
ENS de Lyon - M2 January 4, 2017

Stochastic calculus, final exam (3 hrs)

The notes you have taken during the class are authorized. Other documents are not.

Exercise 1. An SDE on [0,1)

We consider the following stochastic differential equation on the time interval [0, 1) :

dXt = dBt −
Xt

1− t
dt, (1)

1. If one is given a solution of (1), write a SDE that the process Y defined by Yt = Xt

1−t
must satisfy. Deduce that for any initial condition X0, there is a unique (up to
indistinguishability) strong solution to (1), given by

Xt = (1− t)X0 + (1− t)
∫ t

0

1

1− s
dBs.

In the following, we consider such a solution X, and keep the notation Yt = Xt

1−t .

2. For t ≥ 0, we let
B̃t := Yt/(1+t) − Y0.

Show B̃ is a Brownian motion. Deduce that Xt converges almost surely to 0 when
t goes to 1, and then that it is indistinguishable from a continuous semimartingale
which is still a strong solution to (1), but which converges everywhere to 0 when t
goes to 1.

We still call (Xt)t∈[0,1] that continuous semimartingale, extended by continuity in 1 by
putting X1 = 0. We further suppose X0 = 0.

3. Show (Xt)t∈[0,1] is a centered gaussian process, with covariance function given by

Cov(Xs, Xt) = s(1− t), 0 ≤ s ≤ t ≤ 1.

Do you recognize a process we met during the class ?

4. We now consider on [0, 1) a slightly different SDE :

dXt = dBt +
Xt

1− t
dt, (2)

With similar ways as question 1, solve this equation with initial condition X0 = 0,
and discuss the behavior of its solution when t tends to 1.
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Exercise 2. Characterisation of a local martingale and of its quadratic variation

1. Suppose a is a function of finite variation on [0, t] and f a bounded measurable
function on [0, t] with values in R\{0}, such that

∀s ∈ [0, t],

∫ s

0

f(r)da(r) = 0,

(the integral above is a Stieltjes integral). Show a is constant.

2. Suppose M is a local martingale, V is a process of finite variation and their product
(MtVt)t≥0 is a local martingale. Show that the process t 7→

∫ t
0
MsdVs is indistingui-

shable from 0.

3. Suppose X is a (continuous) local martingale and A is a (continuous and adapted)
process of finite variation starting from 0. Under the hypothesis that exp(X − 1

2
A)

is a local martingale, show that A = 〈X〉.
4. We remove the assumption that X is a local martingale, and suppose instead it is

a continuous and adapted process. Under the hypothesis that the processes Z(λ)

defined for λ ∈ R by

Z
(λ)
t = exp(λXt −

λ2

2
At), t ≥ 0

are local martingales, show X is a local martingale and A = 〈X〉.
Indication : We may use the sequence of stopping times

Tn := inf{t ≥ 0, |Xt| ≥ n or |At| ≥ n}

to reduce the local martingales, and introduce a sequence of local martingales that
converge pointwise to X.

Exercise 3. Tanaka formula and local time

In this exercise, B is a brownian motion starting from 0.

1. Suppose (fε)ε>0 is a family of uniformly bounded measurable functions from R to
R, that converge pointwise to f , necessarily measurable and bounded. Show that
the processes f(B) and f(Bε) are in L2(B) (where L2(B) is the standard notation
used in class), and for each t ≥ 0, we have∫ t

0

fε(Bs)dBs →
ε→0

∫ t

0

f(Bs)dBs

in L2.
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2. For ε ∈ (0, 1], define gε(x) =
√
ε+ x2. Show we have

gε(Bt) =
√
ε+M ε

t + Aεt ,

where M ε is a square integrable continuous martingale (starting from 0) and Aε

an increasing process (starting from 0) that we shall determine.

3. We let sgn(x) := 1{x>0} − 1{x<0}, and for t ≥ 0,

Mt :=

∫ t

0

sgn(Bs)dBs

Show M is a Brownian motion, and, for every t ≥ 0, M ε
t converges to Mt in L2.

4. For t ≥ 0, we let At := |Bt| −Mt. Show that for t ≥ 0, the r.v. Aεt converges to
At in L2, and deduce that A is (indistinguishable from) a continuous increasing
process.

5. Show A is almost surely constant on all open subsets of {t ≥ 0, Bt 6= 0}.
Indication : We may first use convergence of Aεt to At to show that for η > 0 and
s < t, we have

(At − As)1{∀r∈[s,t],|Br|≥η} = 0 a.s.

6. For t ≥ 0, we let Rt := sup{r ≤ t, Br = 0} be the last time the Brownian motion
B hits 0 before time t. Show we have a.s.

At = ARt = −MRt = sup{−Mr, r ≤ t},

and deduce the law of At.

We have proven
|Bt| = Mt + sup{−Mr, r ≤ t}

with Mt =
∫ t
0
sgn(Bs)dBs, a formula known as Tanaka formula. For t ≥ 0, the r.v. At is

also known as the local time at level 0 of the Brownian motion B on time interval [0, t].
The remainder of this exercise deepens the study of local times.

7. Writing (Bt)+ := 0 ∨Bt, show we also have

(Bt)+ =

∫ t

0

1{Bs≥0}dBs +
1

2
At.

8. For x ∈ R, we define the martingale

Nx
t :=

∫ t

0

1{Bs≥x}dBs.

Show that for every x < y and t ≥ 0, we have

E
[
(〈Nx −Ny〉t)2

]
= 2

∫ t

0

∫ s

0

P(Br ∈ [x, y))P(Bs −Br) ∈ [x, y))drds

≤ c(t)(y − x)2,

where c(t) is a finite constant depending only on t.
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9. We now fix t > 0. Bound the fourth moment of Nx
t − N

y
t and deduce there is a

continuous version of the process indexed by R

x 7→ Nx
t

We now consider this continuous version, and define

Lx := 2 ((Bt − x)+ − (−x)+ −Nx
t ) ,

so that in particular L0 = At. Note that Lx depends clearly on t, but we do not
specify this dependance in the notation (recall t > 0 is now fixed)

10. Show that for any continuous function f with compact support, we can interchange
Lebesgue and Itô integrals to get∫ +∞

−∞
f(x)Nx

t dx =

∫ t

0

(∫ +∞

−∞
f(x)1{Bs≥x}dx

)
dBs.

We may think about a Riemann approximation of Lebesgue integrals, and use
again question 1 of this exercise.

11. Show that for any continuous function f with compact support, we have∫ +∞

−∞
f(x)Lxdx =

∫ t

0

f(Bs)ds.

To prove this, you may introduce the function

F (x) =

∫ x

−∞

∫ y

−∞
f(z)dzdy =

∫ +∞

−∞
f(z)(x− z)+dz.

and observe F ′(x) =
∫ +∞
−∞ f(z)1x≥zdz and F ′′(x) = f(x).
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