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Exercise 1. — Random scaling of a local martingale.

Let M be a local martingale, and U be an Fy-measurable random variable. Show that
the process (Ny)i>o := (UM;)>0 is a local martingale.
Exercise 2. — Bracket of a Gaussian process.

Let (M;):>o be a (true) martingale with continuous paths starting from M, = 0. We
assume that (M;):>o is a Gaussian process.

1. Show that for any t > 0 and s > 0, the random variable M;,, — M, is independent
of o(M,,0 <r <t).

2. Show that there exists a continuous function f : R, — R, such that a.s. Vt < 0,
(M, M)y = [(t).
Exercise 3. — Mean formula.

Let B be an F;-Brownian motion starting from 0, and H an adapted process with
continuous paths. Show that B% 3 HydB, converges in probability when ¢ | 0 towards a
limit to be determined.

Exercise 4. — Paths of M and paths of (M), part 1.

Let M be a local martingale starting from 0. For n > 0, we set
T, :=inf{t > 0, |M;| = n}, U, = inf{t >0, (M), = n}.

Prove that
e (M) is a.s. finite. on {T,, = +00}.
e M has an almost sure limit M, € R on {U,, = +o00}.
Deduce that the sets {(M). < +oo} and {(M;)s>0 has a finite limit} coincide, up to a
negligible set.
Exercise 5. — Paths of M and paths of (M), part 2.

We show in this exercise that the constancy intervals of a local martingale M and of
(M) are a.s. the same. By continuity of these processes and usual reasoning, it is enough
to show that for every fixed interval [a, b], we have almost surely

(M is constant on [a,b]) < (M), = (M)s.

1. Using the approximations of (M), — (M), associated to a subdivision of [a,b] to
show one of the implication is. Why doesn’t it give the other implication ?

2. We introduce the local martingale N defined for any ¢ > 0 by
Ni = Mgy — M,,
and adapted to the filtration (Fiy4)i>0. For € > 0, we also introduce
T. :=inf{t > 0, (N); = ¢}.

Show that for ¢ > 0, we have E[NZ ;.| < ¢, and deduce that NV, is a.s. equal to 0 on
{{M)s4+ = (M),}. Conclude.



Exercise 6. — Uniform convergence of local martingales

For any n > 1, we let M™ = (M]"):>o be a local martingale starting from 0. We assume

in this exercise that
. n n _
7111_1}130 (M™, M") o =0

in probability.
1. Let € > 0 and, for any n > 1,

T :=inf{t > 0: (M", M"), > €}.
Show that 77" is a stopping time, and show that the stopped local martingale
M = M, t2>0,

is a martingale bounded in L?.

2. Show that

E[sup \Mt’”ﬂ < 4e’.
0

3. Noticing that for any a > 0,
]P’(sup M| > a) < ]P’(sup | M™5| > a) + P(T < o0),

>0 >0

show that
lim (sup |Mt”|> =0

n—oo >0

in probability.

Exercise 7. — Brownian motion in R®.

In this exercise, we suppose d > 2 and let B, = (B}, ..., BY) be a BM in RY, starting
from x = (x1,...24) # 0.

1. Show that | B;|? is a continuous semi-martingale with decomposition
|Bif* = lal” + M, + dt,

for a local martingale M that we shall specify.

2. Show that M is a true martingale and M; = 2 fot |ledés, for some Brownian motion
B that we shall specify.

As a consequence, Xy = |Bi|? is a solution of the SDE
dX, = 2\/X, dB, + dt.

Such a solution is also called a squared Bessel process of dimension d.

3. For 0 < r < |z|, define T, := inf{t > 0, |B;| = r}. We let f; be the function defined
for any y > 0 by fy(y) :=logy if d = 2 and fy(y) := >~ ¢ if d > 3.
Show that fq(|Biar,|)i>0 is a martingale,

4. Show that for 0 < r < |z| < R, we have

f(R) = F(]x])

PO <TI0 = TR — )

Deduce that almost surely,



(a) The Brownian motion B does not hit 0 € R
(b) If d > 3, then |B;| — oo when ¢t — 0.
(c) If d = 2, the path {B;,t > 0} is dense in R?.

5. In dimension 3, show that (|B;|™!);>0 is a local martingale bounded in L?, but not
a true martingale.

Exercise 8. — Tanaka’s formula.

Let B be a Brownian motion starting from 0.
1. For any € € (0, 1], we let g.(z) = Ve + 22 (for x € R). Show that

g-(By) = e + M + A%,

where M?¢ is a continuous martingale in L? starting from 0, and A® is an increasing
process starting from 0 to be determined.

2. For x € R we let sgn(x) := 1501 — liz<o}. Show that the process M defined for
any t > 0 by
t
M, = / sgn(B;)dBs,
0

is a Brownian motion, and show that for all ¢ > 0, the random variable M} tends
to Mt in L2.
3. For t > 0, we let A; := |B;| — M,;. Show that for any ¢ > 0, the random variable

A¢ tends to A; in L?, and deduce that A is (indistinguishable from) an increasing
process.

4. Show that A is almost surely constant on the open intervals included in the set
{t >0,B, #0}.
Hint : you may start by using the convergence of A towards A, in order to deduce
that forn > 0 and s < t, we have a.s.

(At — As>1{VTE[S,t],|Br‘Zn} = 0.

5. Fort >0, we let R, := sup{r <t, B, = 0} be the last time at which B is in 0 before
t. Show that a.s.,
Ay = Ap, = —Mpg, = sup{—M,.,r < t},

and deduce the law of A;.

The formula
B = M, + sup{—M,,r < t},

where M, = f(f sgn(Bs)dBs, is called Tanaka’s formula. For t > 0, the r.v. A; is called
the local time of B in 0 at time t, and "measures" the set {s € [0,t], Bs = 0}. But
this heuristic description is not rigorous, as this set has Hausdorff dimension 1/2, so its
Lebesgue measure is 0. However, it is possible to choose an adequate gauge function, such
that A; coincides with the Hausdorff measure of this set for this gauge function.



