ENS de Lyon - Mathematic department Master 1 - Spring 2023
Stochastic processes
E. Jacob

PARTIAL EXAM - Solutions.

Tuesday, February 28. 10.15am-12.15pm.
Usual notations: CTMC for continuous-time Markov chain or equivalently PJMP for Pure Jump Markov process.
The two exercices are independent.
Exercice 1 - Explosion for the accelerated biased random walk, and duality.
We consider $\left(Y_{n}\right)_{n \geq 0}$ the biased random walk with positive drift, which is the discrete-time Markov chain with jump distribution $p \delta_{1}+q \delta_{-1}$, where $q=1-p$ is assumed to be strictly smaller than p, or equivalently $p>1 / 2$. We recall that this random walk is transient, and $\mathbb{P}\left(Y_{n} \rightarrow+\infty\right)=1$. As usually, we suppose that under the probability measure \mathbb{P}_{0}, this biased random walk is started from 0 .
(1) Recall briefly why we have

$$
\mathbb{P}_{0}\left(T_{-1}<+\infty\right)=\frac{q}{p}, \quad \mathbb{P}_{0}\left(H_{0}<+\infty\right)=2 q
$$

where T_{-1} is the first hitting time of -1 , and H_{0} the first return time to 0 , defined as $\inf \left\{n \geq 1, Y_{n}=0\right\}$.

Advice: do not hesitate to admit the first statement or even the two if needed, it will not prevent you from answering the following questions.
Sol: We have that $M_{n}=(q / p)^{Y_{n}}$ is a nonnegative martingale, therefore $M_{n \wedge T_{-1}}$ is a bounded martingale, which starts from 0 and converges a.s to $M_{\infty}=\frac{p}{q} \mathbb{1}_{T_{-1}<+\infty}$. By optional stopping, we thus have $\mathbb{E}\left[M_{\infty}\right]=M_{0}=1$, whence $\mathbb{P}_{0}\left(T_{-1}<+\infty\right)=\frac{q}{p}$. For the second point, use Markov property at time 1 to obtain

$$
\begin{aligned}
\mathbb{P}_{0}\left(H_{0}<+\infty\right) & =p \mathbb{P}_{1}\left(T_{0}<+\infty\right)+q \mathbb{P}_{-1}\left(T_{0}<+\infty\right) \\
& =p \cdot \frac{q}{p}+q \cdot 1=2 q
\end{aligned}
$$

(2) Show the Green function of this process is equal to

$$
G_{Y}(0, n)= \begin{cases}\frac{1}{1-2 q} & \text { if } n \geq 0 \\ \left(\frac{q}{p}\right)^{|n|} \frac{1}{1-2 q} & \text { if } n<0\end{cases}
$$

Sol: We know that for a discrete time Markov chain,

$$
G_{Y}(0,0)=\frac{1}{1-\mathbb{P}_{0}\left(H_{0}<+\infty\right)}=\frac{1}{1-2 q} .
$$

Moreover, for all $n \in \mathbb{Z}$, we also have

$$
G_{Y}(0, n)=\mathbb{P}_{0}\left(T_{n}<+\infty\right) G(n, n)
$$

(a property that follows easily from Markov property at time T_{n}.) But by translation invariance, we also have $G_{Y}(n, n)=G_{Y}(0,0)=\frac{1}{1-2 q}$, and the result of the probability of the hitting times being finite of first question generalizes easily to

$$
\mathbb{P}_{0}\left(T_{n}<+\infty\right)= \begin{cases}1 & \text { if } n \geq 0 \\ \left(\frac{q}{p}\right)^{|n|} & \text { if } n<0\end{cases}
$$

The result follows.
We consider now $\left(q_{n}\right)_{n \in \mathbb{Z}} \in[1,+\infty)^{\mathbb{Z}}$ an arbitrary sequence of real numbers larger than or equal to 1 and indexed by \mathbb{Z}, and $\left(X_{t}\right)_{t \geq 0}$ the accelerated biased random walk. It is the pure jump Markov process with associated jump process the biased random walk Y we introduced before, and whose waiting time at state n is distributed as an exponential random variable with parameter q_{n}.
(3) Show that the process $\left(X_{t}\right)$ does not explode if $\sum_{n \geq 0} \frac{1}{q_{n}}=+\infty$.

Sol: We know that there is a.s. no explosion on the event $\left\{\sum \frac{1}{q_{Y_{n}}}=+\infty\right\}$. But this is an a.s. event under the hypothesis $\sum_{n \geq 0} q_{n}=+\infty$, as we have Y_{n} tends a.s. to $+\infty$.
(4) Letting ζ be the explosion time and $G(\cdot, \cdot)$ the Green function of the CTMC X, show we have

$$
\mathbb{E}_{0}[\zeta]=\sum_{n \in \mathbb{Z}} G(0, n)
$$

Compute this sum, and deduce that the process explodes if $\sum_{n \geq 0} \frac{1}{q_{n}}<+\infty$.
Sol: We have

$$
\begin{aligned}
\zeta & =\sum_{k \geq 0} \sum_{n \in \mathbb{Z}} \mathbb{1}_{Y_{k}=n}\left(J_{k+1}-J_{k}\right) \\
& =\sum_{n \in \mathbb{Z}} \sum_{k \geq 0} \mathbb{1}_{Y_{k}=n}\left(J_{k+1}-J_{k}\right) \\
& =\sum_{n \in \mathbb{Z}} \int_{0}^{+\infty} \mathbb{1}_{X_{t}=n} \mathrm{~d} t .
\end{aligned}
$$

Taking expectation, we obtain $\mathbb{E}_{0}[\zeta]=\sum_{n \in \mathbb{Z}} G(0, n)$. Now, we have $G(0, n)=$ $\frac{1}{q_{n}} G_{Y}(0, n)$, whence

$$
\mathbb{E}_{0}[\zeta]=\frac{1}{1-2 q} \sum_{n<0}\left(\frac{q}{p}\right)^{|n|} \frac{1}{q_{n}}+\frac{1}{1-2 q} \sum_{n \geq 0} 1 q_{n}
$$

The first sum is finite as $q<p$ and $q_{n} \geq 1$, and the second sum is finite by hypothesis. Hence $\mathbb{E}_{0}[\zeta]<+\infty$, and there is a.s. explosion.
(5) Show the measures ν and $\tilde{\nu}$ on \mathbb{Z} defined by

$$
\nu_{n}=1, \quad \tilde{\nu}_{n}=\left(\frac{p}{q}\right)^{n}
$$

are invariant for Y, and deduce two measures μ and $\tilde{\mu}$ on \mathbb{Z} such that $\mu Q=\tilde{\mu} Q=0$, where Q is the matrix of intensity of the pure jump Markov process X.
Sol: The measure ν is invariant: letting K be the transition matrix of Y, we have, for all $n \geq 0$:

$$
(\nu K)_{n}=\nu_{n-1} p+\nu_{n+1} q=p+q=1=\nu_{n} .
$$

(We also could argue that the counting measure is always an invariant measure for a random walk.) The measure $\tilde{\nu}$ is reversible:

$$
\forall n, \tilde{\nu}_{n} K_{n, n+1}=\left(\frac{p}{q}\right)^{n} p=\left(\frac{p}{q}\right)^{n+1} q=\nu_{n+1} K_{n+1, n}
$$

and thus invariant. We deduce that the measures μ and $\tilde{\mu}$ satisfy $\mu Q=\tilde{\mu} Q=0$, where

$$
\begin{aligned}
& \mu_{n}=\frac{\nu_{n}}{q_{n}}=\frac{1}{q_{n}} \\
& \tilde{\mu}_{n}=\frac{\tilde{\nu}_{n}}{q_{n}}=\left(\frac{p}{q}\right)^{n} \frac{1}{q_{n}} .
\end{aligned}
$$

(6) Describe the two processes in duality with X with respect to the measures μ and $\tilde{\mu}$. Observe these are different processes, and it is possible that one of these processes explodes and not the other.
Sol: The first dual process \hat{X} has a matrix of intensity \hat{Q} satisfying, for all $n \in \mathbb{Z}$ $\hat{Q}_{n, n}=Q_{n, n}=q_{n}$,

$$
\hat{Q}_{n, n+1}=\frac{\mu_{n+1}}{\mu_{n}} \hat{Q}_{n+1, n}=\frac{q_{n}}{q_{n+1}} \cdot\left(q_{n+1} q\right)=q_{n} q
$$

and similarly

$$
\hat{Q}_{n, n-1}=q_{n} p .
$$

We recognize the matrix of intensity of a biased random walk, but with negative drift. In particular, \hat{X} is transient to $-\infty$, and explosive iff $\sum_{n \leq 0} \frac{1}{q_{n}}<+\infty$.
The dual process with respect to $\tilde{\mu}$ is... X itself, which we can see by similar computation or by the observation that $\tilde{\nu}$ reversible. In particular, it is explosive iff $\sum_{n \geq 0} \frac{1}{q_{n}}<+\infty$. Hence it is possible that one dual process explodes and not the other.
(7) Use the processes we introduced to construct:
(a) A CTMC that explodes but has an (infinite) invariant measure.
(b) A CTMC that has a finite measure μ satisfying $\mu Q=0$, but which is not an invariant measure.
Sol:
(a) We choose a sequence $\left(q_{n}\right)$ such that $\sum_{n \geq 0} \frac{1}{q_{n}}<+\infty$ and $\sum_{n \leq 0} \frac{1}{q_{n}}=+\infty$. We then have that X explodes but not \tilde{X}. As the dual process does not explode, we know that μ is an invariant measure.
(b) We choose a sequence $\left(q_{n}\right)$ such that $\sum_{n \geq 0} \frac{1}{q_{n}}<+\infty$ and $\sum_{n \leq 0} \frac{1}{q_{n}}<+\infty$. Then μ is a finite measure satisfying $\mu Q=0$ but not an invariant measure. To see it is not an invariant measure, we may either argue that \tilde{X} explodes, or we may observe that a transient process cannot have a finite invariant measure.

Exercice 2 - Harris explosion criterium for branching processes.
We consider $\left(X_{t}\right)_{t \geq 0}$ stochastic process with values in $\mathbb{N}=\{0,1, \ldots\}$, with 0 as absorbing state, and counting the population at time t, for a model of population where:

- initially, there is 1 individual, so $X_{0}=1$.
- each individual, independently of others, dies after a time which is exponential with parameter 1 , and then gives rise to a random number Z of children, distributed according to ν some probability distribution on $\{0,2,3, \ldots\}$.
(1) Show X is a CTMC and provide its matrix of intensity.

Sol: By construction, 0 is an absorbing state, and when the process X is in some other state $n>0$, it will jump after an exponential time with parameter n (by death of either of the n individuals). Whatever the past of the process and the individual that dies, we will have birth of a random number Z of children, so the new population will be distributed as $n+Z-1$. So X is a CTMC with matrix of intensity

$$
Q_{n, k}= \begin{cases}-n & \text { if } n=k \neq 0 \\ n \nu(1+k-n) & \text { if } n \neq 0 \text { and } k \in\{n-1, n+1, n+2, \ldots\} \\ 0 & \text { otherwise }\end{cases}
$$

(2) Show the jump process associated with X is a random walk with jumps distributed as $Z-1$, stopped when hitting 0 . Deduce that there is a.s. extinction of the population if $\mathbb{E}[Z] \leq 1$.
Sol: We have already proven that the jump process is a $R W$ with jumps distributed as $Z-1$ and stopped when hitting 0 . If we consider the unstopped random walk, we know it tends to $-\infty$ a.s. if the jumps have negative expectation $\mathbb{E}[Z-1]<0$, and is recurrent if the jumps are centered (and integrable), namely if $\mathbb{E}[Z-1]=0$. In both cases, the $R W$ will a.s. hit 0 . This stays true of course if the $R W$ is stopped when hitting 0. Thus there is a.s. extinction.
From now on, we suppose $\mathbb{E}[Z] \in(1,+\infty]$. We let h denote the generating function of Z and f_{t} that of X_{t}, defined by

$$
\begin{array}{rll}
h(r) & =\mathbb{E}\left[r^{Z}\right], & 0 \leq r \leq 1, \\
f_{t}(r) & =\mathbb{E}\left[r^{X_{t}}\right], & 0 \leq r \leq 1,
\end{array}
$$

with of course $r^{+\infty}=0$ in the definition of $f_{t}(r)$. For $r=1$, we take the convention

$$
f_{t}(1)=\mathbb{P}\left(X_{t}<+\infty\right)=\lim _{r \rightarrow 1, r<1} f_{t}(r)
$$

(3) Show the existence of $q<1$ such that we have $h(r)<r$ for all r in $[q, 1)$.

Sol: We have $h(1)=1$ and the leftderivative at 1 is $h^{\prime}(1)=\mathbb{E}[Z]>1$ (possibly an infinite derivative). Thus we have $h(r)<r$ for r in some left-neighbourhood of 1 .
We fix q as in last question, and aim to show Harris criterium, which states that there is explosion of the process, namely $f_{t}(1)<1$, iff the function $1 /(u-h(u))$ is integrable in the neighbourhood of 1 , namely

$$
\begin{equation*}
\int_{q}^{1} \frac{1}{u-h(u)} \mathrm{d} u<+\infty \tag{*}
\end{equation*}
$$

(4) We suppose $r \in[0,1)$. Show $t \mapsto f_{t}(r)$ is derivable at 0 , with derivative

$$
\left.\frac{\partial}{\partial t} f_{t}(r)\right|_{t=0}=h(r)-r
$$

Sol: We have

$$
f_{t}(r)=\sum_{j} P_{1, j}(t) r^{j}
$$

We know from Kolmogorov backward equations that $P_{1, j}$ is derivable with derivative

$$
P_{1, j}^{\prime}(t)=\sum_{k} Q_{1, k} P_{k, j}(t)=\sum_{k \neq 1} Q_{1, k} P_{k, j}(t)-q(1) P_{1, j}(t)
$$

Thus

$$
\begin{aligned}
\sum_{j}\left|P_{1, j}^{\prime}(t) r^{j}\right| & \leq \sum_{k \neq 1} Q_{1, k} \sum_{j} P_{k, j}(t)+q(1) \sum_{j} P_{k, j}(t) \\
& \leq 2 q(1) .
\end{aligned}
$$

Hence we can take the derivative under the sum to deduce, at time 0,

$$
\left.\frac{\partial}{\partial t} f_{t}(r)\right|_{t=0}=\sum_{j} Q_{1, j} r^{j}=-r+\sum_{j \neq 1} Q_{1, j} r^{j}=-r+h(r)
$$

(5) Show we have

$$
f_{s+t}(r)=f_{s}\left(f_{t}(r)\right), \quad \forall s, t \geq 0
$$

and deduce we also have

$$
\frac{\partial}{\partial t} f_{t}(r)=h\left(f_{t}(r)\right)-f_{t}(r) \quad \forall t \geq 0
$$

Sol: The descendants of each individual are independent and have the same law. In this sense, we have a branching process. In particlar, starting from k individuals, the process at time t is a sum of k independent copies of X_{t}, and

$$
\mathbb{E}_{k}\left[r^{X_{t}}\right]=\mathbb{E}\left[r^{X_{t}}\right]^{k}=f_{t}(r)^{k} .
$$

Thus, using Markov property at time s:

$$
f_{s+t}(r)=\mathbb{E}\left[r^{X_{s+t}} \mid X_{s}\right]=\mathbb{E}\left[f_{t}(r)_{s}^{X}\right]=f_{s}\left(f_{t}(r)\right)
$$

Taking the derivative in s at time 0, we obtain

$$
\frac{\partial}{\partial t} f_{t}(r)=h\left(f_{t}(r)\right)-f_{t}(r)
$$

(6) We suppose $r \in(q, 1)$. Show we can take $t>0$ small enough so that the function $s \mapsto f_{s}(r)$ is decreasing and lower bounded by q on $[0, t]$. For such t, use a change of variable to show

$$
\int_{f_{t}(r)}^{r} \frac{1}{u-h(u)} \mathrm{d} u=t
$$

Sol: For $r \in(q, 1)$ fixed, we write g for the function $g(t)=f_{t}(r)$. The function g is continuous so we can choose $t>0$ small so that g stays above q on $[0, t]$. By Question (5), we also have g derivable on $[0, t]$ with $g^{\prime}(s)=h(g(s))-g(s)$, which is negative as $g(s) \geq q$. Now we can use the change of variable $u=f_{s}(r)$ to obtain

$$
\int_{f_{t}(r)}^{r} \frac{1}{u-h(u)} \mathrm{d} u=\int_{t}^{0}-\mathrm{d} s=t
$$

(7) For r and t as in question (6), deduce that there is no explosion before time t if (*) is not satisfied (namely if the integral is infinite).
Sol: Fix r and t as in question (6). We then have for all $r^{\prime} \in[r, 1]$ and $s \in[0, t]$,

$$
f_{s}\left(r^{\prime}\right) \geq f_{s}(r) \geq q
$$

Thus, for all $r^{\prime} \in[r, 1]$,

$$
\int_{f_{t}\left(r^{\prime}\right)}^{r^{\prime}} \frac{1}{u-h(u)} \mathrm{d} u=t
$$

We now let r^{\prime} grow to 1 and $f_{t}\left(r^{\prime}\right)$ grow to $f_{t}(1)$. If the integral (*) is infinite, we must necessarily have $f_{t}(1)=1$ (otherwise we would have $t=\int_{f_{t}(1)}^{1} \frac{1}{u-h(u)} \mathrm{d} u=$ $+\infty)$.
(8) We suppose (*) is satisfied (the integral is finite). For r and t as in question (6), show the process explodes, with probability of explosion characterized by $f_{t}(1)>\rho$, where $\rho:=\sup \{r \in[0,1), h(\rho) \geq \rho\}$ and

$$
\int_{f_{t}(1)}^{1} \frac{1}{u-h(u)} \mathrm{d} u=t
$$

Sol: If the integral $(*)$ is finite, by the same argument we must have

$$
\begin{equation*}
\int_{f_{t}(1)}^{1} \frac{1}{u-h(u)} \mathrm{d} u=t \tag{1}
\end{equation*}
$$

which implies in particular $f_{t}(1)<1$, thus the probability of explosion before time t is positive. Moreover $f_{t}(1)$ is in $(\rho, 1]$ and is characterized by (1), because the function

$$
p \mapsto \int_{p}^{1} \frac{1}{u-h(u)} \mathrm{d} u
$$

is strictly decreasing on $(\rho, 1]$.
(9) We admit the result of last question holds for arbitrary t. What does the probability of explosion converge to? How does it compare to the survival probability of the population?
Sol: We note that $\rho<1$ is the largest (and actually the only) solution on $[0,1$) to $h(\rho)=\rho$. It is a classical result that ρ is also the extinction probability of the Galton-Watson process with child distribution $\nu \ldots$ and also clearly the extinction probability of the current population model.
By the definition of ρ, we have $h(r)<r$ on $(\rho, 1)$, and we must have

$$
\int_{\rho}^{1} \frac{1}{u-h(u)} \mathrm{d} u=+\infty
$$

either by a simple study of the integral with the observation $h^{\prime}(\rho)<1$, or because there cannot be explosion and extinction of the population, and thus $f_{t}(1)$ has to always stay larger than ρ, and thus for arbitrary t,

$$
\int_{\rho}^{1} \frac{1}{u-h(u)} \mathrm{d} u \geq \int_{f_{t}(1)}^{1} \frac{1}{u-h(u)} \mathrm{d} u=t
$$

Finally the fact that

$$
\int_{f_{t}(1)}^{1} \frac{1}{u-h(u)} \mathrm{d} u \rightarrow+\infty
$$

implies that we must have $f_{t}(1) \rightarrow \rho$, namely the probability of explosion by time t tends to the survival probability. In other words, there is a.s. explosion on the survival event.

