
ENS de Lyon - M2 Stochastic calculus - TD1 2018–2019

Exercise 1. — Martingales associated with a Gaussian integral.
We say that a random process (Xt)t≥0 adapted to a filtration Ft has independent

increments if and only if for any s, t ≥ 0, the random variable Xt+s −Xt is independent
of Ft.

1. Let X be a random process with independent increments. Show that the following
random processes are (Ft)-martingales, provided that the expectations are well-
defined.
(a) (Xt − E[Xt])t≥0

(b) ((Xt − E[Xt])2 − E[(Xt − E[Xt])2])t≥0

(c) (eλXt/E[eλXt ])t≥0, where λ ∈ R is a parameter.
2. Let f ∈ L2

loc(R+) andXt = G(f1[0;t]) =:
∫ t

0 f(s)dBs. Show that the random processes
X, (X2

t −
∫ t

0 f
2(s)ds)t≥0, and (eλXt−

λ2
2

∫ t
0 f

2(s)ds)t≥0, are martingales.

Exercise 2. — The Brownian bridge.
Let (Bt)t∈[0,1] be a standard Brownian motion. For x ∈ R, define the process (Xx

t )t∈[0,1]
by

Xx
t = Bt − t(B1 − x),

and let Px be its law on C([0, 1],R)
1. Show Xx is a Gaussian process, and compute its mean as well as its covariance

function.
2. Prove that Px is a version of the conditional law of the Wiener measure W on
C([0, 1],R) knowing B1 = x. In other words, as B1 has law N (0, 1), this means
proving that for any measurable set A ∈ C([0, 1],R), we have

W (A) =
∫
R
Px(A) 1√

2π
e−

x2
2 dx.

Exercise 3. — Hitting times of the Brownian motion.
Let B be a real-valued (Ft)-Brownian motion starting from 0. For any x ∈ R, we let

Tx be the hitting time of x by B, that is Tx := inf{t ≥ 0, Bt = x}.
1. Using an appropriate martingale, find for every a < 0 < b the probability P(Ta < Tb).
2. Using an appropriate martingale, find for every x ∈ R the Laplace transform of Tx.
3. Show that the random process (Tx)x≥0 has independent and stationary increments,

that is for any 0 ≤ a ≤ b, the random variable Tb − Ta is independent of σ(Tc, 0 ≤
c ≤ a) and has same law as Tb−a.

4. Find for every a < 0 < b the Laplace transform of min(Ta, Tb).
Indication : you may use the martingale (cosh(λ(Bt − (a + b)/2))e−λ2t/2)t≥0 (and
show that it is a martingale indeed).
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Exercise 4. — About the quadratic variation.
Let B be a standard Brownian motion starting from 0.
1. Let (∆n)n≥0 = (tn0 , . . . , tnkn)n≥0 be a sequence of subdivisions of [0, 1] with mesh de-

creasing towards 0, and nested, that is for any n we have {tn0 , . . . , tnkn} ⊂ {t
n+1
0 , . . . , tn+1

kn+1}.
Show that we have

kn∑
i=1

(
Btni
−Btni−1

)2 a.s.−→ 1.

It may be useful to introduce an appropriate backwards martingale.
2. Without using the nesting hypothesis, show that for some sequences (∆n) of subdi-

visions of [0, 1] with mesh decreasing towards 0, we have that almost surely,

lim sup
n→∞

kn∑
i=1

(
Btni
−Btni−1

)2
= +∞.

Exercise 5. — A differentiable Gaussian process.
Let (Xt)t∈[0;1] be a centred Gaussian process. We assume that the application (t, ω) 7→

Xt(ω) is measurable from [0; 1]× Ω to R. We denote by K the covariance function of X.
1. Show that the mapping t 7→ Xt is continuous from [0; 1] to L2(Ω) if and only if K

is continuous on [0; 1]2. We assume in the sequel that this condition is satisfied.
2. Let h : [0; 1]→ R be a measurable function such that

∫ 1
0 |h(t)|

√
K(t, t)dt <∞.

(a) Show that a.s. the integral
∫ 1

0 h(t)Xtdt is absolutely convergent.
(b) We let

Z =
∫ 1

0
h(t)Xtdt and ∀n ≥ 1, Zn :=

n∑
i=1

X i
n

∫ i
n

i−1
n

h(t)dt.

Assuming that
∫ 1

0 |h(t)|dt < ∞, show that (Zn)n≥1 converges towards Z in
L2(Ω). Deduce that Z is a Gaussian random variable.

3. Assume that K is C2. Show that for any t ∈ [0; 1], the limit

Ẋt := lim
s→t

Xs −Xt

s− t

exists in L2(Ω). Show that (Ẋt)t∈[0;1] is a centred Gaussian process. Compute its
covariance function.

Properties of the Brownian motion
In what follows, we let (Bt)t≥0 be a standard Brownian motion starting from 0. We

also let St := sup0≤s≤tBs for t ≥ 0.

Exercise 6. — Time inversion.

1. Show that the process (Wt)t≥0 defined by W0 = 0 and for any t > 0 by Wt = tB1/t
is indistinguishable from a real-valued Brownian motion starting from 0 (you may
check first that W is an almost-Brownian motion).

2. Deduce that
lim
t→∞

Bt

t
= 0 a.s.
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Exercise 7. — Non-differentiability.
Using a 0− 1 law, show that almost surely,

lim sup
t↓0

Bt√
t

= +∞, lim inf
t↓0

Bt√
t

= −∞.

Deduce that for any t ≥ 0, almost surely the function s 7→ Bs is not right differentiable
in t.

Exercise 8. — Local Maxima.
Show that a.s. the local maxima of the Brownian motion are distinct, i.e. almost surely

for any rational numbers p < q < r < s, we have

sup
p≤t≤q

Bt 6= sup
r≤t≤s

Bt.

Exercise 9. — Zeros of the Brownian motion.
Let H := {t ∈ [0; 1] : Bt = 0} be the zeros set of the Brownian motion in [0; 1]. Show

that a.s. H is compact and has null Lebesgue measure, and using the strong Markov
property, show that a.s. H has no isolated point.

Exercise 10. — Return times.
Let S := inf{t ≥ 0 : Bt = 1} and T := inf{t ≥ S : Bt = 0}.
1. Show that these random variables are finite a.s. (as by convention, inf ∅ = +∞).
2. Is the random variable T a stopping time ?
3. Give the law of T .

Exercise 11. — The arcsine law.
We let T := inf{t ≥ 0 : Bt = S1}.
1. Show that T < 1 a.s. and then show that T is not a stopping time.
2. Show that the three random variables St, St −Bt and |Bt| have same law.
3. Show that T has an arcsine distribution, the arcsine distribution being a probability

law with density f defined for any t ∈ R by

f(t) = 1
π
√
t(1− t)

1{]0;1[}(t).

4. Show that the results of questions 1 and 3 remain true if we replace T by L :=
sup{t ≤ 1 : Bt = 0}.

Exercise 12. — Law of the iterated logarithm.
The aim of this exercise is to show the following property of the Brownian motion :

lim sup
t→∞

Bt√
2t log log(t)

= 1 a.s.

We let h(t) :=
√

2t log log(t) for any t > 0.
1. Show that for any t > 0,

P(St > u
√
t) ∼u→∞

2e−u2/2

u
√

2π
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2. Let r, c ∈ R such that 1 < r < c2. Study the behaviour of P(Srn > ch(rn−1)) as
n→∞ and deduce that almost surely,

lim sup
t→∞

Bt√
2t log log(t)

≤ 1.

3. Show that almost surely, there are infinitely many n such that

Brn −Brn−1 ≥
√
r − 1
r

h(rn).

Conclude on the announced result.
Let us now derive a corollary from this result.

4. Compute lim inft→∞ Bt√
2t log log(t)

.

5. For any s ≥ 0, show that a.s.

lim sup
t↓0

Bt+s −Bs√
2t log log(t)

= 1 and lim inf
t↓0

Bt+s −Bs√
2t log log(t)

= −1.

6. Deduce that a.s. the trajectories of the Brownian motion are nowhere 1/2-Hölder
continuous.
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