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Exercise 1. — Martingales associated with a Gaussian integral.

We say that a random process (X;):>o adapted to a filtration F; has independent
increments if and only if for any s, > 0, the random variable X;,; — X; is independent
of .Ft.

1. Let X be a random process with independent increments. Show that the following

random processes are (F;)-martingales, provided that the expectations are well-
defined.

(a) (X¢—E[X¢])ez0
(b) ((X¢ —E[X])* = E[(X: — E[X])*])i0
(c) (e*t/E[e*])i>0, where X € R is a parameter.
2. Let f € L2 (Ry) and X; = G(f1p,) =: fy f(5)dBs. Show that the random processes

2 rt
X, (X2 — [{ f2(s)ds)i>0, and (% Lo 7(9)ds) o are martingales.

Exercise 2. — The Brownian bridge.

Let (By)¢co1] be a standard Brownian motion. For « € R, define the process (X7 ):cjo,1)
by
th = Bt — t(Bl — :C),

and let P, be its law on C([0, 1], R)

1. Show X* is a Gaussian process, and compute its mean as well as its covariance
function.

2. Prove that P, is a version of the conditional law of the Wiener measure W on
C([0,1],R) knowing B; = x. In other words, as B; has law N (0, 1), this means
proving that for any measurable set A € C([0,1],R), we have

W(A) —/}RIPx(A)\/l%efdx.

Exercise 3. — Hitting times of the Brownian motion.

Let B be a real-valued (F;)-Brownian motion starting from 0. For any x € R, we let
T, be the hitting time of z by B, that is T, := inf{t > 0, B, = z}.

1. Using an appropriate martingale, find for every a < 0 < b the probability P(T, < T}).

2. Using an appropriate martingale, find for every x € R the Laplace transform of 7.

3. Show that the random process (7} ).,>0 has independent and stationary increments,
that is for any 0 < a < b, the random variable T}, — T, is independent of o (7,0 <
¢ < a) and has same law as Tj_,.

4. Find for every a < 0 < b the Laplace transform of min(7,,T}).
Indication : you may use the martingale (cosh(A(By — (a + b)/2))e
show that it is a martingale indeed).
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Exercise 4. — About the quadratic variation.

Let B be a standard Brownian motion starting from 0.

L. Let (Ap)n>o0 = (15, ..., t% )n>0 be a sequence of subdivisions of [0, 1] with mesh de-
creasing towards 0, and nested, that is for any n we have {tf,..., ¢ } C {tg*, ... t;*1}.

Show that we have i
- 2 a.s.
Z (Bt? — Btlnil) — 1.
i=1
It may be useful to introduce an appropriate backwards martingale.

2. Without using the nesting hypothesis, show that for some sequences (A,,) of subdi-
visions of [0, 1] with mesh decreasing towards 0, we have that almost surely,

lim supz (Btn — Bt?_1>2 = +o00.

i

Exercise 5. — A differentiable Gaussian process.
Let (X¢)cjoa] be a centred Gaussian process. We assume that the application (¢, w) —
X;(w) is measurable from [0; 1] x 2 to R. We denote by K the covariance function of X.
1. Show that the mapping ¢ — X, is continuous from [0;1] to L*(2) if and only if K
is continuous on [0; 1]?. We assume in the sequel that this condition is satisfied.

2. Let h: [0;1] — R be a measurable function such that [y [h(t)[\/K (t,t)dt < co.

(a) Show that a.s. the integral f; h(t)X,dt is absolutely convergent.
(b) We let

" h(t)d.

1 n
Z:/ h(t)X,dt and ¥Yn>1, Z, ;:§le-/
0 =1 "

Assuming that [} |h(t)|dt < oo, show that (Z,),>1 converges towards Z in
L*(Q). Deduce that Z is a Gaussian random variable.

3. Assume that K is C?. Show that for any ¢ € [0; 1], the limit

. X,— X
X, :=lim R
s—t s — 1t

exists in L2(2). Show that (X;)icp,] is a centred Gaussian process. Compute its
covariance function.

Properties of the Brownian motion

In what follows, we let (B;):>o be a standard Brownian motion starting from 0. We
also let S; := supy<,<; B, for t > 0.

Exercise 6. — Time inversion.

1. Show that the process (W;);>o defined by Wy = 0 and for any ¢t > 0 by W, = tBy,
is indistinguishable from a real-valued Brownian motion starting from 0 (you may
check first that W is an almost-Brownian motion).

2. Deduce that

lim —X =0 a.s.
t—oo ¢



Exercise 7. — Non-differentiability.

Using a 0 — 1 law, show that almost surely,

. By By
lim sup — — =

o V1t Vi

Deduce that for any ¢t > 0, almost surely the function s — By is not right differentiable
in ¢.
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Exercise 8. — Local Mazima.

Show that a.s. the local maxima of the Brownian motion are distinct, i.e. almost surely
for any rational numbers p < ¢ < r < s, we have

sup B; # sup B;.

p<t<q r<t<s

Exercise 9. — Zeros of the Brownian motion.

Let H := {t € [0;1] : By = 0} be the zeros set of the Brownian motion in [0; 1]. Show
that a.s. H is compact and has null Lebesgue measure, and using the strong Markov
property, show that a.s. H has no isolated point.

Exercise 10. — Return times.
Let S:=inf{t > 0: B, =1} and T := inf{t > S : B, = 0}.
1. Show that these random variables are finite a.s. (as by convention, inf () = +00).

2. Is the random variable T" a stopping time ?
3. Give the law of T

Exercise 11. — The arcsine law.
We let T :=inf{t > 0: B, = 51 }.
1. Show that 7" < 1 a.s. and then show that 7" is not a stopping time.
2. Show that the three random variables Sy, S; — B; and |B,| have same law.

3. Show that T" has an arcsine distribution, the arcsine distribution being a probability
law with density f defined for any ¢ € R by

1
f(t) = ml{]o;l[}(t)-

4. Show that the results of questions [1| and [3| remain true if we replace T" by L :=
sup{t <1: B, =0}.
Exercise 12. — Law of the iterated logarithm.

The aim of this exercise is to show the following property of the Brownian motion :

B
limsup—t =1 a.s.

t—oo /2t ]oglog(t)
We let h(t) := /2tloglog(t) for any t > 0.
1. Show that for any ¢ > 0,
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P(S; > t) ~umoo ———
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2. Let 7,c € R such that 1 < r < ¢% Study the behaviour of P(S,» > ch(r"™!)) as
n — oo and deduce that almost surely,

. By
limsup ———— < 1.

twoo \ [2tloglog(t)

3. Show that almost surely, there are infinitely many n such that

-1
Brn - Brnfl Z "

h(r™).

r

Conclude on the announced result.

Let us now derive a corollary from this result.
By

4. Compute liminf; m.
5. For any s > 0, show that a.s.

B s Bs . . B s Bs

lim sup s 5 =1 and liminf —22 % — 1.

£,0 2t log log(t) 1o /2t log log(t)

6. Deduce that a.s. the trajectories of the Brownian motion are nowhere 1/2-Holder
continuous.



