
ENS de Lyon - M2 November 7, 2016

Stochastic calculus, partial exam (2 hrs)

The notes you have taken during the class are authorized. Other documents are not.

The aim of this partial exam is to prove and understand the Doob-Meyer decomposi-
tion theorem of a submartingale as the sum of a martingale and an increasing process.

In the Part I, we work in discrete-time indexed by N = {0, 1, 2, . . .} with a filtration
(Fn)n∈N. In Parts II and III, we work in continuous time indexed by [0, 1], with a filtration
(Ft)t∈[0,1]. We use the same notation for these filtrations as there shall be no confusion.
We suppose these filtrations satisfy the usual conditions.

All the processes we introduce are real-valued, start from 0, and are adap-
ted and càdlàg. When you introduce a new process, you may have to check it satisfies
these properties...

PART I : discrete-time

A process X = (Xn)n∈N is called integrable if the random variables Xn are in L1,
predictable if for all n ≥ 1, the random variable Xn is Fn−1-measurable.

Theorem (Doob decomposition theorem).
An integrable process X = (Xn)n∈N has a unique decomposition as X = M + A with

. (Mn)n∈N martingale.

. (An)n∈N integrable and predictable.

As mentioned in the introduction, we implicitly ask that X, A and M are adapted
and X0 = A0 = M0 = 0.

1. Suppose X = M + A is such a decomposition. Show that for n ≥ 1, we must have

An − An−1 = E[Xn|Fn−1]−Xn−1.

2. Prove Doob theorem, with the unique decomposition (M,A) given for n ≥ 1 by

An =
n∑
k=1

(E[Xk|Fk−1]−Xk−1)

Mn = Xn − An.

3. Show X is a submartingale iff A is an increasing process.
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4. Give an example of a submartingale X which can be decomposed in two different
ways X = M+A = M ′+A′, with M and M ′ martingales and A and A′ increasing,
where A and A′ are not asked to be predictable (but still adapted).

Indication : It suffices to consider one time-step, with processes indexed by {0, 1}.

PART II : continuous-time

In this part, we will use the notion of weak-L1 convergence, which we now define.

Definition. We say a sequence (Yn) of random variables in L1 converges weakly in L1 to

Y ∈ L1, and we write Yn
wL1

−→
n→∞

Y if for every bounded random variable Z, we have

E[YnZ] −→
n→∞

E[Y Z]

We admit the following theorem, due to Dunford and Pettis :

Theorem (Dunford-Pettis theorem). If (Yn)n∈N is a uniformly integrable sequence of
random variables, then there exists a subsequence which converges weakly in L1.

1. Suppose Yn
w−L1

−→ Y . Show that for any σ-field G, we have E[Yn|G]
w−L1

−→ E[Y |G].

We call T the set of stopping times relative to the filtration (Ft)t∈[0,1], and with values in
[0, 1]. The second important definition of this part is the following :

Definition. We say an (adapted and càdlàg) process X = (Xt)t∈[0,1] is of class D if the
family of random variables (XT )T∈T is uniformly integrable.

Note this implies in particular that (Xt)t∈[0,1] is uniformly integrable.

2. Show a martingale M is always of class D. Similarly, show an integrable increasing
process A is always of class D.

It follows that the sum of a martingale and an integrable increasing process is always a
submartingale of class D. Doob-Meyer theorem shows in particular that the converse is
true :

Theorem (Doob-Meyer decomposition theorem, part A).
A submartingale X of class D has a decomposition as X = M + A with

.M a martingale

. A an integrable increasing process.

Here again, we stress that X, M and A are càdlàg, adapted, and X0 = M0 = A0 = 0.

The idea to prove this theorem is to approximate M and A with discrete-time processes,
using Doob decomposition theorem. For n ≥ 0, we let Dn = {k2−n, k = 0, 1, . . . 2n}. By
Doob decomposition theorem, we can write, for t ∈ Dn, Xt = Mn

t +Ant , where (Mn
t )t∈Dn

is a discrete martingale indexed by time in Dn and (Ant )t∈Dn an increasing process such
that Ant is Ft−2−n-measurable.
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For n ≥ 0 and λ ∈ [0,+∞), we let T nλ = inf{t ∈ Dn, A
n
t+2−n > λ}, with the convention

inf ∅ = 1.

3. Show T nλ is a stopping time and we have

E[An11An1>2λ] ≤ 2E[An1 − AnTnλ ] ≤ 2E[(X1 −XTnλ
)1An1>λ].

4. Show that P(An1 > λ) goes to 0 as λ goes to +∞ uniformly in n and deduce that
(An1 )n≥0 is uniformly integrable.

Using Dunford-Pettis theorem, we define A1 as the weak-L1 limit of some subsequence of
(An1 )n≥0. We also define M1 = X1 − A1, then Mt = E[M1|Ft] and then At = Xt −Mt.

5. Justify that the processes (Mt)t∈[0,1] and (At)t∈[0,1] can be defined this way, as
adapted and càdlàg processes starting from 0.

6. Finish the proof of Doob-Meyer decomposition theorem, part A.

PART III : Uniqueness/Naturalness

In this part, we still write A for the increasing process constructed in Part II.

1. Let (Zt)t∈(0,1] be a bounded càdlàg martingale, not necessarily 1 starting from 0.
Prove that, for n ≥ 0, we have

E[Z1A1] = E[
2n∑
k=1

Zk2−n(Ak2−n − A(k−1)2−n)].

Indication : Use E[Zk2−n|F(k−1)2−n ] = Z(k−1)2−n .

2. Deduce that we also have

E[Z1A1] = E[

∫
(0,1]

ZtdAt].

where the right hand side is a Stieltjes integral.

Indication : Write the sum of last question as
∫
Zn
t dAt for some well-defined Zn...

To get the uniqueness in the Doob-Meyer decomposition theorem, we need the property
of naturalness, which can be seen as a continuous-time analogue to predictability.

Definition. An increasing process (A′t)t∈[0,1] is called natural if for every bounded càdlàg
martingale (Zt)t∈[0,1], we have

E[Z1A
′
1] = E[

∫
(0,1]

Zt−dA
′
t].

Theorem (Doob-Meyer decomposition theorem, part B).
The process A is natural. The Doob-Meyer decomposition X = M +A with M martingale
and A integrable, increasing, and natural, is unique (up to indistinguishability).

1. In this part, Z will always denote a càdlàg martingale which does not have to start from 0

3



3. Let Z be a càdlàg bounded martingale. Prove

E[

∫
(0,1]

Zt−dAt] = lim
n→∞

E[
2n∑
k=1

Z(k−1)2−n(Ak2−n − A(k−1)2−n)],

and then

E[Z(k−1)2−n(Ak2−n − A(k−1)2−n)] = E[Z(k−1)2−n(Ank2−n − An(k−1)2−n)]

= E[Zk2−n(Ank2−n − An(k−1)2−n)].

4. Deduce from previous questions and the construction of A, that this process is
natural.

5. Suppose X = M ′ + A′ is another decomposition, with M ′ martingale and A′ inte-
grable, increasing, and natural. Show that we have

E[

∫
(0,1]

Zt−dAt] = E[

∫
(0,1]

Zt−dA
′
t],

6. Deduce that we have
E[Z1A1] = E[Z1A

′
1],

for every càdlàg martingale (Zt)t∈[0,1]. Conclude that A1 and A′1 are equal almost
surely, and then A and A′ are indistinguishable.
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