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SUMMARY

A tomographic method is applied to Love- and Rayleigh-wave seismograms in order
to address the problem of upper-mantle elastic anisotropy in the Indian Ocean. The
first step in our approach is a waveform inversion: for each path of the study, a 1-D
depth-dependent model compatible with the waveforms of the fundamental mode and
several higher modes of Love and Rayleigh waves is obtained. Then, the models related
to the different paths are inverted in order to retrieve 3-D velocity heterogeneities and
anisotropy.

In this paper, both the radial anisotropy and the azimuthal anisotropy of S waves
are investigated in detail. We find a significant radial anisotropy in the uppermost
300 km of the mantle with an overall amplitude smaller than what is found in global
studies. Azimuthal S-wave anisotropy is also present. The directions of fast S-velocities
show rather simple patterns from 100 to 300 km depth, and strong correlations with
the direction of absolute plate motion (APM) are found. In the uppermost 100 km, the
pattern of fast-velocity directions is complex and does not correlate simply with plate
motions. From 100 to 200 km depth, a correlation with APM is found in most oceanic
regions. The main lack of correlation is located in the vicinity of La Réunion and
Mauritius islands. In this region, the anisotropy exhibits a complex pattern between
100 and 150 km, possibly due to a disturbing effect of the hotspot. At 200 km depth
and deeper, azimuthal anisotropy vanishes progressively beneath most of the oceanic
regions. No significant azimuthal anisotropy is found beyond 300 km depth.

The depth extent of both azimuthal and radial anisotropy, the amplitude of radial
anisotropy and the pattern of azimuthal anisotropy support the idea of a preferential
orientation of olivine crystals in a low-viscosity zone beneath the lithosphere. This
region would be located between 100 and 200 km in oceanic areas, and possibly deeper,
between 200 and 300 km, in continental areas, not well resolved in this study.

Key words: anisotropy, Indian Ocean, surface waves, tomography, upper mantle,
waveform analysis.

1 INTRODUCTION

Two effects of seismic anisotropy are commonly observed in
the upper mantle beneath oceans. The first one, often called
polarization anisotropy or radial anisotropy, is generally
invoked to explain the discrepancy between observed Love-
and Rayleigh-wave velocities (Aki & Kaminuma 1963; Anderson
1966). The second one is a dependence of velocity on the
azimuth of wave propagation. This azimuthal anisotropy was
first observed by Forsyth (1975) in surface-wave phase-velocity
data for the Pacific Ocean. More recent studies have confirmed
that azimuthal anisotropy of surface-wave velocities is present
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in most oceanic regions: the Indian Ocean (Montagner 1986;
Roult, Rouland & Montagner 1987, Montagner & Jobert
1988), the Pacific Ocean (Nishimura & Forsyth 1989) and,
more generally, on a global scale (Tanimoto & Anderson 1984,
1985; Montagner & Tanimoto 1990, 1991). A phenomenon
commonly proposed to explain seismic anisotropy beneath
oceans is the preferential orientation of crystals of olivine,
a highly anisotropic mineral abundant in the upper mantle,
in the horizontal direction of plate motion. This oriented-
olivine model has strong support since it allows one to explain
P, velocity variations with azimuth, SKS-wave splitting
and both azimuthal and radial anisotropy of surface waves
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(e.g. Kawasaki & Konno’o 1984). Moreover, many pieces of
evidence for olivine orientation in upper-mantle fabrics have
been observed (e.g. Peselnick & Nicolas 1978; Christensen &
Salisbury 1979).

In a previous paper (Debayle & Lévéque 1997, hereafter
referred to as Paper I), we presented a 3-D S-velocity model
for the Indian Ocean obtained from long-period Love- and
Rayleigh-wave seismograms. In the present paper, we refine
our modelling of the upper-mantle structure beneath the Indian
Ocean using the same method and the same data set as in
Paper I, but now focusing our investigations on the aniso-
tropy of § waves. Few studies have used both radial and
azimuthal surface-wave anisotropy to constrain the upper-
mantle structure. While, from a theoretical point of view, the
azimuthal dependence of Rayleigh- and Love-wave phase
velocities is a well-established property of a general, slightly
anisotropic medium (Smith & Dahlen 1973), azimuthal terms
have been shown more recently to be useful to retrieve the
depth variation of elastic coefficients (Montagner & Nataf
1986; Tanimoto 1986a). In the formalisms of the latter two
papers, the phase velocity of surface waves is written as a sum
of azimuthal and non-azimuthal terms. The non-azimuthal
terms depend on the five elastic coefficients involved in a
transversely isotropic medium with a vertical axis of symmetry,
corresponding to the observation of polarization anisotropy.
The azimuthal terms depend on eight other combinations of
elastic coefficients and are related to the azimuthal variations
of surface-wave velocities. These theoretical tools have been
used in a few studies of the oceanic upper mantle beneath the
Indian and Pacific oceans. For the Indian Ocean, Montagner
& Jobert (1988) inverted phase-velocity data for both radial
and azimuthal anisotropic coefficients. For the Pacific Ocean,
Nishimura & Forsyth (1989) also inverted both polarization
and azimuthal anisotropy, using a parametrization that allows
one to estimate how far the data are compatible with different
reference frames.

In this paper, we present new results on elastic anisotropy
beneath the Indian Ocean derived from a waveform inversion
technique. As in Paper I, we benefit from an enhanced depth
resolution due to the modelling of higher-mode waveforms
and from a more homogeneous path coverage, increasing the
lateral resolution of anisotropy as compared to previous studies
in the same region. We also give, in Appendix A, an inter-
pretation of the two most important combinations of elastic
coefficients, related to the S-velocity azimuthal anisotropy.

2 METHODOLOGY AND DATA
PROCESSING

Most previous tomographic studies involving surface waves
and taking into account the effect of anisotropy have been
based on the inversion of phase (or group) velocities in a two-
step scheme. First, maps of the phase velocities of Love and
Rayleigh waves and their azimuthal variations are produced.
Then, in a second step, these maps are inverted into 3-D
models of the elastic parameters (Montagner & Jobert 1988;
Hadiouche, Jobert & Montagner 1989; Nishimura & Forsyth
1989; Montagner & Tanimoto 1991). In contrast to these
studies, we perform the inversion using an alternative two-step
procedure, in which the phase velocities do not appear directly.
The first step is a waveform inversion. It yields a 1-D model,
a function of depth, which can be considered as the average
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Figure 1. Map of the region under study, and path coverage.

of the Earth’s structure beneath the source—receiver great-circle
path. The second step is a tomographic inversion of these
path-averaged models into a 3-D model of the structure.

The waveform technique is an extension of the method of
Cara & Léveque (1987), adapted to process simultaneously a
set of seismograms with close epicentres, recorded at a single
station (see Paper I). The path-averaged, 1-D model is designed
to fit simultaneously all the seismograms related to the same
path, from the cluster of epicentres to the station. The waveform
technique gives us the possibility of retrieving information
contained in the higher-mode wave trains, thus improving the
depth resolution of the model (Cara & Lévéque 1987; Nolet
1990; Lévéque, Cara & Rouland 1991).

As in Paper I, the data set consists of 156 long-period
seismograms recorded at broad-band stations in the Indian
Ocean, corresponding to 71 paths. For each path, we process
at least one Rayleigh- and one Love-wave seismogram in the
period range between 20 and 200s. The path coverage is
shown in Fig. 1. We set the a priori information in the waveform
inversion as in Paper 1. Full details about the data and method
can also be found in Debayle (1996).

3 PARAMETRIZATION IN THE
WAVEFORM INVERSION

Let us first examine how the average source-station 1-D models
retrieved in the waveform inversion should be parametrized
in terms of elastic coefficients. The waveforms of the surface
wave trains depend in a very non-linear way on the elastic
parameters. In order to reduce this non-linearity, the inversion
is made using secondary observables of the waveforms (Cara
& Lévéque 1987). The partial derivatives of these secondary
observables with respect to the elastic parameters are linear
combinations of the partial derivatives of the phase velocities.
We can therefore analyse how the different elastic parameters
influence the secondary observables by examining how they
affect the phase velocities in anisotropic structures. The first-
order variation of the phase velocity as a function of the
azimuth of propagation is given in, for example, Montagner
& Nataf (1986) and Tanimoto (1986a) for flat structures, and
equivalent formulae are given in Tanimoto (1986b) for spherical
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structures. Omitting variations in density, the phase velocity
of Rayleigh waves propagating in a flat structure in a given
azimuth 6 depends only on four combinations of the elastic
parameters via four different partial derivatives. Using the
notation of Montagner & Nataf (1986), we can write

aC, ,
8Cr= a—AR(&A + Bc cos 20+ Bg sin 20+ Cc cos 40 + C sin 40)

0Cx 0Cy .
+ aC oC + oF (0F + H cos 20 + Hy sin 26)

oC
+ﬁ5(6L+GC00520+GSsin20). (1)

Each combination contains a transverse isotropy term (4, C,
F or L) and, in all cases but one, an azimuthal anisotropy
term. Similarly, Love-wave phase velocities depend only on
two combinations of elastic parameters, related to two different
partial derivatives:

oC
8Cy = —X(8L— G cos 20 — Gg sin 26)
oL
oC
+ ENL((SN — C¢ cos 46 — C sin 46). 2)

Not all of these six combinations can be resolved as a function
of depth with surface-wave information only. Two approaches
may be chosen to circumvent the lack of resolution. A priori
information, such as petrological constraints, may be used to
tie together the variations of different parameters, or one may
choose to invert only for the parameters having the largest
influence on the data, that is, those having the largest partial
derivatives. We choose this latter alternative. Both procedures
have been used in the literature (Nataf, Nakanishi & Anderson
1984; Montagner & Jobert 1988; Nishimura & Forsyth 1989;
Montagner & Tanimoto 1991; Maupin & Cara 1992). Nishimura
& Forsyth (1989) showed that even when using a priori
information to couple the parameter variations, only the two
best-resolved parameters can be interpreted with reasonable
confidence, and that for these parameters, the conclusions are
similar whether one uses coupling or inverts for all parameters
without coupling.

Among the six partial derivatives appearing in the above
equations, the two clearly dominant ones are (Montagner &
Nataf 1986) 0Cg /0L, related to Rayleigh-wave phase velocities,
and 0C, /ON, related to Love waves. From eqgs (1) and (2),
the two combinations of elastic parameters best resolved by
surface waves are therefore oL = 8L + G cos 26 + Ggsin 260
and 8N = 6N — C cos 40 — Cs sin 46. We show in Appendix A
that these two combinations of elastic parameters are actually
those controlling, in the long-period approximation, the
velocities of SV and SH waves propagating horizontally in
the azimuth #. This confirms that even in fully anisotropic
structures, the velocity of horizontally propagating SV and SH
waves, in a depth range controlled by the period and the rank
of the mode, is the most influential factor in the first-order
variation of surface-wave phase velocities.

For the inversion to yield directly a parameter describing
the degree of anisotropy in the structure, we prefer to use,
instead of L and N, a parametrization of the model similar to
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that used by Takeuchi & Saito (1972). Here we define

[ \/Z \/L+ G cos 20 + Gg sin 26
V=L = >
p P

. N N—Cccos 48— Cgsin 49 3
é_I:_L+GC00520+Gssin29' (3)
Their partial derivatives are the partial derivatives dC/dfy and
0C/0¢ of a transversely isotropic structure with a vertical axis
of symmetry.

In the absence of azimuthal anisotropy (or if the azimuthal
variation has been averaged out), these parameters reduce to
Bv and & as defined by Takeuchi & Saito (1972). In the
presence of azimuthal anisotropy, they are the apparent fy and
¢ parameters resolved by surface waves propagating in the
azimuth 8. The advantage of using & directly in the inversion,
compared to inverting for L. and N and calculating afterwards
the ratio N/L, is that we avoid the inconsistencies which arise
from comparing models at differing resolution. However,
choosing & has a disadvantage in terms of azimuthal variations:
this parameter experiences both 20 and 46 variations, while
L varies with 20 only and N with 46 only. As we will see
later on, the azimuthal variation of £ cannot be resolved in
our study and its more complex azimuthal behaviour is no
disadvantage in our case.

The above discussion has been worked out in the frame-
work of flat earth structures. For studies on the regional
scale (a few thousand kilometres in the Indian Ocean), the
Earth’s sphericity cannot be neglected. For spherical structures,
Tanimoto (1986b) and Mochizuki (1986) showed that the
expressions for the velocity perturbation in spherical aniso-
tropic structures tend to the corresponding expressions for flat
structures at short periods, and we can expect eqs (1) and (2)
to remain a good approximation in our case. In this study,
we use partial derivatives calculated for spherical structures
(Takeuchi & Saito 1972). We do neglect the three partial
derivatives related to the elastic parameters 4, C and F, but
we keep in the inversion the partial derivatives dCg /0N and
0Cy /0L, in addition to the dominant ones dCg /6L and 0Cy /ON.
These additional partial derivatives are small. Indeed, 0Cy /0N
is exactly zero in flat structures and, even if it takes non-zero
values in a spherical structure, it is always much smaller than
0Cg/0L. On the other hand, éC, /0L is non-null in flat as well
as in spherical structures, but it is always smaller than Cy /oN.
A consequence of this choice is that the azimuthal variations
contained in our inverted parameters By and  are not strictly
those of ﬁv and £ as defined in eq. (3), but are so close that
they can be interpreted as such.

4 FROM PATH-AVERAGED MODELS TO
THE 3-D MODEL

Applying the waveform inversion to our data set for the Indian
Ocean, we get for each path i the two depth-dependent models
Bi(z) and (z). We can then combine these path-averaged
models into one single 3-D mode! for the Indian Ocean via a
tomographic inversion. Actually, this inversion is performed
depth by depth. In order to analyse the results of the tomo-
graphic inversion, we compute at each depth the quality
criterion
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where n is the number of data points; d; is the data §; or &; for
path i at the appropriate depth; d_; is the calculated data for
the inverted model, for path i; and o; is the standard error of
the data (it corresponds to the a posteriori standard deviation
computed in the waveform inversion). The value of y is close
to 1 when the average data misfit is close to the average data
error bar.

Radial anisotropy: the £ parameter

The &, models obtained from the waveform inversions have
rather large a posteriori standard deviations. This is because
the accuracy of the ; values is damaged by the larger noise
level usually present in the Love-wave data. As a consequence,
the data do not allow us to retrieve the azimuthal terms of
& (eq. 3) for the Indian Ocean, nor their lateral variations.
A simple 1-D average model, without lateral or azimuthal
variations, is sufficient to explain the data corresponding to
the paths in Fig. 1 within their average error bars (y close to
or less than 1 at each depth). Since the & parameter we use in
the inversion includes azimuthal terms, we might suspect that
azimuthal variations might bias the average ¢ model if the
azimuthal sampling was uneven. However, we are dealing here
with the average model for the whole region under study, and
the azimuthal coverage to be considered is the global coverage
for the whole map (Fig. 1) considered as a single cell. This
global coverage is good enough to average out the possible
azimuthal variations, so that the average £ model is not likely
to suffer significant bias. The inverted £ can then be interpreted
as the mean ¢ parameter of Takeuchi & Saito (1972) for the
Indian Ocean.

The ¢ model for the whole Indian Ocean, presented in Fig. 2,
reveals a significant polarization anisotropy in the uppermost
250-300 km of the mantle. The amplitude of anisotropy is
smaller and the depth extent slightly greater than in the PREM
model (Dziewonski & Anderson 1981). It is in better agreement
down to 400 km with the results of Montagner & Kennett
(1996), who determine a set of global reference models giving
an acceptable fit to both body-wave and normal-mode data.
However, these authors found models with significant radial
anisotropy in the whole upper mantle, while we find ¢ values
departing from 1 in the upper 400 km only. Moreover, the &

depth (km)

S

1 i i 1 1 I L {

Figure 2. Radial-anisotropy average model obtained for the whole
region. Significant anisotropy is observed down to 250-300 km depth.

amplitudes they found in the upper part are twice as large as
what we find, suggesting that the polarization anisotropy for
the Indian Ocean may be weaker than the world average. We
can rule out the idea that we over-constrained the £ parameter
in the inversion, for instance by using too small a priori values
at the waveform modelling stage, since several tests performed
on synthetic data showed the ability to retrieve & values twice
as large as what we find from actual data.

On the regional scale, Montagner & Jobert (1988) analysed
the fundamental mode of Rayleigh and Love waves for the
Indian Ocean, and found a significant S-wave radial anisotropy
in the whole depth range of their inversion, from 0 to 400 km.
Our ¢ model indicates a shallower anisotropy, which is more
similar to the results of Nishimura & Forsyth (1989) for the
Pacific Ocean, who also find anisotropy only in the upper
300-400 km of the mantle, but had no good resolution at
greater depths. Our ¢ amplitude corresponds to that observed
in a 0—4 Ma old basin in the Pacific Ocean, according to these
authors. For older oceanic regions of the Pacific Ocean,
Nishimura & Forsyth (1989) find larger ¢ amplitudes. Again,
we find a weaker radial anisotropy for the Indian Ocean than
for other oceanic parts of the Earth. The depth of the aniso-
tropic layer in our model can be compared to the results
obtained by Cara & Lévéque (1988) for the Pacific Ocean,
using higher-mode data, who find significant radial anisotropy
in the uppermost 250 km of the mantle for a path crossing
the Pacific Ocean. However, comparing the amplitude of
anisotropy from this study to that of Cara & Lévéque (1988)
is not straightforward, since their £ model was obtained for a
single path in a particular azimuth and is not an azimuthally
averaged value.

Velocity and azimuthal anisotropy: the ﬁv parameter

The f; models are primarily determined by the Rayleigh-wave
data. In contrast with the ¢ parameter, the precision of the f;
is such that their azimuthal variations for the Indian Ocean
can be resolved. In Paper I, we performed a tomographic
inversion of By using the continuous regionalization algorithm
of Montagner (1986), and obtained maps at different depths
of lateral variations of fy with a lateral resolution of 1000 km.
Below 150 km depth, the quality criterion y is smaller than 1,
which means that the data are fitted within their average error
bars. On the other hand, in the upper 100 km of the model,
lateral variations of fy do not fully explain the data, since y
is larger than 1, reaching a value of 2.77 at 50 km depth. Part
of the residual misfit may be addressed by means of azimuthal
anisotropy. In the following sections, we establish and discuss
results obtained when allowing for azimuthal anisotropy in
the inversion process, in addition to S-velocity heterogeneities
and radial anisotropy.

Starting from eq. (3) and omitting variations in density, we
can write, at a given depth, the first-order relation

8By = 6By + A; cos 20 + A, sin 20, (5)

where 8y is the perturbation of the shear-wave velocity obtained
beneath a given path with the waveform inversion, dfy is
the perturbation of the elastic coefficient By, A; = G¢/2pfv,
A, = Gg/2pPy and 0 is the azimuth. Parameters 8y, 4, and
A, are retrieved from 6y using the continuous regionalization
algorithm of Montagner (1986). In this algorithm, the a priori
information on the model is gaussian and is characterized
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by two parameters: a horizontal correlation length, which
constrains the lateral smoothness of the model, and the a priori
standard deviation, which controls the allowed variation range
of the inverted parameters. The a priori values for 6fy are the
same as in Paper I (correlation length = 1000 km and a priori
standard deviation = 0.1 km s~ !). After some trials, we also
chose a correlation length of 1000 km for the anisotropic
parameters A, and A4,, and the a priori standard deviation o,
equal to 0.005 km s™!. This last value may appear very small
compared to o4 , but it is required to obtain reasonable G
amplitudes using the expected values of elastic coefficients in
the upper mantle, as estimated by Estey & Douglas (1986).
Also, note that this kind of a priori information efficiently
controls the amplitude but does not impose any constraint on
the direction of azimuthal anisotropy.

Even if allowing for azimuthal anisotropy is not sufficient
to get x close to 1 at depths of 50 and 100 km, it is nevertheless
a significant improvement since the y values obtained, 2.14 at
50 km depth and 1.43 at 100 km depth, correspond to variance
reductions of 40 per cent and 25 per cent respectively. At
larger depths, where the data were already fitted within their
error bars, the variance reduction is smaller, decreasing from
14 per cent at 150 km to 8 per cent at 300 km depth.

In Fig. 3 we present the maps obtained of lateral variation
of By and azimuthal anisotropy. Lateral variations of the
elastic coefficient By are represented by colours. The 4, and
A, values have been transformed into arrows showing the
direction of maximum G, which is also the fast direction for
SV waves propagating horizontally (see Appendix A). The
arrow size is proportional to the percentage of peak-to-peak
azimuthal variation of the SV-wave velocity. The error maps
for fy are very similar to those already presented in Paper I.

Allowing for azimuthal anisotropy does not change the
velocity maps. This can be checked by comparing Fig. 3 of the
present paper with Figs 1 and 2 of Paper I. For example, at
50 km depth, the velocity pattern of Fig. 3(a) is very similar to
that of Fig. 1(c) of Paper I, and this holds for the whole depth
range of inversion. The trade-off between azimuthal anisotropy
and lateral heterogeneities remains weak, and the conclusions
of Paper I are unchanged when introducing azimuthal aniso-
tropy into the inversion: the main velocity heterogeneities are
confined to the uppermost 250 km of the upper mantle beneath
oceans and 300 km beneath continents. The velocity pattern is
well correlated with surface tectonics down to 200 km beneath
the Indian Ocean, but unexpected short-wavelength anomalies
are found, such as high velocities beneath the Carlsberg ridge
and, at shallow depth only, beneath the West Indian ridge. We
refer the reader to Paper I for a more detailed discussion of
fBv maps and we will now focus on the results related to
azimuthal anisotropy.

At 50 km depth (Fig. 3a), the pattern of azimuthal anisotropy
appears quite complex. The fast directions are perpendicular
to the East and Central Indian ridges near the triple junction
of Rodriguez but turn clockwise near the island of Amsterdam,
to become parallel to the East Indian ridge between 80°E and
100°E, and again perpendicular to the East Indian ridge
beyond 100°E. Anisotropy is weak beneath Australia and most
continental regions. It is strong below Indonesia and west of
90°E. The maximum peak-to-peak value of the S-wave aniso-
tropy reaches 4.8 per cent beneath the West Indian ridge at
37°E. The average value for the whole map is 1.1 per cent.

At 100km depth (Fig. 3b), the map displays a simpler
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pattern of fast direction. Fast directions appear perpendicular
to the East and Central Indian ridges along the entire length
of these ridges. Conversely, there seems to be no correlation
with the direction of the slowly spreading West Indian ridge.
The anisotropy beneath Indonesia is now very small, but
becomes significant beneath Australia with fast velocities
organized in an east—west direction. The average peak-to-peak
velocity anisotropy decreases to 0.7 per cent and corresponds
to about three times the a priori value set for the coefficients
A; and A,. The maximum peak-to-peak anisotropy is 2.3
per cent.

At 150 km depth (Fig. 3c), the general pattern of anisotropy
is similar to that found at 100 km depth. However, the amount
of anisotropy decreases (the average peak-to-peak value is now
0.33 per cent), especially in the western part of the map. The
Chagos ridge, Mascareignes plateau and Réunion-Mauritius
region display low anisotropy. Azimuthal anisotropy remains
large beneath the East Indian ridge and beneath Australia,
where the fast directions are still clearly east—west.

At 200 km depth (Fig. 3d), two regions display a large By
anisotropy with a maximum peak-to-peak value close to 1 per
cent: (1) the region between Madagascar and the Central
Indian basin displays north-south fast velocities, extending
southwards beneath the West Indian ridge and the Rodriguez
triple junction as far as 45°S; and (2) a large region where
north—south fast-velocity directions appear clearly, which com-
prises Australia and the southern Indian Ocean near the
Australian—~Antarctic discordance, and reaches the Antarctic
continent. The average peak-to-peak value of fy anisotropy
for the whole map is 0.30 per cent, about the same value as at
150 km depth.

At 300km depth (Fig. 3f), the azimuthal anisotropy is
everywhere very small compared to shallower depths. The two
maxima observed on the previous map (south of Madagascar
and Australia—Antarctic) are still visible but do not exceed 0.45
per cent. The average peak-to-peak value on the whole map
is only 0.15 per cent.

Maps at greater depths (not presented here) display extremely
small azimuthal anisotropy, which can be considered as not
significant.

5 DISCUSSION

Before discussing the pattern of anisotropy we have obtained
for the Indian Ocean upper mantle, we will demonstrate that
this pattern is robust. In the previous section, we mentioned
that this study of the azimuthal anisotropy was intended to
explain part of the misfit remaining after the inversion with-
out azimuthal anisotropy presented in Paper 1. However,
other phenomena may alternatively explain this residual misfit.
Short-wavelength heterogeneities of S velocity are not properly
modelled in our inversion, since we use a correlation length of
1000 km. It is well known that sharp lateral transitions exist
in the real Earth, such as the ocean—continent boundaries.
In the present study, we invert only for the mantle part of
the model, after carefully accounting for the average crustal
structure along each path. We thus avoid retrieving the sharp
crustal boundaries, and are left only with possible sharp mantle
transitions. At an early stage of this study, we made attempts
to model these sharp mantle transitions by using a pure-path
regionalization based on a priori boundaries, but we never
succeeded in decreasing the misfit with physically acceptable
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models. Instead, we decided to perform a regionalization
without a priori boundaries and we also made attempts to
resolve sharp heterogeneities by choosing correlation lengths
as small as possible. A value of 500 km allows us to decrease
significantly the misfit as compared to 1000 km, but it is an
extreme value, at which instabilities in the model perturbations
seem to develop already. Conversely, the 1000 km correlation
length we finally retained ensures a good stability of the
inverted model and allows full coverage of the region under
study. This can be seen in Fig. 4, where we represent the model
obtained from the inversion of synthetic data corresponding
to waves propagating in a laterally homogeneous structure at
an § velocity of 6 km s™!, along the same paths as used in this
study. The a priori model was set equal to 4 kms™!, so that
we expect to find a + 50 per cent perturbation wherever the
combination of the path coverage and the correlation length
allows it. It is clear in Fig. 4 that the path coverage and
correlation length we have used in this study allow us to
recover this flat model uniformly in the whole region. The
effect of the correlation length is both to smooth the model
perturbation when several paths are available, and to smear
the perturbation towards 2ones not actually sampled by the
surface waves. This smearing appears in light blue in Fig. 4 at
the edges of the covered area. It can be interpreted as the effect
of the width of the gaussian used as the correlation function.

We must also analyse the possible trade-off between azi-
muthal anisotropy and the short-wavelength heterogeneities
that we cannot resolve. If such a trade-off exists, the azimuthal
anisotropy we obtain may originate from a mismodelling of
heterogeneities. In order to test this, we performed an experi-
ment where synthetic data were computed from the 3-Smac
model (Nataf & Ricard 1995) along our paths. We then
processed these isotropic synthetic data according to the same
scheme as was used for the actual data. The inverted model
(Fig. 5) shows a smoothed image of the 3-Smac S velocities
and also displays a small amount of azimuthal anisotropy,
entirely due to the trade-off between the isotropic part and
the anisotropic part of the model, since no anisotropy exists
in the 3-Smac model. The azimuthal anisotropy is small on
average (0.2 per cent) and shows up mainly in three regions:
the easternmost part of Africa and the Somalian basin, the
neighbourhood of the Rodriguez triple junction, and the
eastern part of the Southeast Indian ridge. While a lack of
azimuthal coverage can reasonably be invoked for the first
and third regions, it is clearly not the case for the Rodriguez
region. The 0.5 per cent peak-to-peak azimuthal anisotropy
we obtain in this region is therefore a crude estimate of the
trade-off we can expect in our model, if the actual Earth
resembles the 3-Smac model. Indeed, the S-velocity contrasts
in the 3-Smac model are about 8 per cent, similar to what we
find for S velocities at depths greater than 50 km. This 0.5 per
cent bias is smaller than the anisotropy we obtain in several
regions from real data, down to 250 km depth.

We also performed inversions of the real data, decreasing
step by step the correlation length associated with the S-velocity
heterogeneities and keeping unchanged the other parameters.
If a trade-off exists between short-wavelength heterogeneities
and azimuthal anisotropy, it should gradually affect the
anisotropy pattern. What we actually find is a great stability
of this pattern for correlation lengths between 1000 and
500 km. The overall amplitude of azimuthal anisotropy slightly
decreases with the S-velocity correlation length, at all depths

except 50 km, where the decrease is more significant. We thus
think that our choice of a 1000 km length is conservative with
respect to the stability of the anisotropic pattern. We could
shorten this correlation length to 500 km without affecting
significantly our results. The main changes would be more
details, possibly meaningless, in the S-velocity maps and ‘a
small reduction of the amplitude of azimuthal anisotropy, but
no change in the fast directions of S velocities. Similarly,
changing the a priori values of parameters 4; and A4, results
in a change of the amplitude of anisotropy, but does not
significantly modify the fast-direction pattern.

A last point we would like to discuss is the ability of our
path coverage to resolve azimuthal anisotropy with a 1000 km
correlation length. A first piece of the answer comes from the
stability of the fast-velocity pattern throughout the various
experiments we performed on real data. A second argument is
to look at the path coverage (Fig. 1), keeping in mind that we
are looking for a 260 azimuthal variation, which requires
sampling each cell in a minimum of only three different
directions. It is then clear that our path coverage enables us
to retrieve the 20 azimuthal anisotropy in most of the area
under study.

From these experiments, we conclude that trade-off biases
between azimuthal anisotropy and S-velocity heterogeneities
certainly exist, but remain small in amplitude and very small
in direction. We think that the pattern of directions of fast S
velocities we find is sufficiently stable to be considered as a
robust feature of our model.

Elastic anisotropy in the mantle is commonly attributed to
the preferred orientation of minerals, especially olivine crystals,
in the shear strain field associated with the flow of material
(e.g. Karato 1992). Our understanding of the relation between
the flow pattern and the resulting elastic anisotropy has been
refined by several recent studies (Chastel et al. 1993; Blackman
et al. 1996; Tommasi, Vauchez & Russo 1996). Although these
models show that the details of the relation between anisotropy
and flow pattern may be more complex than initially intuited
(Hess 1964), they confirm that the flow can produce an
orientation of the olivine crystals which is compatible with the
seismic observations. They show that, on the large scale at

. which surface waves sample the structures, the fast a axis of

olivine becomes dominantly oriented in a vertical plane with
the same azimuth as the flow and the maximum shear strain.
For olivine crystals with their fast a axis oriented in a given
direction of the horizontal plane, it is well known that the
direction of the a axis determines the direction of the fast SV
waves, and thereby the direction of high Rayleigh-wave phase
velocity (e.g. Babuska & Cara 1991). The recent models
mentioned above show that the pattern of crystal orientation
is not simply horizontal and that the olivine a axis may be
dominantly inclined away from the horizontal plane. Although
the amplitude of Rayleigh-wave-velocity azimuthal variation
gradually reduces when the a axis departs from the horizontal
plane, the direction of the fastest Rayleigh wave remains in
the vertical plane containing the a axis (Maupin 1984). The
fast direction of horizontally propagating long-period SV
waves is therefore also in this direction, and we can directly
interpret our maps of fast-wave directions in terms of a axis
orientation, and then in terms of the azimuth of the shear
strain responsible for crystal orientation.

At lithospheric depths beneath oceans, it is commonly assumed
that the flow is frozen, and that the fast-velocity direction
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Figure 3. SV-velocity heterogeneities and azimuthal anisotropy at different depths. Velocity contrasts (per cent) are represented by colours; fast

directions of horizontally propagating SV waves are represented by arrows. (a) Depth 50 km, (b) depth 100 km, (c) depth 150 km, (d) depth 200 km,
(e) depth 250 km, (f) depth 300 km.
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Figure 4. Synthetic experiment: recovering a flat model. Model
obtained by inversion of synthetic data corresponding to a uniform
+50 per cent. S-velocity perturbation. The synthetics have been
processed using the same correlation length as for the real data (Fig. 3).
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Figure 5. Synthetic experiment: recovering an isotropic-earth-like
model. Model obtained by inversion of synthetic data corresponding to
the S-velocity distribution of the 3-Smac model at 50 km depth. The
displayed azimuthal anisotropy is a crude estimate of the trade-off
between heterogeneities and azimuthal anisotropy.
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Figure 9. Correlations between fast direction of SV waves and plate motion direction. Good correlations (parallelism of the two vectors) are represented
in blue, bad correlations (orthogonality) are represented in red. The correlation coefficient is defined as |FastSV || APM| cos[2(Oagisy — @arm)]-
Note that values close to zero are obtained when the angle between the two vectors is close to 45°, but also when at least one of the two vectors
is small in amplitude. The colour scales are symmetric, adapted to cover the full range of values at each depth. The amplitude of the correlation
coeflicient is not shown, since it depends on the anisotropy strength and is difficult to interpret.
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reflects the spreading direction at which thé lithosphere has
been emplaced (e.g. Nishimura & Forsyth 1989). For the
Indian Ocean, the spreading direction is dominantly south-
west—northeast along the Central Indian ridge and the western
part of the Southeast Indian ridge (Fig. 6). It is rather north—
south along the Southwest Indian ridge and in older regions
between the Chagos plateau and Sumatra/Australia.

At larger depths, it is more likely that the flow is not frozen,
and that the orientation of the crystals reflects the direction of
present-day deformation in a low-viscosity channel due to
the displacement of the lithospheric plate over the underlying
asthenosphere. Except for the elastic anisotropy, we have no
direct evidence for the direction and amplitude of this shear
strain. In the following discussion, we assume that the defor-
mation is controlled by the differential displacement between
the lithosphere and that part of the upper mantle beneath the
low-viscosity layer. The lithosphere motion is robustly known
from plate motion models such as Nuvel-1 (DeMets et al.
1990). The mantle motion is known more indirectly and with
much less accuracy, essentially from global flow models. For
fast-moving plates, expecially for the Pacific plate, the return
flow is likely to be parallel to the plate motion and in the
opposite direction (Hager & O’Connell 1979). The induced
shear deformation is therefore likely to be parallel to both the
plate motion and the return flow, so that it has been common
to compare the sublithospheric direction of anisotropy with
the direction of plate motion. In our study area, the Austral-
Indian plate, moving at 7-8 cm yr~! relative to the hotspot
reference frame, can certainly be considered as such a fast
plate, where the deformation is thus parallel to the absolute
plate motion. The African and Antarctic plates are moving
much more slowly. Hager & O’Connell (1979) show that for
these two plates, the direction of flow may be very different
from the direction of plate motion. They present two maps of
modelled flow at 260 km depth in the mantle. For the two
models, the flow is significantly different in these two static
plates, showing that the flow direction one can infer for these
regions is very model-dependent. We choose to discuss our
observations using their model VII, which contains a low-
viscosity channel at the base of the lithosphere and seems to
provide a better overall fit to available observations of seismic
anisotropy (Tanimoto & Anderson 1984). In this study, we
use an absolute plate motion (APM) model derived from
Nuvel-1 by imposing a null global average motion of the
lithosphere. The APM model is thus defined in a way very
similar to that used by Hager & O’Connell (1979), so that
APM and flow are defined in a common reference frame and
can be directly subtracted from one other to estimate the shear
deformation. For our study area, it turns out that the predicted
flow pattern is quite similar to the APM pattern (Figs 7 and
8), both in directions and amplitudes. The resulting defor-
mation pattern should then resemble the two primary fields,
and, to obtain a first rough idea, we can directly compare our
fast-velocity maps to the well-constrained APM field in the
whole studied area (Fig. 9).

In order to determine whether the anisotropy we observe
reflects a frozen or a present-day deformation, it is important
to point out in which regions of the Indian Ocean the direction
of spreading, as known from the magnetic anomalies, differs
most from the present day APM. In the younger regions of
the Austral-Indian plate, the two directions are similar. The
direction is different in the older region between the Chagos
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plateau and Sumatra/Australia, in the old oceanic basins west
and north of Madagascar, and along the Southwest Indian
ridge. A typical difference is also that the direction and speed
of spreading are symmetric across a spreading ridge, whereas
the shear strain may be rather discontinuous. In particular,
both the flow modelled by Hager & O’Connell (1979) and
the APM are very small at the base of the Antarctic plate,
while the magnetic anomaly pattern is symmetric across the
Southeast Indian ridge.

A simple pattern of relatively large anisotropy is obtained
at a depth of 100 km (Fig. 3b). In the oceanic basins of the
Austral-Indian plate, the direction of fast velocity at that depth
corresponds well with the APM direction (Fig. 9b). However,
in contrast to the APM, the pattern of anisotropy is continuous
across the ridges and significant anisotropy is found in the
Antarctic and African plates. Part of the anisotropy found in
these plates may come from a leakage of the Austral-Indian
plate anisotropy, due to the correlation length (1000 km) used
in the tomographic inversion. However, beneath the African
plate, significant anisotropy is found far from the plate bound-
ary. The direction of this anisotropy does not correspond with
the roughly north—south trend resulting from the APM and
flow-model directions, nor with the past spreading direction.

At 50 km depth (Fig. 3a), the pattern is more complicated
than at 100 km depth. There is a large east—west anisotropy
under the West Indian ridge, which does not correlate with
the direction of spreading or with the APM and flow models.
Fast velocities are found in a north-south direction in the
Somali basin and in the Wharton basin, in good agreement
with the directions of spreading in these regions. In the eastern
part of the Central Indian basin, the SW-NE direction of fast
velocity is in better agreement with the direction of flow and
APM than with the past spreading direction.

At 150 and 200 km depth (Figs 3c and d), the areas with
a significant amount of anisotropy become more localized,
and the maximum amplitude of anisotropy decreases. Under
the Southeast Indian ridge at 150 km depth, the direction of
anisotropy correlates well with the direction of APM (Fig. 9¢),
and it extends southwards well into the Antarctic plate as
already observed at 100 km depth. The maximum of anisotropy
is reached under the Southeast Indian ridge. At 200 km depth,
the anisotropy has almost disappeared in this region, and
the maximum amplitude is located in faster regions, under
Australia and the Southwest Indian ridge. This could indicate
that the anisotropy extends deeper in colder regions. An
exception to this scheme is the slow region west of the Central
Indian ridge, where significant azimuthal anisotropy still exists.
This may be related to the presence of the hotspot of the La
Réunion—-Mauritius islands, disturbing an otherwise simpler
pattern of azimuthal anisotropy. As noted in Paper 1, a low-
velocity region is present between 150 and 200 km depth
beneath the Central Indian ridge and the hotspot of La
Réunion—Mauritius. Such low velocities at these depths are
consistent with recent models of mantle plumes (see Davies &
Richards 1992 for a review): a plume conduit, 100 to 200 km
wide horizontally, rising from the deep mantle (possibly from
a thermal boundary layer at the core-mantle boundary or
in the transition region), spreads out radially beneath the
lithosphere, creating a hot structure near the bottom of the
lithosphere. While the plume conduit may be too narrow to
be seen by surface waves, the hot structure near the bottom of
the lithosphere may reach 1000 km in diameter and should be
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Figure 7. Mantle flow model at 260 km depth (after Hager &
O’Connell 1979).

easier to detect. A low-velocity anomaly is clearly present at
150 and 200 km depth (Figs 3c and d). How such a structure
could perturb the flow pattern and the elastic anisotropy
distribution remains an open question.

Another striking feature of these maps at 150 and 200 km
depth can be seen beneath Australia: while anisotropy tends
to be oriented east-west down to 150 km depth, it rotates to
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Figure 8. Absolute plate motion (APM) model derived from model
Nuvel-1 (DeMets et al. 1990) by imposing a global null average
rotation of the lithosphere.

a north-south direction at 200 km depth, in agreement with
the APM and the flow direction. This feature remains at
greater depths (Fig. 3e). It can still be seen at 300 km depth,
even though the amplitude of anisotropy becomes very small.
This drastic change in the direction of anisotropy could be
interpreted as an indication of the thickness of the lithosphere:
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beneath Australia, the average thickness defined in this way is
not likely to exceed 200 km. Below this depth, the anisotropy
may reflect the northward movement of the Australian litho-
sphere over a low-viscosity channel, roughly 100 km thick.
This observation is consistent with the depth of the anisotropic
layer proposed by Leven, Jackson & Ringwood (1981) from a
P-wave refraction profile in northern Australia. It is also
supported by the previous studies of Kennett, Gudmundsson
& Tong (1994) and Gudmundsson, Kennett & Goody (1994),
who find, from broad-band observations in northern Australia,
a high lithospheric lid, 210 km thick, overlying a low-Q zone
which may be 100 or 200 km thick. Analysis of shear-wave
splitting, in refracted waves returned from the upper-mantle
transition zone in the same region, shows that significant
polarization anisotropy is present in this asthenospheric layer
(Tong, Gudmundsson & Kennett 1994). However, on the
scale of the continent, high-resolution surface-wave studies
(van der Hilst & Kennett 1997) suggest significant variations
in the structure of the different tectonic provinces constituting
the Australian continent. Moreover, this rotation of the fast
direction of S velocity is constrained essentially by one piece
of data, for the easternmost N-S path (see Fig. 1). We paid
special attention to this piece of data, trying to model the
related seismograms in different ways, for example with faster
velocities at shallower depth. We finally found that our
S-velocity model for this path is robust and decided to keep it
in the inversion. However, there is no redundancy in our data
set to constrain this feature. Further studies are therefore
necessary to investigate in more detail the anisotropy of the
Australian upper mantle and check whether our result is
confirmed or not by new data. _

Beneath Africa, no such clear indication is found. The
anisotropy is weak below 100 km. The fast direction seems to
rotate from NW-SE at 100 km to a quasi-N-S or NNE-SSW
direction at greater depths, in quite good agreement with the
direction found by Vinnik, Green & Nicolaysen (1995) from
SKS splitting, but it is difficult to put confidence in this result,
owing to the weakness of the anisotropy and, more generally,
to the poor resolution we have in this region.

In Paper I, a cross-section in the velocity model shows
continental roots extending down to 250-300 km. If confirmed,
the anisotropy results beneath Australia presented here would
support the idea of Vinnik et al. (1995) that deep continental
roots may experience significant deformation as shallow as
200 km, due to plate motions and flow in the mantle.

6 CONCLUSIONS

We have used surface-wave and higher-mode waveform model-
ling to address the problem of upper-mantle anisotropy
beneath the Indian Ocean, described by both radial anisotropy
and the azimuthal anisotropy of S waves. We find a significant
radial anisotropy in the uppermost 250-300 km of the mantle.
The amplitude of our £ model is smaller than what is found
in global models or regional oceanic models. For azimuthal
anisotropy, the situation is complex in the uppermost 100 km
of the mantle. Fast-velocity directions do not correlate simply
with plate motion. The similarity of fast directions to directions
of fossil spreading in the Somali basin and the northern part
of the Central Indian basin is in agreement with the idea of
anisotropy due to frozen-in oriented crystals in the thick
lithosphere of these old oceanic regions. From 100 to 200 km
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depth, significant correlations between the directions of fast
velocities and APM appear in most oceanic regions, while no
strong correlation is observed beneath continents. A relative
lack of correlation shows up in the oceanic region of the La
Réunion-Mauritius islands, where the pattern of anisotropy
is blurred and weakened between 100 and 150 km. This
complexity of the azimuthal anisotropy, together with the
corresponding velocity anomaly, may be due to the presence
of the hotspot.

The fast directions at 100 km depth and deeper correlate
well with the direction of APM and flow for the fast-moving
Austral-Indian plate, but the amplitude of anisotropy remains
large under the slowly moving plates, especially under the
Antarctic plate. If, as expected for slow plates, the azimuthal
anisotropy reflects the flow direction and strength, our obser-
vations might indicate that a significant flow exists in the
asthenosphere beneath the Antarctic plate, likely to be related
to the strong upwelling at the Southeast Indian ridge.
Alternatively, the azimuthal anisotropy found beneath this
plate could be merely an artefact due to a leakage of the
Austral-Indian plate anisotropy through the correlation length
used in the inversion. A better path coverage of this region
would be necessary to answer the question.

Beyond 200 km, azimuthal anisotropy vanishes beneath
most of the oceanic regions, while in Australia, the directions
of fast velocities correlate with plate motion down to 300 km.
Deeper than 300 km, no significant correlation between aniso-
tropy and APM is observed, and the amplitude of azimuthal
anisotropy becomes negligible compared to shallower depths.

The depth extent of both azimuthal and radial anisotropy,
the amplitude of radial anisotropy and the pattern of azimuthal
anisotropy support the commonly accepted idea that oceanic
upper-mantle anisotropy is due to the preferred orientation of
olivine in the mantle. The plate motion is expected to generate
an intense deformation beneath the lithosphere, thus orienting
the a axis of olivine in the direction of maximum shear strain.
From our results, this zone where anisotropy is significant and
correlates in direction with present-day APM would be located
at 100 to 200 km depth in oceanic areas, and at greater depths
in continental areas. The deepest parts of continental roots
(those parts lying below 200 km) as defined from S-velocity
anomalies may thus be deformed by plate motions.
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APPENDIX A: VELOCITY OF
HORIZONTALLY PROPAGATING
LONG-PERIOD SH AND SV WAVES IN
ANISOTROPIC STRUCTURES

As already noticed by Montagner & Nataf (1986), the
combinations of elastic coefficients L and N, controlling the
dominant first-order variations of surface-wave phase velocities
in anisotropic structures, control also the velocities of hori-
zontally propagating SV and SH waves in a weakly anisotropic
medium having a horizontal symmetry plane (Crampin 1981).
The expressions obtained for the first-order variations of
the surface-wave phase velocities are valid in fully anisotropic
structures. On the other hand, up to now, the equivalence to
perturbation of body-wave velocities has been shown only for
media having a horizontal symmetry plane, where the two
quasi-S waves are polarized as SV and SH. We show in this
Appendix that the restriction to models having a horizontal
symmetry plane is not necessary, and that the same inter-
pretation of L and N in terms of velocities of SV and SH
waves is possible in fully anisotropic structures. We suppose
here that the anisotropy is weak, and can be considered as a
small perturbation to a reference isotropic structure.

The apparent velocity of long-period S waves

In a fully anisotropic medium, the polarizations of the two
quasi-S waves propagating horizontally are usually not SV
and SH. We have therefore to define what we mean by the
apparent velocity of SV or SH waves in fully anisotropic
structures.

It is well known that long-period SKS waves, having travelled
through an anisotropic upper mantle, although having a
transverse component which is much studied, are still polarized
dominantly along the radial direction. More generally, S waves
dominantly keep their initial polarization when traversing an
anisotropic region, if their dominant periods are much larger
than the time difference for propagation of the fast and slow
S waves in the anisotropic zone. Let us note that there is a
trade-off in this approximation between the periods which can
be considered, the strength of the anisotropy and the distance
of propagation. Provided the anisotropy is sufficiently weak,
this approximation is valid for any period and propagation
distance. We define the apparent velocity of a long-period S
wave with a given initial polarization as the velocity measured
for the dominant component, along the initial polarization
direction. Let us first find the general expression for this
apparent velocity, after propagation in a weakly anisotropic
homogeneous region.

In such a medium, the three body waves propagating in a
given direction can be separated into a quasi-P wave and two
quasi-S waves. The two quasi-S waves, S; and §,, propagate
at two different velocities. They are dominantly polarized in
the plane perpendicular to the propagation direction, as is the
initial § wave. In this plane, we define an orthogonal coordinate
frame (e, ;) such that the displacement of the initial § wave
is along e,. The polarization of S; then makes an angle « with
that direction. When entering the anisotropic region, the initial
S wave is split into the two quasi-S waves S; and §,. For a
harmonic displacement of the initial S wave equal to

e (exp[iw(()t—to)])’ A1)
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the displacement after propagation for a distance ! in the
anisotropic region is equal to

(cos o exp {iolt — to — ve + 6v,)]} >
u=cosa
sin « exp {iwlt — to ~ /(ve + 0v,)]}

( sin o exp {iw[t — to — /(vo + 6v)1} )
+sina »  (A2)
—cos o exp {io[t — to ~ If(vy + dv,)]}

where v, + dv, and v, + dv, are the velocities of the §; and S,
waves respectively, and v, is the velocity of the S wave in the
reference isotropic structure, which is chosen close to the
anisotropic structure. In the approximation that wldv;/v? is
small, a series of expansions, where we keep zero- and firs-
order terms only, can be made. Eq. (A2) becomes

1
expl io| t—ty— -
p[ ( ®" vo+ v, cos?a + dv, smza)]

1 !
2iw cos a sin az;(&u1 — dv,) exp [iw (t —ty— -—)]
0

Vo

(A3)

The displacement along the dominant component is equal to
the initial displacement propagating at an apparent velocity
g + v, cos? a + du, sin®a.

The velocity as a function of the elastic parameters

Let us now express this apparent velocity as a function of the
elements of the elastic tensor in the anisotropic structure. The
first-order polarizations and velocities of body waves in weakly
anisotropic structures, calculated using perturbation theory,
are given by Jech & Psencik (1989). These authors give, in the
same notation as above,

1

ov, = 4_‘(311 + B+ \/Z),
Uo
1

0vy = 4_(311 + By, — \/_A_),
Vo

cos?o = %[1 +(By, — By)/VA], (A4)

with

A =(By; — By,)* + 4B},
1
By = ;ACij,‘,nin,e}'"’ef"‘) .

Here p is the density, AC is the difference between the elastic
tensors in the anisotropic and isotropic reference structures, n
is a unit vector in the propagation direction and (e, ™) are
two unit vectors perpendicular to each other in the S-wave
polarization plane. Here we take these two vectors as equal to
the e, and e, defined in the previous section.

Combining these elements with the expression Jv=
8v, cos®a + Sv, sin?a for the velocity perturbation of the



540  J. J. Lévéque, E. Debayle and V. Maupin

long-period S wave polarized initially along e,, we obtain

dp=Du (A5)
2U0

Velocities of SH and SV waves propagating horizontaily

For S waves propagating horizontally in the azimuth 6, we
have n =(cos 0, sin 8, 0), e, = (—sin 6, cos 6,0) for SH waves
and e, =(0,0, 1) for SV waves. Substituting in eq. (AS), and
using the notation of Montagner & Nataf (1986), modified
from Crampin (1984), for the elements of the elastic tensor,
we obtain the velocity perturbations for the two kinds of
waves:

1 1,
Ovgy = (N — N0 — Cc c0s 40 — Cg sin 40) = — (N — Nj,,)
2vp 2vp

(A6)

and
1 . 1 .
Svgy = E(L — L;so + G cos 20 + Ggsin 20) = %(L — L)

(A7)

The combinations of elastic parameters controlling the
velocity of horizontally propagating long-period SH and SV
waves are N and L, the same as those having the dominant
influence on the phase velocity of Love and Rayleigh waves
respectively. The average elastic models, as a function of depth,
that we obtain from the waveform inversion thus have a
simple interpretation in terms of the velocities of horizontally
propagating body waves, or their ratios, even in fully (but
weakly) anisotropic models.
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