
ENS de Lyon — Mathematic department Master 1 — Spring 2023
Stochastic processes E. Jacob

PARTIAL EXAM – Solutions.

Tuesday, February 28. 10.15am-12.15pm.

Usual notations: CTMC for continuous-time Markov chain or equivalently PJMP for Pure
Jump Markov process.
The two exercices are independent.

Exercice 1 — Explosion for the accelerated biased random walk, and duality.
We consider (Yn)n≥0 the biased random walk with positive drift, which is the discrete-time
Markov chain with jump distribution pδ1 + qδ−1, where q = 1− p is assumed to be strictly
smaller than p, or equivalently p > 1/2. We recall that this random walk is transient, and
P(Yn → +∞) = 1. As usually, we suppose that under the probability measure P0, this
biased random walk is started from 0.

(1) Recall briefly why we have

P0(T−1 < +∞) =
q

p
, P0(H0 < +∞) = 2q,

where T−1 is the first hitting time of −1, and H0 the first return time to 0, defined
as inf{n ≥ 1, Yn = 0}.

Advice: do not hesitate to admit the first statement or even the two if needed, it
will not prevent you from answering the following questions.
Sol: We have that Mn = (q/p)Yn is a nonnegative martingale, therefore Mn∧T−1 is
a bounded martingale, which starts from 0 and converges a.s to M∞ = p

q
1T−1<+∞.

By optional stopping, we thus have E[M∞] = M0 = 1, whence P0(T−1 < +∞) = q
p
.

For the second point, use Markov property at time 1 to obtain

P0(H0 < +∞) = pP1(T0 < +∞) + q P−1(T0 < +∞)

= p.
q

p
+ q.1 = 2q.

(2) Show the Green function of this process is equal to

GY (0, n) =


1

1−2q if n ≥ 0,(
q
p

)|n|
1

1−2q if n < 0.

Sol: We know that for a discrete time Markov chain,

GY (0, 0) =
1

1− P0(H0 < +∞)
=

1

1− 2q
.

1



2

Moreover, for all n ∈ Z, we also have

GY (0, n) = P0(Tn < +∞)G(n, n),

(a property that follows easily from Markov property at time Tn.) But by transla-
tion invariance, we also have GY (n, n) = GY (0, 0) = 1

1−2q , and the result of the

probability of the hitting times being finite of first question generalizes easily to

P0(Tn < +∞) =

1 if n ≥ 0,(
q
p

)|n|
if n < 0.

The result follows.

We consider now (qn)n∈Z ∈ [1,+∞)Z an arbitrary sequence of real numbers larger than
or equal to 1 and indexed by Z, and (Xt)t≥0 the accelerated biased random walk. It is
the pure jump Markov process with associated jump process the biased random walk Y
we introduced before, and whose waiting time at state n is distributed as an exponential
random variable with parameter qn.

(3) Show that the process (Xt) does not explode if
∑

n≥0
1
qn

= +∞.

Sol: We know that there is a.s. no explosion on the event {
∑

1
qYn

= +∞}. But

this is an a.s. event under the hypothesis
∑

n≥0 qn = +∞, as we have Yn tends a.s.
to +∞.

(4) Letting ζ be the explosion time and G(·, ·) the Green function of the CTMC X,
show we have

E0[ζ] =
∑
n∈Z

G(0, n).

Compute this sum, and deduce that the process explodes if
∑

n≥0
1
qn
< +∞.

Sol: We have

ζ =
∑
k≥0

∑
n∈Z

1Yk=n(Jk+1 − Jk)

=
∑
n∈Z

∑
k≥0

1Yk=n(Jk+1 − Jk)

=
∑
n∈Z

∫ +∞

0

1Xt=n dt.

Taking expectation, we obtain E0[ζ] =
∑

n∈ZG(0, n). Now, we have G(0, n) =
1
qn
GY (0, n), whence

E0[ζ] =
1

1− 2q

∑
n<0

(
q

p

)|n|
1

qn
+

1

1− 2q

∑
n≥0

1qn.

The first sum is finite as q < p and qn ≥ 1, and the second sum is finite by
hypothesis. Hence E0[ζ] < +∞, and there is a.s. explosion.
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(5) Show the measures ν and ν̃ on Z defined by

νn = 1, ν̃n =

(
p

q

)n
,

are invariant for Y , and deduce two measures µ and µ̃ on Z such that µQ = µ̃Q = 0,
where Q is the matrix of intensity of the pure jump Markov process X.
Sol: The measure ν is invariant: letting K be the transition matrix of Y , we have,
for all n ≥ 0:

(νK)n = νn−1p+ νn+1q = p+ q = 1 = νn.

(We also could argue that the counting measure is always an invariant measure for
a random walk.) The measure ν̃ is reversible:

∀n, ν̃nKn,n+1 =

(
p

q

)n
p =

(
p

q

)n+1

q = νn+1Kn+1,n,

and thus invariant. We deduce that the measures µ and µ̃ satisfy µQ = µ̃Q = 0,
where

µn =
νn
qn

=
1

qn
,

µ̃n =
ν̃n
qn

=

(
p

q

)n
1

qn
.

(6) Describe the two processes in duality with X with respect to the measures µ and µ̃.
Observe these are different processes, and it is possible that one of these processes
explodes and not the other.
Sol: The first dual process X̂ has a matrix of intensity Q̂ satisfying, for all n ∈ Z
Q̂n,n = Qn,n = qn,

Q̂n,n+1 =
µn+1

µn
Q̂n+1,n =

qn
qn+1

.(qn+1q) = qnq,

and similarly

Q̂n,n−1 = qnp.

We recognize the matrix of intensity of a biased random walk, but with negative
drift. In particular, X̂ is transient to −∞, and explosive iff

∑
n≤0

1
qn
< +∞.

The dual process with respect to µ̃ is... X itself, which we can see by similar
computation or by the observation that ν̃ reversible. In particular, it is explosive
iff
∑

n≥0
1
qn
< +∞. Hence it is possible that one dual process explodes and not the

other.
(7) Use the processes we introduced to construct:

(a) A CTMC that explodes but has an (infinite) invariant measure.
(b) A CTMC that has a finite measure µ satisfying µQ = 0, but which is not an

invariant measure.
Sol:
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(a) We choose a sequence (qn) such that
∑

n≥0
1
qn
< +∞ and

∑
n≤0

1
qn

= +∞. We

then have that X explodes but not X̃. As the dual process does not explode, we
know that µ is an invariant measure.

(b) We choose a sequence (qn) such that
∑

n≥0
1
qn

< +∞ and
∑

n≤0
1
qn

< +∞.

Then µ is a finite measure satisfying µQ = 0 but not an invariant measure.
To see it is not an invariant measure, we may either argue that X̃ explodes, or
we may observe that a transient process cannot have a finite invariant measure.

Exercice 2 — Harris explosion criterium for branching processes.
We consider (Xt)t≥0 stochastic process with values in N = {0, 1, . . .}, with 0 as absorbing
state, and counting the population at time t, for a model of population where:

• initially, there is 1 individual, so X0 = 1.
• each individual, independently of others, dies after a time which is exponential with

parameter 1, and then gives rise to a random number Z of children, distributed
according to ν some probability distribution on {0, 2, 3, . . .}.

(1) Show X is a CTMC and provide its matrix of intensity.
Sol: By construction, 0 is an absorbing state, and when the process X is in some
other state n > 0, it will jump after an exponential time with parameter n (by
death of either of the n individuals). Whatever the past of the process and the
individual that dies, we will have birth of a random number Z of children, so the
new population will be distributed as n + Z − 1. So X is a CTMC with matrix of
intensity

Qn,k =


−n if n = k 6= 0,

nν(1 + k − n) if n 6= 0 and k ∈ {n− 1, n+ 1, n+ 2, . . .},
0 otherwise.

(2) Show the jump process associated with X is a random walk with jumps distributed
as Z − 1, stopped when hitting 0. Deduce that there is a.s. extinction of the
population if E[Z] ≤ 1.
Sol: We have already proven that the jump process is a RW with jumps distributed
as Z−1 and stopped when hitting 0. If we consider the unstopped random walk, we
know it tends to −∞ a.s. if the jumps have negative expectation E[Z − 1] < 0, and
is recurrent if the jumps are centered (and integrable), namely if E[Z − 1] = 0. In
both cases, the RW will a.s. hit 0. This stays true of course if the RW is stopped
when hitting 0. Thus there is a.s. extinction.

From now on, we suppose E[Z] ∈ (1,+∞]. We let h denote the generating function of Z
and ft that of Xt, defined by

h(r) = E[rZ ], 0 ≤ r ≤ 1,

ft(r) = E[rXt ], 0 ≤ r ≤ 1,



5

with of course r+∞ = 0 in the definition of ft(r). For r = 1, we take the convention

ft(1) = P(Xt < +∞) = lim
r→1,r<1

ft(r).

(3) Show the existence of q < 1 such that we have h(r) < r for all r in [q, 1).
Sol: We have h(1) = 1 and the leftderivative at 1 is h′(1) = E[Z] > 1 (possibly an
infinite derivative). Thus we have h(r) < r for r in some left-neighbourhood of 1.

We fix q as in last question, and aim to show Harris criterium, which states that there is
explosion of the process, namely ft(1) < 1, iff the function 1/(u−h(u)) is integrable in the
neighbourhood of 1, namely

(∗)
∫ 1

q

1

u− h(u)
du < +∞

(4) We suppose r ∈ [0, 1). Show t 7→ ft(r) is derivable at 0, with derivative

∂

∂t
ft(r)|t=0 = h(r)− r.

Sol: We have

ft(r) =
∑
j

P1,j(t)r
j.

We know from Kolmogorov backward equations that P1,j is derivable with derivative

P ′1,j(t) =
∑
k

Q1,kPk,j(t) =
∑
k 6=1

Q1,kPk,j(t)− q(1)P1,j(t).

Thus ∑
j

∣∣∣P ′1,j(t)rj∣∣ ≤∑
k 6=1

Q1,k

∑
j

Pk,j(t) + q(1)
∑
j

Pk,j(t)

≤ 2q(1).

Hence we can take the derivative under the sum to deduce, at time 0,

∂

∂t
ft(r)|t=0 =

∑
j

Q1,jr
j = −r +

∑
j 6=1

Q1,jr
j = −r + h(r).

(5) Show we have

fs+t(r) = fs(ft(r)), ∀s, t ≥ 0,

and deduce we also have

∂

∂t
ft(r) = h(ft(r))− ft(r) ∀t ≥ 0.

Sol: The descendants of each individual are independent and have the same law. In
this sense, we have a branching process. In particlar, starting from k individuals,
the process at time t is a sum of k independent copies of Xt, and

Ek[rXt ] = E[rXt ]k = ft(r)
k.
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Thus, using Markov property at time s:

fs+t(r) = E
[
rXs+t

∣∣Xs

]
= E[ft(r)

X
s ] = fs(ft(r)).

Taking the derivative in s at time 0, we obtain

∂

∂t
ft(r) = h(ft(r))− ft(r).

(6) We suppose r ∈ (q, 1). Show we can take t > 0 small enough so that the function
s 7→ fs(r) is decreasing and lower bounded by q on [0, t]. For such t, use a change
of variable to show ∫ r

ft(r)

1

u− h(u)
du = t.

Sol: For r ∈ (q, 1) fixed, we write g for the function g(t) = ft(r). The function g
is continuous so we can choose t > 0 small so that g stays above q on [0, t]. By
Question (5), we also have g derivable on [0, t] with g′(s) = h(g(s)) − g(s), which
is negative as g(s) ≥ q. Now we can use the change of variable u = fs(r) to obtain∫ r

ft(r)

1

u− h(u)
du =

∫ 0

t

−ds = t.

(7) For r and t as in question (6), deduce that there is no explosion before time t if (∗)
is not satisfied (namely if the integral is infinite).
Sol: Fix r and t as in question (6). We then have for all r′ ∈ [r, 1] and s ∈ [0, t],

fs(r
′) ≥ fs(r) ≥ q.

Thus, for all r′ ∈ [r, 1], ∫ r′

ft(r′)

1

u− h(u)
du = t.

We now let r′ grow to 1 and ft(r
′) grow to ft(1). If the integral (∗) is infinite,

we must necessarily have ft(1) = 1 (otherwise we would have t =
∫ 1

ft(1)
1

u−h(u)du =

+∞).
(8) We suppose (∗) is satisfied (the integral is finite). For r and t as in question (6),

show the process explodes, with probability of explosion characterized by ft(1) > ρ,
where ρ := sup{r ∈ [0, 1), h(ρ) ≥ ρ} and∫ 1

ft(1)

1

u− h(u)
du = t.

Sol: If the integral (∗) is finite, by the same argument we must have

(1)

∫ 1

ft(1)

1

u− h(u)
du = t,
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which implies in particular ft(1) < 1, thus the probability of explosion before time
t is positive. Moreover ft(1) is in (ρ, 1] and is characterized by (1), because the
function

p 7→
∫ 1

p

1

u− h(u)
du

is strictly decreasing on (ρ, 1].
(9) We admit the result of last question holds for arbitrary t. What does the probability

of explosion converge to? How does it compare to the survival probability of the
population?
Sol: We note that ρ < 1 is the largest (and actually the only) solution on [0, 1)
to h(ρ) = ρ. It is a classical result that ρ is also the extinction probability of the
Galton-Watson process with child distribution ν... and also clearly the extinction
probability of the current population model.
By the definition of ρ, we have h(r) < r on (ρ, 1), and we must have∫ 1

ρ

1

u− h(u)
du = +∞,

either by a simple study of the integral with the observation h′(ρ) < 1, or because
there cannot be explosion and extinction of the population, and thus ft(1) has to
always stay larger than ρ, and thus for arbitrary t,∫ 1

ρ

1

u− h(u)
du ≥

∫ 1

ft(1)

1

u− h(u)
du = t.

Finally the fact that ∫ 1

ft(1)

1

u− h(u)
du→ +∞

implies that we must have ft(1) → ρ, namely the probability of explosion by time
t tends to the survival probability. In other words, there is a.s. explosion on the
survival event.


