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Exercise 1. — Random scaling of a local martingale.
Let M be a local martingale, and U be an F0-measurable random variable. Show that

the process (Nt)t≥0 := (UMt)t≥0 is a local martingale.

Exercise 2. — Bracket of a Gaussian process.
Let (Mt)t≥0 be a (true) martingale with continuous paths starting from M0 = 0. We

assume that (Mt)t≥0 is a Gaussian process.
1. Show that for any t ≥ 0 and s > 0, the random variable Mt+s −Mt is independent

of σ(Mr, 0 ≤ r ≤ t).
2. Show that there exists a continuous function f : R+ → R+ such that a.s. ∀t ≤ 0,
〈M,M〉t = f(t).

Exercise 3. — Mean formula.
Let B be an Ft-Brownian motion starting from 0, and H an adapted process with

continuous paths. Show that 1
Bt

∫ t
0 HsdBs converges in probability when t ↓ 0 towards a

limit to be determined.

Exercise 4. — Paths of M and paths of 〈M〉, part 1.
Let M be a local martingale starting from 0. For n ≥ 0, we set

Tn := inf{t ≥ 0, |Mt| = n}, Un := inf{t ≥ 0, 〈M〉t = n}.

Prove that
• 〈M〉∞ is a.s. finite. on {Tn = +∞}.
• M has an almost sure limit M∞ ∈ R on {Un = +∞}.

Deduce that the sets {〈M〉∞ < +∞} and {(Mt)t≥0 has a finite limit} coincide, up to a
negligible set.

Exercise 5. — Paths of M and paths of 〈M〉, part 2.
We show in this exercise that the constancy intervals of a local martingale M and of

〈M〉 are a.s. the same. By continuity of these processes and usual reasoning, it is enough
to show that for every fixed interval [a, b], we have almost surely

(M is constant on [a, b])⇔ 〈M〉a = 〈M〉b.

1. Using the approximations of 〈M〉b − 〈M〉a associated to a subdivision of [a, b] to
show one of the implication is. Why doesn’t it give the other implication ?

2. We introduce the local martingale N defined for any t ≥ 0 by

Nt := Ma+t −Ma,

and adapted to the filtration (Ft+a)t≥0. For ε > 0, we also introduce

Tε := inf{t ≥ 0, 〈N〉t = ε}.

Show that for t ≥ 0, we have E[N2
t∧Tε

] ≤ ε, and deduce that Nt is a.s. equal to 0 on
{〈M〉a+t = 〈M〉a}. Conclude.
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Exercise 6. — Uniform convergence of local martingales
For any n ≥ 1, we letMn = (Mn

t )t≥0 be a local martingale starting from 0. We assume
in this exercise that

lim
n→∞
〈Mn,Mn〉∞ = 0

in probability.
1. Let ε > 0 and, for any n ≥ 1,

T nε := inf{t ≥ 0 : 〈Mn,Mn〉t ≥ ε}.

Show that T nε is a stopping time, and show that the stopped local martingale

Mn,ε
t = Mn

t∧Tn
ε
, t ≥ 0,

is a martingale bounded in L2.
2. Show that

E
[

sup
t≥0
|Mn,ε

t |2
]
≤ 4ε2.

3. Noticing that for any a ≥ 0,

P
(

sup
t≥0
|Mn

t | ≥ a
)
≤ P

(
sup
t≥0
|Mn,ε

t | ≥ a
)

+ P(T nε <∞),

show that
lim
n→∞

(
sup
t≥0
|Mn

t |
)

= 0

in probability.

Exercise 7. — Brownian motion in Rd.
In this exercise, we suppose d ≥ 2 and let Bt = (B1

t , . . . , B
d
t ) be a BM in Rd, starting

from x = (x1, . . . xd) 6= 0.
1. Show that |Bt|2 is a continuous semi-martingale with decomposition

|Bt|2 = |x|2 +Mt + dt,

for a local martingale M that we shall specify.
2. Show thatM is a true martingale andMt = 2

∫ t
0 |Bs|dB̃s, for some Brownian motion

B̃ that we shall specify.
As a consequence, Xt = |Bt|2 is a solution of the SDE

dXt = 2
√
Xt dB̃t + dt.

Such a solution is also called a squared Bessel process of dimension d.
3. For 0 < r < |x|, define Tr := inf{t ≥ 0, |Bt| = r}. We let fd be the function defined

for any y ≥ 0 by fd(y) := log y if d = 2 and fd(y) := y2−d if d ≥ 3.
Show that fd(|Bt∧Tr |)t≥0 is a martingale,

4. Show that for 0 < r < |x| < R, we have

P(Tr < TR) = f(R)− F (|x|)
f(R)− f(r) .

Deduce that almost surely,
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(a) The Brownian motion B does not hit 0 ∈ Rd.
(b) If d ≥ 3, then |Bt| → ∞ when t→∞.
(c) If d = 2, the path {Bt, t ≥ 0} is dense in R2.

5. In dimension 3, show that (|Bt|−1)t≥0 is a local martingale bounded in L2, but not
a true martingale.

Exercise 8. — Tanaka’s formula.
Let B be a Brownian motion starting from 0.
1. For any ε ∈ (0, 1], we let gε(x) =

√
ε+ x2 (for x ∈ R). Show that

gε(Bt) =
√
ε+M ε

t + Aεt ,

where M ε is a continuous martingale in L2 starting from 0, and Aε is an increasing
process starting from 0 to be determined.

2. For x ∈ R we let sgn(x) := 1{x>0} − 1{x<0}. Show that the process M defined for
any t ≥ 0 by

Mt :=
∫ t

0
sgn(Bs)dBs,

is a Brownian motion, and show that for all t ≥ 0, the random variable M ε
t tends

to Mt in L2.
3. For t ≥ 0, we let At := |Bt| −Mt. Show that for any t ≥ 0, the random variable
Aεt tends to At in L2, and deduce that A is (indistinguishable from) an increasing
process.

4. Show that A is almost surely constant on the open intervals included in the set
{t ≥ 0, Bt 6= 0}.
Hint : you may start by using the convergence of Aεt towards At in order to deduce
that for η > 0 and s < t, we have a.s.

(At − As)1{∀r∈[s,t],|Br|≥η} = 0.

5. For t ≥ 0, we let Rt := sup{r ≤ t, Br = 0} be the last time at which B is in 0 before
t. Show that a.s.,

At = ARt = −MRt = sup{−Mr, r ≤ t},

and deduce the law of At.

The formula
|Bt| = Mt + sup{−Mr, r ≤ t},

where Mt =
∫ t

0 sgn(Bs)dBs, is called Tanaka’s formula. For t ≥ 0, the r.v. At is called
the local time of B in 0 at time t, and "measures" the set {s ∈ [0, t], Bs = 0}. But
this heuristic description is not rigorous, as this set has Hausdorff dimension 1/2, so its
Lebesgue measure is 0. However, it is possible to choose an adequate gauge function, such
that At coincides with the Hausdorff measure of this set for this gauge function.
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