ENS de Lyon — Mathematic department Master 1 — Spring 2023
Stochastic processes E. Jacob

PARTIAL EXAM — Solutions.

Tuesday, February 28. 10.15am-12.15pm.

Usual notations: CTMC for continuous-time Markov chain or equivalently PJMP for Pure
Jump Markov process.
The two exercices are independent.

Exercice 1 — Ezplosion for the accelerated biased random walk, and duality.

We consider (Y},),>0 the biased random walk with positive drift, which is the discrete-time
Markov chain with jump distribution pd; + ¢d_1, where ¢ = 1 — p is assumed to be strictly
smaller than p, or equivalently p > 1/2. We recall that this random walk is transient, and
P(Y, — 4+00) = 1. As usually, we suppose that under the probability measure Py, this
biased random walk is started from 0.

(1) Recall briefly why we have
]P()(T_l < +OO) = %, IP)()(HO < +OO) = 2q,

where T"_; is the first hitting time of —1, and H, the first return time to 0, defined
as inf{n > 1,Y,, = 0}.

Aduvice: do not hesitate to admit the first statement or even the two if needed, it
will not prevent you from answering the following questions.
Sol: We have that M,, = (q/p)¥" is a nonnegative martingale, therefore Myar_, is
a bounded martingale, which starts from 0 and converges a.s to My, = §]IT71<+OO,
By optional stopping, we thus have E[M,| = My = 1, whence Py(T_1 < +00) = %
For the second point, use Markov property at time 1 to obtain

Po(Hy < +00) = pP1(To < +00) + qP_1(Th < +00)
= pg +q.1 = 2q.
p

(2) Show the Green function of this process is equal to

Gy (0,n) = In| '

Sol: We know that for a discrete time Markov chain,

1 1

Gy (0,0) = = .

v(0,0) 1—Py(Hy < +00) 1-2g
1




Moreover, for all n € Z, we also have
Gy (0,n) = Po(T,, < +00)G(n, ),

(a property that follows easily from Markov property at time T,..) But by transla-

tion invariance, we also have Gy (n,n) = Gy(0,0) = ﬁ, and the result of the

probability of the hitting times being finite of first question generalizes easily to
1 ifn >0,
PO(Tn < +oo) = In|
<1%> ifn <O0.

The result follows.

We consider now (¢,)nez € [1,+00)% an arbitrary sequence of real numbers larger than
or equal to 1 and indexed by Z, and (X;):>o the accelerated biased random walk. It is
the pure jump Markov process with associated jump process the biased random walk Y
we introduced before, and whose waiting time at state n is distributed as an exponential
random variable with parameter g,,.

(3)

(4)

Show that the process (X;) does not explode if -, qin = +00.
Sol: We know that there is a.s. no explosion on the event {)_ q% = +o00}. But

this is an a.s. event under the hypothesis ) -, qn = +00, as we have Y, tends a.s.
to +o0. -
Letting ¢ be the explosion time and G(-,-) the Green function of the CTMC X,

show we have

nel

Compute this sum, and deduce that the process explodes if ano qin < +00.

Sol: We have
C=> Myl = i)

k>0 neZ

=D > =it — )

neZ k>0

“+oo
-y / L i,
0

nez

Taking expectation, we obtain Eo[(] = > ., G(0,n). Now, we have G(0,n) =
iGy(O,n), whence

1 A\ 1 1
Eolc] = —— Z(p) T S

2q n<0

The first sum is finite as ¢ < p and q, > 1, and the second sum is finite by
hypothesis. Hence Ey[(] < +00, and there is a.s. explosion.



()

Show the measures v and 7 on Z defined by

Vnzla ﬁn:<2> )
q

are invariant for Y, and deduce two measures p and i on Z such that u@ = Q) = 0,
where () is the matrix of intensity of the pure jump Markov process X.

Sol: The measure v is invariant: letting K be the transition matrix of Y, we have,
for alln > 0:

(VEK)p = Un-1P+ Vpnp1q=p+q=1=,.

(We also could arque that the counting measure is always an invariant measure for
a random walk.) The measure v is reversible:

n n+1
- p p
\V/n, VnKn,n+1 — <q> p= ((]) q = Vn—i—lKn—i-l,n;

and thus invariant. We deduce that the measures p and i satisfy p@) = @ = 0,
where
Uy 1

G G
iy (p) "1
fin=—"=1{>] —.
an q Gn
Describe the two processes in duality with X with respect to the measures p and fi.
Observe these are different processes, and it is possible that one of these processes
explodes and not the other.

Sol: The first dual process X has a matriz of intensity @ satisfying, for all n € 7Z
Qn,n - Qn,n = Qn,

e Hnt1 A dn
Qn,n+1 == Qn+1,n - i-(QHJrIQ) = {nq,
Hn Qn—&-l

and similarly
Qnmfl = qnp-

We recognize the matriz of intensity of a biased random walk, but with negative
drift. In particular, X s transient to —o0, and explosive iff Y i < +00.
The dual process with respect to i is... X itself, which we can see by similar
computation or by the observation that v reversible. In particular, it is explosive
iff >0 q%b < +o00. Hence it is possible that one dual process explodes and not the
other.
Use the processes we introduced to construct:
(a) A CTMC that explodes but has an (infinite) invariant measure.
(b) A CTMC that has a finite measure u satisfying p@ = 0, but which is not an

invariant measure.

Sol:



(a) We choose a sequence (qy) such that y_, -, i < +tooand ), o q%l = +o0. We

then have that X explodes but not X. As the dual process does not explode, we
know that p is an invariant measure.

(b) We choose a sequence (g,) such that ), -, qin < +oo and ) q% < +o0.
Then p 1s a finite measure satisfying pQ = 0 but not an invariant measure.
To see it is not an tnvariant measure, we may either arque that X explodes, or

we may observe that a transient process cannot have a finite invariant measure.

Exercice 2 — Harris explosion criterium for branching processes.
We consider (X;):>o stochastic process with values in N = {0,1,...}, with 0 as absorbing
state, and counting the population at time ¢, for a model of population where:

e initially, there is 1 individual, so X, = 1.

e cach individual, independently of others, dies after a time which is exponential with
parameter 1, and then gives rise to a random number Z of children, distributed
according to v some probability distribution on {0,2,3,...}.

(1) Show X is a CTMC and provide its matrix of intensity.
Sol: By construction, 0 is an absorbing state, and when the process X is in some
other state n > 0, it will jump after an exponential time with parameter n (by
death of either of the n indiwviduals). Whatever the past of the process and the
indiwidual that dies, we will have birth of a random number Z of children, so the
new population will be distributed asn+ Z — 1. So X is a CTMC with matriz of

intensity
-n ifn==Fk+#0,
Qne=snv(l+k—n) ifnt0andke{n—1,n+1,n+2,...},
0 otherwise.

(2) Show the jump process associated with X is a random walk with jumps distributed

as Z — 1, stopped when hitting 0. Deduce that there is a.s. extinction of the
population if E[Z] < 1.
Sol: We have already proven that the jump process is a RW with jumps distributed
as Z — 1 and stopped when hitting 0. If we consider the unstopped random walk, we
know it tends to —oo a.s. if the jumps have negative expectation E[Z — 1] < 0, and
is recurrent if the jumps are centered (and integrable), namely if E[Z — 1] = 0. In
both cases, the RW will a.s. hit 0. This stays true of course if the RW s stopped
when hitting 0. Thus there is a.s. extinction.

From now on, we suppose E[Z] € (1,+00]. We let h denote the generating function of Z
and f; that of X;, defined by



with of course r™>° = 0 in the definition of f;(r). For r = 1, we take the convention
fi(1) =P(X; < +00) = lillr£1<1 fi(r).

(3) Show the existence of ¢ < 1 such that we have h(r) < r for all r in [g, 1).
Sol: We have h(1) =1 and the leftderivative at 1 is h'(1) = E[Z] > 1 (possibly an
infinite derivative). Thus we have h(r) < r for r in some left-neighbourhood of 1.

We fix ¢ as in last question, and aim to show Harris criterium, which states that there is
explosion of the process, namely f;(1) < 1, iff the function 1/(u — h(u)) is integrable in the
neighbourhood of 1, namely

L |
(*) /qu——h(u)du<+oo

(4) We suppose r € [0,1). Show ¢+ f;(r) is derivable at 0, with derivative

0
aft(T)h:o = h(r) —r.

r)= Z Py (t)r’

We know from Kolmogorov backward equations that P ; is derivable with derivative

t):ZQl,kPk] ZQlkij —q(1)P1;(t).
2

Sol: We have

k#£1
Thus
‘p{] rﬂ\<ZQ1kZP,” +q(1 prw
kA1 j
< 2¢(1).

Hence we can take the derivative under the sum to deduce, at time 0,
8 )
)|i=0 = ZQIJW = —r-+ ZQLJ»W = —r+ h(r).
i#1
(5) Show we have
f5+t(7“) = fs(ft(r))v \V/S,t > 07

and deduce we also have
0
aft(ﬂ = h(fi(r)) — filr) Vt>0.

Sol: The descendants of each individual are independent and have the same law. In
this sense, we have a branching process. In particlar, starting from k individuals,
the process at time t is a sum of k independent copies of Xy, and

By[r¥] = B[ = fi(r)".



Thus, using Markov property at time s:

fors(r) = E [rX+| X, ] = E[fi(r)Y] = fo(fulr).

Taking the derivative in s at time 0, we obtain
0
g7 /(1) = h(fi(r)) = (7).

(6) We suppose r € (g,1). Show we can take ¢ > 0 small enough so that the function
s+ fs(r) is decreasing and lower bounded by ¢ on [0,¢]. For such ¢, use a change

of variable to show
/ [ S B
— du =t
fe(r) u — h(U)

Sol: Forr € (q,1) fized, we write g for the function g(t) = fi(r). The function g
is continuous so we can choose t > 0 small so that g stays above q on [0,t]. By
Question (5), we also have g derivable on [0,t] with ¢'(s) = h(g(s)) — g(s), which
is negative as g(s) > q. Now we can use the change of variable u = f4(r) to obtain

r 1 0
——du = / —ds =t.
/ft(r) w= h(u) t

(7) For r and t as in question (6), deduce that there is no explosion before time ¢ if ()
is not satisfied (namely if the integral is infinite).
Sol: Fixz r and t as in question (6). We then have for all ' € [r,1] and s € [0, 1],

fs(r') > fs(r) > q.
Thus, for all v € [r, 1],

!

' 1
——du =t.
/ft(r/) u — h(U)

We now let ' grow to 1 and f,(r") grow to fi(1). If the integral (%) is infinite,
we must necessarily have f;(1) =1 (otherwise we would have t = fflt(l) mdu =
+00).

(8) We suppose (x) is satisfied (the integral is finite). For r and ¢ as in question (6),
show the process explodes, with probability of explosion characterized by f;(1) > p,
where p :=sup{r € [0,1), h(p) > p} and

! 1
———du =+t.
/ft(l) u — h(u)

Sol: If the integral (x) is finite, by the same argument we must have

! 1
| / L qu—t,
( ) fe(1) u — h(U)



7

which implies in particular f;(1) < 1, thus the probability of explosion before time
t is positive. Moreover fy(1) is in (p,1] and is characterized by (1), because the

function
|
> —d
P /p u— h(u) “

is strictly decreasing on (p,1].

(9) We admit the result of last question holds for arbitrary ¢. What does the probability
of explosion converge to? How does it compare to the survival probability of the
population?

Sol: We note that p < 1 is the largest (and actually the only) solution on [0, 1)
to h(p) = p. It is a classical result that p is also the extinction probability of the
Galton- Watson process with child distribution v... and also clearly the extinction
probability of the current population model.

By the definition of p, we have h(r) <r on (p,1), and we must have

b
/—du:+oo
, u— h(u) ’

either by a simple study of the integral with the observation h'(p) < 1, or because
there cannot be explosion and extinction of the population, and thus fi(1) has to
always stay larger than p, and thus for arbitrary t,

| ! 1
———du > / ———du =t.
/p u — h(u) £y w— h(u)
Finally the fact that

=
——du — +
fe(1) u — h(U)

implies that we must have f;(1) — p, namely the probability of explosion by time
t tends to the survival probability. In other words, there is a.s. explosion on the
survival event.



