Exercise 1. — Random scaling of a local martingale.

Let M be a local martingale, and U be an \mathcal{F}_0 -measurable random variable. Show that the process $(N_t)_{t>0} := (UM_t)_{t>0}$ is a local martingale.

Exercise 2. — Bracket of a Gaussian process.

Let $(M_t)_{t\geq 0}$ be a (true) martingale with continuous paths starting from $M_0 = 0$. We assume that $(M_t)_{t\geq 0}$ is a Gaussian process.

- 1. Show that for any $t \ge 0$ and s > 0, the random variable $M_{t+s} M_t$ is independent of $\sigma(M_r, 0 \le r \le t)$.
- 2. Show that there exists a continuous function $f : \mathbb{R}_+ \to \mathbb{R}_+$ such that a.s. $\forall t \leq 0$, $\langle M, M \rangle_t = f(t)$.

Exercise 3. — Mean formula.

Let B be an \mathcal{F}_t -Brownian motion starting from 0, and H an adapted process with continuous paths. Show that $\frac{1}{B_t} \int_0^t H_s dB_s$ converges in probability when $t \downarrow 0$ towards a limit to be determined.

Exercise 4. — Paths of M and paths of $\langle M \rangle$, part 1.

Let M be a local martingale starting from 0. For $n \ge 0$, we set

$$T_n := \inf\{t \ge 0, |M_t| = n\}, \qquad U_n := \inf\{t \ge 0, \langle M \rangle_t = n\}.$$

Prove that

• $\langle M \rangle_{\infty}$ is a.s. finite. on $\{T_n = +\infty\}$.

• M has an almost sure limit $M_{\infty} \in \mathbb{R}$ on $\{U_n = +\infty\}$.

Deduce that the sets $\{\langle M \rangle_{\infty} < +\infty\}$ and $\{(M_t)_{t \geq 0}$ has a finite limit coincide, up to a negligible set.

Exercise 5. — Paths of M and paths of $\langle M \rangle$, part 2.

We show in this exercise that the constancy intervals of a local martingale M and of $\langle M \rangle$ are a.s. the same. By continuity of these processes and usual reasoning, it is enough to show that for every fixed interval [a, b], we have almost surely

 $(M \text{ is constant on } [a, b]) \Leftrightarrow \langle M \rangle_a = \langle M \rangle_b.$

- 1. Using the approximations of $\langle M \rangle_b \langle M \rangle_a$ associated to a subdivision of [a, b] to show one of the implication is. Why doesn't it give the other implication?
- 2. We introduce the local martingale N defined for any $t \ge 0$ by

$$N_t := M_{a+t} - M_a$$

and adapted to the filtration $(\mathcal{F}_{t+a})_{t\geq 0}$. For $\varepsilon > 0$, we also introduce

$$T_{\varepsilon} := \inf\{t \ge 0, \langle N \rangle_t = \varepsilon\}.$$

Show that for $t \ge 0$, we have $\mathbb{E}[N_{t \land T_{\varepsilon}}^2] \le \varepsilon$, and deduce that N_t is a.s. equal to 0 on $\{\langle M \rangle_{a+t} = \langle M \rangle_a\}$. Conclude.

Exercise 6. — Uniform convergence of local martingales

For any $n \ge 1$, we let $M^n = (M_t^n)_{t\ge 0}$ be a local martingale starting from 0. We assume in this exercise that

$$\lim_{n \to \infty} \langle M^n, M^n \rangle_{\infty} = 0$$

in probability.

1. Let $\varepsilon > 0$ and, for any $n \ge 1$,

$$T_{\varepsilon}^{n} := \inf\{t \ge 0 : \langle M^{n}, M^{n} \rangle_{t} \ge \varepsilon\}.$$

Show that T_{ε}^n is a stopping time, and show that the stopped local martingale

$$M_t^{n,\varepsilon} = M_{t \wedge T_{-}^n}^n, \quad t \ge 0,$$

is a martingale bounded in L^2 .

2. Show that

$$\mathbb{E}\Big[\sup_{t\geq 0}|M_t^{n,\varepsilon}|^2\Big]\leq 4\varepsilon^2.$$

3. Noticing that for any $a \ge 0$,

$$\mathbb{P}\Big(\sup_{t\geq 0}|M_t^n|\geq a\Big)\leq \mathbb{P}\Big(\sup_{t\geq 0}|M_t^{n,\varepsilon}|\geq a\Big)+\mathbb{P}(T_{\varepsilon}^n<\infty),$$

show that

$$\lim_{n \to \infty} \left(\sup_{t \ge 0} |M_t^n| \right) = 0$$

in probability.

Exercise 7. — Brownian motion in \mathbb{R}^d .

In this exercise, we suppose $d \ge 2$ and let $B_t = (B_t^1, \ldots, B_t^d)$ be a BM in \mathbb{R}^d , starting from $x = (x_1, \ldots, x_d) \ne 0$.

1. Show that $|B_t|^2$ is a continuous semi-martingale with decomposition

$$|B_t|^2 = |x|^2 + M_t + dt,$$

for a local martingale M that we shall specify.

2. Show that M is a true martingale and $M_t = 2 \int_0^t |B_s| d\tilde{B}_s$, for some Brownian motion \tilde{B} that we shall specify.

As a consequence, $X_t = |B_t|^2$ is a solution of the SDE

$$dX_t = 2\sqrt{X_t} \ d\tilde{B}_t + dt.$$

Such a solution is also called a squared Bessel process of dimension d.

- 3. For 0 < r < |x|, define $T_r := \inf\{t \ge 0, |B_t| = r\}$. We let f_d be the function defined for any $y \ge 0$ by $f_d(y) := \log y$ if d = 2 and $f_d(y) := y^{2-d}$ if $d \ge 3$. Show that $f_d(|B_{t \land T_r}|)_{t \ge 0}$ is a martingale,
- 4. Show that for 0 < r < |x| < R, we have

$$\mathbb{P}(T_r < T_R) = \frac{f(R) - F(|x|)}{f(R) - f(r)}$$

Deduce that almost surely,

- (a) The Brownian motion B does not hit $0 \in \mathbb{R}^d$.
- (b) If $d \ge 3$, then $|B_t| \to \infty$ when $t \to \infty$.
- (c) If d = 2, the path $\{B_t, t \ge 0\}$ is dense in \mathbb{R}^2 .
- 5. In dimension 3, show that $(|B_t|^{-1})_{t\geq 0}$ is a local martingale bounded in L^2 , but not a true martingale.

Exercise 8. — Tanaka's formula.

Let B be a Brownian motion starting from 0.

1. For any $\varepsilon \in (0, 1]$, we let $g_{\varepsilon}(x) = \sqrt{\varepsilon + x^2}$ (for $x \in \mathbb{R}$). Show that

$$g_{\varepsilon}(B_t) = \sqrt{\varepsilon} + M_t^{\varepsilon} + A_t^{\varepsilon},$$

where M^{ε} is a continuous martingale in L^2 starting from 0, and A^{ε} is an increasing process starting from 0 to be determined.

2. For $x \in \mathbb{R}$ we let $\operatorname{sgn}(x) := \mathbf{1}_{\{x>0\}} - \mathbf{1}_{\{x<0\}}$. Show that the process M defined for any $t \ge 0$ by

$$M_t := \int_0^t \operatorname{sgn}(B_s) dB_s,$$

is a Brownian motion, and show that for all $t \ge 0$, the random variable M_t^{ε} tends to M_t in L^2 .

- 3. For $t \ge 0$, we let $A_t := |B_t| M_t$. Show that for any $t \ge 0$, the random variable A_t^{ε} tends to A_t in L^2 , and deduce that A is (indistinguishable from) an increasing process.
- 4. Show that A is almost surely constant on the open intervals included in the set $\{t \ge 0, B_t \ne 0\}$.

Hint : you may start by using the convergence of A_t^{ε} towards A_t in order to deduce that for $\eta > 0$ and s < t, we have a.s.

$$(A_t - A_s)\mathbf{1}_{\{\forall r \in [s,t], |B_r| \ge \eta\}} = 0.$$

5. For $t \ge 0$, we let $R_t := \sup\{r \le t, B_r = 0\}$ be the last time at which B is in 0 before t. Show that a.s.,

$$A_t = A_{R_t} = -M_{R_t} = \sup\{-M_r, r \le t\},\$$

and deduce the law of A_t .

The formula

$$|B_t| = M_t + \sup\{-M_r, r \le t\},$$

where $M_t = \int_0^t sgn(B_s) dB_s$, is called Tanaka's formula. For $t \ge 0$, the r.v. A_t is called the local time of B in 0 at time t, and "measures" the set $\{s \in [0,t], B_s = 0\}$. But this heuristic description is not rigorous, as this set has Hausdorff dimension 1/2, so its Lebesgue measure is 0. However, it is possible to choose an adequate gauge function, such that A_t coincides with the Hausdorff measure of this set for this gauge function.