let B be a one-dimensional Brownian motion. Given a real-valued random variable X
with E[X] = 0 and VarX < +∞, Skorokhod embedding problem stems at finding some
stopping-time T with E[T ] < +∞ such that BT and X have the same law.

(1) We first suppose PX = 1
4
δ−3 + 1

4
δ−1 + 1

2
δ2.

(a) We define S := inf{t ≥ 0, Bt /∈ (−3, 1)} and T := inf{t ≥ S,Bt /∈ (−1, 2)}.
Show that T is a solution to Skorokhod embedding problem.
Answer: We have P(BS = −3) = 1/4 and P(BS = 1) = 3/4. Further, on the
event BS = −3, we have T = S and BT = −3. On the event BS = 1, we have
BT ∈ {−1, 2}, with

P(BT = 2) = P(BS = 1)P(BT = 2| BS = 1) =
3

4

2

3
=

1

2
.

Finally the law of BT is PX . Furthermore, E[T ] < +∞, for example be-
cause T ≤ T{−3,2}. By Wald’s second lemma, we then necessarily have E[T ] =
E[B2

T ] = E[X2].

(b) Write explicitly the similar construction of the solution T̃ of Skorokhod em-
bedding problem as provided by the approach seen in the lecture. Do we have
E[T̃ ] = E[T ]? Do you think T and T̃ have the same law?
Answer: In the construction given in the lecture, we first decide wether we will
take a positive or a negative value. We then take S̃ the hitting time of {−2, 2}
and then

T̃ = inf{t ≥ S̃, BT ∈ {−3,−1, 2}}.
We see the two constructions differ, and there is no reason to believe that T
and T̃ have the same law, however E[T ] = E[T̃ ] = E[X2].

(2) We suppose now that X (is still centered and) takes only finitely many values

x1 < . . . < xn.

For 0 ≤ k ≤ n− 1, define yk := E[X| X ≥ xk+1] and

Yk :=

{
yk if X ≥ xk+1

X if X ≤ xk,

so in particular Y0 = y0 = 0, while yn−1 = xn and Yn−1 = X.
(a) Show that (Yk)0≤k≤n−1 is a martingale.

Answer: Defining F0 = {∅,Ω} and Fk = σ({X ≤ xi, i ≤ k}), we see that
(Fk)0≤k≤n−1 is a filtration and Y = E[X|Fk], whence Y is a martingale.
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(b) We define recursively the stopping times T0 = 0 and for 1 ≤ k ≤ n− 1,

Tk = inf{t ≥ Tk−1, Bt /∈ (xk, yk)}.

For 1 ≤ k ≤ n−1, show that the law of BTk given BTk−1
= yk−1 coincides with

the law of Yk given Yk−1 = yk−1. Deduce that the random variables BTk and
Yk have the same law, and then Tn−1 is a solution to Skorokhod embedding
problem.
Answer: The law of BTk given BTk−1

= yk−1 has support {xk, yk} and expec-
tation yk−1. The same holds for the law of Yk given Yk−1 = yk−1. Thus the
two conditional laws coincide. Furthermore, on the event BTk−1

< yk−1, we
have BTk = BTk−1

, and again a similar statement holds for Y . We deduce
that the processes (Yk)0≤k≤n−1 and (BTk)0≤k≤n−1 have the same law. In partic-
ular, BTn−1 has the same law as X, and E[Tn−1] < +∞, for example because
Tn−1 ≤ T{x1,xn}.

(c) Show that an equivalent definition of Tn−1 is

Tn−1 := inf{t ≥ 0, B?
t ≥ ψ(Bt)},

where ψ(x) is defined as ψ(x) = E[X| X ≥ x] if P(X ≥ x) > 0, and ψ(x) = 0
otherwise.
Hint: To this end, you may observe that on the event {BTn−1 = xk} for some
k ≤ n− 1, we have Tn−1 = Tk, and consider separately times t ∈ [Ti−1, Ti) for
i ≤ k and time Tk.
Answer: We first work on the event BTn−1 = xk for k ≤ n− 1, as in the hint.
We then have Tk = Tn−1, as well as BTi = yi for i < k and BTk = xk. It
follows that for times t in [Ti−1, Ti), we have B?

t ∈ [yi−1, yi). We now treat the
two cases separately: For t ∈ [Ti−1, Ti) with i < k, we have Bt > xi and thus
ψ(Bt) ≥ ψ(xi+1) = yi, while B?

t < yi, and thus B?
t < ψ(Bt). At time Tk, we

have BTk = xk and thus ψ(BTk) = yk−1, while B?
Tk
≥ yk−1. Whence the result.

(3) In the general case, we still define ψ(x) as ψ(x) = E[X| X ≥ x] if P(X ≥ x) > 0,
and ψ(x) = 0 otherwise. We admit that there is a sequence or centered random
variables (Xn) taking only finitely many values such that Xn converges to X in
distribution and τn converges almost surely to τ , where

ψn(x) =

{
E[Xn| Xn ≥ x] if P(Xn ≥ x) > 0,

0 otherwise.

τn = inf{t ≥ 0, B?
t ≥ ψn(Bt)},

τ = inf{t ≥ 0, B?
t ≥ ψ(Bt)}.

Show that τ is a solution to Skorokhod embedding problem.
Answer: By previous work, we have that Bτn has the same law as Xn and E[τn] =

E[X2
n]. We admit that we also can request E[X2

n] → E[X2]. As τn tends to τ a.s.,
we have that Bτn tends to Bτ a.s. and thus in law, thus Bτ has the same law as X.
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Furthermore, by Fatou lemma,

E[τ ] ≤ lim inf E[τn] = lim inf E[X2
n] = E[X2] < +∞.

Exercice 5 — Estimate of the tail of a random walk hitting time.
In this exercice, we consider Sn a simple random walk on Z, supposed to be started from
x under the probability measure Px. For a ∈ Z, we write Ta for the hitting time Ta :=
inf{n ≥ 0, Sn = a}. The main purpose is to obtain estimates on the probability of the tail
event {T−1 > n} with the help of Brownian motion.

(1) (a) For x ∈ N, recall briefly why we have

P0(Tx < T−1) =
1

1 + x
.

Answer: This is again gambler’s ruin problem, but in the context of the random
walk.

(b) Show (S2
n − n) is a martingale, and deduce E0[Tx ∧ T−1] = x and further, for

t ∈ N∗,
P0(t ≤ Tx ∧ T−1) ≤

x

t
.

(2) We suppose xn ∼ a
√
n and tn ∼ bn, with a, b ∈ R∗+.

(a) Show that we have

Pxn(T−1 > tn) = P0(T−xn−1 > tn)→ P(inf{Bt, 0 ≤ t ≤ b} ≤ −a),

where B is a standard 1-dimensional brownian motion started from 0.
Hint: You may first suppose tn = n and argue that P(inf{Bt, 0 ≤ t ≤ 1} =
−a) = 0.
Answer: We apply Donsker theorem, first with xn = a

√
n and tn = bn...

(b) Show that we also have

P(inf{Bt, 0 ≤ t ≤ b} ≤ −a) = P(|N | ≤ a√
b
) ∼

√
2

π

a√
b
,

where N is standard gaussian and the equivalent is as a/
√
b tends to 0.

Answer: For the first equality, we use that

| inf{Bt, 0 ≤ t ≤ b}| law= |Bb|
law
=
√
b|N |.

The equivalent follows from the fact that the density of the normal distribution
at 0 is 1/

√
2π.

(3) We now consider the random walk started from 0. For given xn ≥ 0 and tn ≥ 0,
justify the inclusions of events

{T−1 > n} ⊃ {Txn < T−1} ∩ {T−1(S(Txn )) > n},
{T−1 > n} ⊂

(
{Txn < T−1} ∩ {T−1(S(Txn )) > n− tn}

)
∪ {tn ≤ Txn ∧ T−1},
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where S(t) is the usual notation for the process (Sn+t)n≥0, and Tx(S
(t)) is its hitting

time of x.
Answer: For the first inclusion, we simply observe that the event in the RHS

implies that the process stays nonnegative at least until time Txn + n > n.
The second inclusion misses the hypothesis tn ≤ n. On the event T−1 < n, either
the process stays within [0, xn−1] up until time tn, or the process hits xn before time
tn, and then after time Txn it has to stay nonnegative up until time n−Txn ≥ n−tn,
whence the second inclusion.

(4) Choosing, for ε > 0, sequences (xn) and (tn) that satisfy xn ∼ ε
√
n and tn ∼

√
εn,

deduce that we have

P0(T−1 > n) ∼
√

2

πn
Answer: We choose ε > 0 and use the first inclusion, in which the events in the

RHS are independent, to deduce

P(T−1 > n) ≥ 1

1 + xn
Pxn(T−1 > n).

We deduce

lim inf
√
nP(T−1 > n) ≥ 1

ε
P(|N | ≤ ε).

Taking ε→ 0, we deduce the lower bound
√

2/π.
Similarly, the second inclusion provides the upper bound

lim sup
√
nP(T−1 > n) ≤ 1

ε
P

(
|N | ≤ ε√

1−
√
ε

)
+
√
ε.

Taking ε→ 0 provides the upper bound
√

2/π and allows to conclude.
(5) Provide similar asymptotics for P0(T−k > n) for given k > 0.

In this question and the next, you may skip details and just explain briefly how
to adapt the proof to that case.

(6) Treat similarly the case of any random walk whose jump distribution is centered
and supported on {−1, 0, 1, . . . , l} for some finite l ≥ 1.


