Exercise 1. — Martingales associated with a Gaussian integral.

We say that a random process $(X_t)_{t\geq 0}$ adapted to a filtration \mathcal{F}_t has independent increments if and only if for any $s, t \geq 0$, the random variable $X_{t+s} - X_t$ is independent of \mathcal{F}_t .

- 1. Let X be a random process with independent increments. Show that the following random processes are (\mathcal{F}_t) -martingales, provided that the expectations are well-defined.
 - (a) $(X_t \mathbb{E}[X_t])_{t \ge 0}$
 - (b) $((X_t \mathbb{E}[X_t])^2 \mathbb{E}[(X_t \mathbb{E}[X_t])^2])_{t \ge 0}$
 - (c) $(e^{\lambda X_t}/\mathbb{E}[e^{\lambda X_t}])_{t>0}$, where $\lambda \in \mathbb{R}$ is a parameter.
- 2. Let $f \in L^2_{\text{loc}}(\mathbb{R}_+)$ and $X_t = G(f\mathbf{1}_{[0;t]}) =: \int_0^t f(s) dB_s$. Show that the random processes $X, (X_t^2 \int_0^t f^2(s) ds)_{t \ge 0}$, and $(e^{\lambda X_t \frac{\lambda^2}{2} \int_0^t f^2(s) ds})_{t \ge 0}$, are martingales.

Exercise 2. — The Brownian bridge.

Let $(B_t)_{t \in [0,1]}$ be a standard Brownian motion. For $x \in \mathbb{R}$, define the process $(X_t^x)_{t \in [0,1]}$ by

$$X_t^x = B_t - t(B_1 - x),$$

and let \mathbb{P}_x be its law on $\mathcal{C}([0,1],\mathbb{R})$

- 1. Show X^x is a Gaussian process, and compute its mean as well as its covariance function.
- 2. Prove that \mathbb{P}_x is a version of the conditional law of the Wiener measure W on $C([0,1],\mathbb{R})$ knowing $B_1 = x$. In other words, as B_1 has law $\mathcal{N}(0,1)$, this means proving that for any measurable set $A \in C([0,1],\mathbb{R})$, we have

$$W(A) = \int_{\mathbb{R}} \mathbb{P}_x(A) \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

Exercise 3. — *Hitting times of the Brownian motion.*

Let B be a real-valued (\mathcal{F}_t) -Brownian motion starting from 0. For any $x \in \mathbb{R}$, we let T_x be the hitting time of x by B, that is $T_x := \inf\{t \ge 0, B_t = x\}$.

- 1. Using an appropriate martingale, find for every a < 0 < b the probability $\mathbb{P}(T_a < T_b)$.
- 2. Using an appropriate martingale, find for every $x \in \mathbb{R}$ the Laplace transform of T_x .
- 3. Show that the random process $(T_x)_{x\geq 0}$ has independent and stationary increments, that is for any $0 \leq a \leq b$, the random variable $T_b T_a$ is independent of $\sigma(T_c, 0 \leq c \leq a)$ and has same law as T_{b-a} .
- 4. Find for every a < 0 < b the Laplace transform of $\min(T_a, T_b)$. Indication : you may use the martingale $(\cosh(\lambda(B_t - (a + b)/2))e^{-\lambda^2 t/2})_{t\geq 0}$ (and show that it is a martingale indeed).

Exercise 4. - About the quadratic variation.

Let B be a standard Brownian motion starting from 0.

1. Let $(\Delta_n)_{n\geq 0} = (t_0^n, \ldots, t_{k_n}^n)_{n\geq 0}$ be a sequence of subdivisions of [0, 1] with mesh decreasing towards 0, and nested, that is for any n we have $\{t_0^n, \ldots, t_{k_n}^n\} \subset \{t_0^{n+1}, \ldots, t_{k_{n+1}}^{n+1}\}$. Show that we have

$$\sum_{i=1}^{k_n} \left(B_{t_i^n} - B_{t_{i-1}^n} \right)^2 \xrightarrow{a.s.} 1.$$

It may be useful to introduce an appropriate backwards martingale.

2. Without using the nesting hypothesis, show that for some sequences (Δ_n) of subdivisions of [0, 1] with mesh decreasing towards 0, we have that almost surely,

$$\limsup_{n \to \infty} \sum_{i=1}^{k_n} \left(B_{t_i^n} - B_{t_{i-1}^n} \right)^2 = +\infty.$$

Exercise 5. -A differentiable Gaussian process.

Let $(X_t)_{t \in [0;1]}$ be a centred Gaussian process. We assume that the application $(t, \omega) \mapsto X_t(\omega)$ is measurable from $[0;1] \times \Omega$ to \mathbb{R} . We denote by K the covariance function of X.

- 1. Show that the mapping $t \mapsto X_t$ is continuous from [0;1] to $L^2(\Omega)$ if and only if K is continuous on $[0;1]^2$. We assume in the sequel that this condition is satisfied.
- 2. Let $h: [0;1] \to \mathbb{R}$ be a measurable function such that $\int_0^1 |h(t)| \sqrt{K(t,t)} dt < \infty$.
 - (a) Show that a.s. the integral $\int_0^1 h(t) X_t dt$ is absolutely convergent.
 - (b) We let

$$Z = \int_0^1 h(t) X_t dt$$
 and $\forall n \ge 1$, $Z_n := \sum_{i=1}^n X_{\frac{i}{n}} \int_{\frac{i-1}{n}}^{\frac{i}{n}} h(t) dt$.

Assuming that $\int_0^1 |h(t)| dt < \infty$, show that $(Z_n)_{n\geq 1}$ converges towards Z in $L^2(\Omega)$. Deduce that Z is a Gaussian random variable.

3. Assume that K is \mathcal{C}^2 . Show that for any $t \in [0, 1]$, the limit

$$\dot{X}_t := \lim_{s \to t} \frac{X_s - X_t}{s - t}$$

exists in $L^2(\Omega)$. Show that $(\dot{X}_t)_{t \in [0;1]}$ is a centred Gaussian process. Compute its covariance function.

Properties of the Brownian motion

In what follows, we let $(B_t)_{t\geq 0}$ be a standard Brownian motion starting from 0. We also let $S_t := \sup_{0 \le s \le t} B_s$ for $t \ge 0$.

Exercise 6. — *Time inversion.*

- 1. Show that the process $(W_t)_{t\geq 0}$ defined by $W_0 = 0$ and for any t > 0 by $W_t = tB_{1/t}$ is indistinguishable from a real-valued Brownian motion starting from 0 (you may check first that W is an almost-Brownian motion).
- 2. Deduce that

$$\lim_{t \to \infty} \frac{B_t}{t} = 0 \quad \text{a.s}$$

Exercise 7. - Non-differentiability.

Using a 0-1 law, show that almost surely,

$$\limsup_{t \downarrow 0} \frac{B_t}{\sqrt{t}} = +\infty, \quad \liminf_{t \downarrow 0} \frac{B_t}{\sqrt{t}} = -\infty.$$

Deduce that for any $t \ge 0$, almost surely the function $s \mapsto B_s$ is not right differentiable in t.

Exercise 8. — Local Maxima.

Show that a.s. the local maxima of the Brownian motion are distinct, i.e. almost surely for any rational numbers p < q < r < s, we have

$$\sup_{p \le t \le q} B_t \neq \sup_{r \le t \le s} B_t.$$

Exercise 9. — Zeros of the Brownian motion.

Let $H := \{t \in [0, 1] : B_t = 0\}$ be the zeros set of the Brownian motion in [0, 1]. Show that a.s. H is compact and has null Lebesgue measure, and using the strong Markov property, show that a.s. H has no isolated point.

Exercise 10. — *Return times.*

Let $S := \inf\{t \ge 0 : B_t = 1\}$ and $T := \inf\{t \ge S : B_t = 0\}.$

- 1. Show that these random variables are finite a.s. (as by convention, $\inf \emptyset = +\infty$).
- 2. Is the random variable T a stopping time?
- 3. Give the law of T.

Exercise 11. — The arcsine law.

We let $T := \inf\{t \ge 0 : B_t = S_1\}.$

- 1. Show that T < 1 a.s. and then show that T is not a stopping time.
- 2. Show that the three random variables S_t , $S_t B_t$ and $|B_t|$ have same law.
- 3. Show that T has an arcsine distribution, the arcsine distribution being a probability law with density f defined for any $t \in \mathbb{R}$ by

$$f(t) = \frac{1}{\pi \sqrt{t(1-t)}} \mathbf{1}_{\{]0;1[\}}(t).$$

4. Show that the results of questions 1 and 3 remain true if we replace T by $L := \sup\{t \le 1 : B_t = 0\}$.

Exercise 12. — Law of the iterated logarithm.

The aim of this exercise is to show the following property of the Brownian motion :

$$\limsup_{t \to \infty} \frac{B_t}{\sqrt{2t \log \log(t)}} = 1 \quad a.s.$$

We let $h(t) := \sqrt{2t \log \log(t)}$ for any t > 0.

1. Show that for any t > 0,

$$\mathbb{P}(S_t > u\sqrt{t}) \sim_{u \to \infty} \frac{2\mathrm{e}^{-u^2/2}}{u\sqrt{2\pi}}$$

2. Let $r, c \in \mathbb{R}$ such that $1 < r < c^2$. Study the behaviour of $\mathbb{P}(S_{r^n} > ch(r^{n-1}))$ as $n \to \infty$ and deduce that almost surely,

$$\limsup_{t \to \infty} \frac{B_t}{\sqrt{2t \log \log(t)}} \le 1.$$

3. Show that almost surely, there are infinitely many n such that

$$B_{r^n} - B_{r^{n-1}} \ge \sqrt{\frac{r-1}{r}} h(r^n).$$

Conclude on the announced result.

Let us now derive a corollary from this result.

- 4. Compute $\liminf_{t\to\infty} \frac{B_t}{\sqrt{2t\log\log(t)}}$.
- 5. For any $s \ge 0$, show that a.s.

$$\limsup_{t \downarrow 0} \frac{B_{t+s} - B_s}{\sqrt{2t \log \log(t)}} = 1 \quad \text{and} \quad \liminf_{t \downarrow 0} \frac{B_{t+s} - B_s}{\sqrt{2t \log \log(t)}} = -1.$$

6. Deduce that a.s. the trajectories of the Brownian motion are nowhere 1/2-Hölder continuous.