The Zagros core: Deformation of the continental lithospheric mantle

Keith Priestley, Dan McKenzie, and Jamie Barron
Bullard Laboratories, University of Cambridge, Madingley Rise, Cambridge CB3 0EZ, UK
(kfp10@cam.ac.uk)

Mohammad Tatar
International Institute of Earthquake Engineering and Seismology, Tehran 19537, Iran

Eric Debayle
Laboratoire de Géologie de Lyon: Terre, Planètes et Environnement, Université de Lyon 1 and École Normale Supérieure de Lyon, FR-67622 Villeurbanne, France

[1] The Zagros of Iran form one of the youngest collisional orogenic belts on Earth. At shallow depths, shortening across the Zagros is accommodated by folding in the sediments, high-angle thrust faulting in the basement and thickening of the lower crust, but how shortening is accommodated by the lithospheric mantle has been uncertain largely because the upper mantle seismic structure has been poorly known. We map the lateral variations in upper mantle shear wave speed beneath this region using a large, multi-mode surface wave data set. The upper mantle is slow for most of the Middle East, but a high shear wave speed lid extending to \(\frac{1}{2}z \leq 225 \) km depth exists beneath the Zagros. We use a \(T(V_s, z) \) relation to convert the shear wave speed profiles to temperature profiles and fit these with geotherms to identify the base of the lithosphere. The upper mantle temperatures from the seismic model are consistent with temperatures derived from geochemical modeling. The lithosphere is less than \(\frac{1}{2}z \leq 120 \) km thick over the region except for a thick lithospheric root beneath the Zagros, implying that shortening in the mantle is accommodated by lithospheric thickening. The composition of the volcanic rocks from above the area of the thickened lithosphere has depleted magma source regions with densities \(\frac{1}{2}z < 60 \) kg m\(^{-3}\) less than the MORB source. Elsewhere in the Middle East the volcanic source regions have compositions and densities similar to that of MORB. The shortening across the Zagros is accommodated by lithospheric thickening but the cool thickened lithosphere has been stabilized from delamination by depletion.

Components: 6600 words, 8 figures.

Keywords: lithosphere; surface wave; tomography.

Index Terms: 7219 Seismology: Seismic monitoring and test-ban treaty verification; 7270 Seismology: Tomography (6982, 8180); 8120 Tectonophysics: Dynamics of lithosphere and mantle: general (1213).

Received 19 September 2012; Revised 17 October 2012; Accepted 18 October 2012; Published 29 November 2012.

©2012. American Geophysical Union. All Rights Reserved.
1. Introduction

A collision between continents can produce spectacular surficial geology, as is now seen in the Himalaya Mountains and the Tibetan Plateau. The shortening that occurs during continental collision results in crustal roots beneath both the mountains and plateaus, but how the mantle portion of the lithosphere accommodates the convergence is a contentious topic. If thickened lithospheric mantle consists of cool, undepleted material, its negative buoyancy with respect to the surrounding mantle could result in it delaminating and sinking into the deeper mantle [Bird, 1978; Houseman et al., 1981]. On the other hand, if the thickened lithospheric mantle comprises depleted material [Jordan, 1975], delamination may be inhibited even though the thickened lithosphere is cool with respect to the surrounding asthenosphere. The Himalaya-Tibet orogen is the best-studied example of continent-continent collision. The Indo-Eurasia collision initiated about 55 Ma and is now well advanced.

The Arabian-Eurasian collision, which has produced the East Anatolian and Iranian Plateaus, is younger and may provide clues to our understanding of the earlier stages of the continent-continent collision process. The East Anatolian and Iranian Plateaus (Figure 1) form a broad zone of deformation located between the relatively rigid Arabian and Eurasian plates. Starting in the Late Cretaceous the landmass that now forms the plateau was assembled by the accretion of island arcs and other continental fragments to the southern margin of Eurasia [e.g., Şengör, 1990; Şengör et al., 2008]. The Arabian plate was part of the Nubian Shield until 30–35 Ma when it rifted from Africa [Martinez and Cochran, 1988]. The collision between Arabia and Eurasia began in the early Miocene (16–23 Ma) [Robertson, 2000] and was preceded by the subduction of the oceanic lithosphere of the Neo-Tethys beneath eastern Turkey and Iran. The subsequent northward motion of the Arabian plate following the final closure of the Neo-Tethys Ocean about 12 Ma [Dewey et al., 1986; McQuarrie et al., 2003] has given rise to the East Anatolian and Iranian Plateaus north and east of the Bitlis-Zagros suture, respectively (Figure 1). The convergence of Arabia with Eurasia is accommodated by the westward extrusion of the Anatolian Block along the North and East Anatolian faults and by shortening within the East Anatolian and Iranian Plateaus.

During the Eocene (34–56 Ma), subduction of the Neo-Tethys beneath Eurasia built a large subduction-accretion complex in the region of the present-day East Anatolian Plateau [Şengör et al., 2003, 2008]. The last marine sediments in eastern Anatolia were deposited ~12 Ma [Gelati, 1975] and uplift of the plateau commenced soon afterwards [Şengör et al., 2003, 2008]. The earliest volcanism following the closure of the Neo-Tethys Ocean occurred about 11 Ma, became widespread by 6–8 Ma and has continued to the present, but the type of volcanism has changed over time from calc-alkaline to alkaline [Pearce et al., 1990]. The region now has an average elevation of more than 2 km and more than half of the plateau is covered with young volcanics, in some places exceeding 1 km in thickness [Keskin, 2003]. McQuarrie et al. [2003] suggest that the Arabia-Eurasia convergence has been relatively constant at a rate of 2–3 cm/yr for the past 59 Ma, a value similar to GPS-derived rates [e.g., McClusky et al., 2003; Reilinger et al., 2006]. Crustal seismicity is widespread, but no subcrustal earthquakes have been located [Turkelli et al., 2003].

The Zagros Mountains, the active fold-and-thrust belt along the eastern portion of the Zagros-Bitlis suture on the leading edge of the Arabian plate, forms the southwestern boundary of the Iranian Plateau. The Zagros consist of long, linear folds which form a 200–300 km-wide series of ranges extending ~1500 km from eastern Turkey to the Strait of Hormuz (Figure 1). The high level of seismicity observed in the Zagros shows that the belt continues to be active, but the lack of subcrustal seismicity [e.g., Maggi et al., 2000b; Tatar et al., 2004] indicates that subduction has ceased. Within Iran about half of the present-day Arabian-Eurasian convergence (~10 mm/yr) is accommodated by shortening in the Zagros Mountains [Tatar et al., 2002] and is accomplished by a combination of folding in the sediments [Sattarzadeh et al., 1999], high-angle thrust faulting in the basement [Jackson, 1980; McQuarrie, 2004], and thickening of the lower crust [Hatzfeld et al., 2003; Paul et al., 2006]. The remainder of the Arabian-Eurasian convergence at the longitude of Iran is accommodated across the Alborz Mountains, the Kopet Dagh Mountains and the South Caspian Basin [Vernant et al., 2004]. The South Caspian Basin, probably of oceanic origin, is now being overthrust by the Alborz from the south and the Talesh Mountains from the west [Priestley et al., 1994; Jackson et al., 2002; Tatar et al., 2007].

Ni and Barazangi [1986] suggest that the Zagros are a young analogue of the Himalaya. Both result from continent–continent collision, but the
India-Eurasia convergence is faster, the Himalaya are at a more mature stage and their structure is better understood. In comparison, the crust and upper mantle structure and the processes forming the East Anatolian and Iranian Plateaus are still poorly known; it is unclear as to how the shortening in the mantle of the Iranian Plateau, in particular, has been accommodated. Various authors [e.g., Molinaro et al., 2005; Hafkenscheid et al., 2006; Agard et al., 2011] have suggested that the mantle portion of the
lithosphere has founndered, but there is little seismic
evidence to corroborate this.

[7] In this paper we use primarily surface wave
tomography to examine the upper mantle structure of the region; we show the existence of a thickened,
high-velocity upper mantle beneath the Mesopotamian Foredeep and the Zagros Mountains but no
evidence for a high-velocity upper mantle to the
northeast beneath central Iran or to the northwest
beneath the East Anatolian Plateau. We propose that
this feature beneath the Mesopotamian Foredeep
and the Zagros Mountains is a high-velocity keel
resulting from the shortening of the lithospheric
mante.

2. Upper Mantle Shear Wave Structure
of the Middle East

2.1. Surface Wave Data and Analysis

[8] We analyze the waveforms of earthquakes listed
in the CMT catalog that occurred between 1977 and
2010 in the region including and surrounding the
Middle East (Figure 2a). We analyze publicly
available seismograms from IRIS, Geoscope and
GEOFON permanent stations, temporary PASSCAL
seismic deployments from IRIS and data from the
broadband seismic networks within Iran operated by
the International Institute for Earthquake Engineering
and Seismology (IIIES) in Tehran and the University
of Mashad. In addition, we have incorporated data
from temporary seismic networks installed by IIIES,
the Institute for Advanced Studies in Basic Sciences
(IASBS) in Zanjan, the Laboratoire de Géophysique
Interne et de Tectonophysique (LGIT) in Grenoble,
France, and the University of Cambridge (UCam)
(UCam) (Figure 2b). These data provide excellent fundamental and higher-mode (Figure 2c) path coverage
for the region (Figures 2e–2j) by using a large num-
ber of relatively short propagation paths (Figure 2d).

[9] Our analysis method is summarized in Cara and
Lévéque [1987], Debayle [1999], Debayle and
Kennett [2000], Debayle and Sambridge [2004]
and Maggi et al. [2006]. In brief, our tomographic
model is derived by first inverting the individual
surface waveforms in the 50–160 s period range
for a path-average S\textsubscript{w}-model using the automated
version [Debayle, 1999] of the Cara and Lévéque
[1987] technique. An important advantage of this
method is that higher-mode information can be
retrieved from seismograms recorded over relatively
short paths, giving additional information to that of
the fundamental-mode constraints on the shallow
upper mantle structure and providing greater sensi-
tivity compared to the fundamental mode in the
deeper upper mantle. Each inverted waveform
results in a path-average S\textsubscript{w}-wave speed model
(V\textsubscript{s}(z)) and an \textit{a posteriori} error (σ\textsubscript{s}(z)). The \textit{a
posteriori} error accounts only for errors in the
waveform fit and not systematic errors such as
those associated with the event’s focal parameters.
Since many of the propagation paths are similar,
we cluster measurements for paths with epicenters
within a 2° cap recorded at stations within a 2° cap.
For each cluster, we determine the mean shear
wave velocity at each depth and its error (σ\textsubscript{M}(z))
which is significantly larger than σ\textsubscript{b}(z). Many of
the clusters consist of a small number of paths and
σ\textsubscript{M}(z) may be underestimated. For these clusters,
we assume the errors to be similar to the σ\textsubscript{M}(z).

Figure 1. Tectonic maps of the Middle East and
the main elements of the Zagros orogen. Red
triangles denote locations of Quaternary volcanoes;
dark dots denote epicenters of magnitude 5 and
greater earthquakes from Engdahl et al. [1998]
and its updates. The enlarged map at lower right
shows details of the Zagros orogen. From southwest	
to northeast the Zagros orogen can be divided into five divisions – theoreland basin, the Simply Folded Belt (SFB), the High
Zagros or Crush Zone, the Sanandaj-Sirjan zone (SSZ),
and the Urumieh-Dokhtar magmatic arc (UDMA). The
Mesopotamian Plain and the Persian Gulf in the
southwest are the foreland basin at the front of the orogen.
To the northeast lies the SFB [Falcon, 1969], consisting of an almost continuous sequence of Paleozoic to the Late
Tertiary shelf sediments deposited on the 1–2 km thick infra-Cambrian Hormuz Salt formation overlying a probable
Precambrian basement of the northeast margin of the
Arabian Platform. Although this basement is not exposed,
it’s inferred from ‘exotic’ metamorphic blocks brought to the surface in salt plugs [Haynes and McQuillan,
1974]. The sediments are now deformed into large, range-parallel folds. The folding is oldest and most intense
in the northeastern part of the SFB and is more gentle and younger to the southwest [Alavi, 1994]. The northeastern
limit of SFB is marked by the High Zagros or Crush Zone, a long narrow belt of structural deformation which
includes basic intrusive rocks contemporaneous with the late Tertiary folding [Wells, 1969]. The high Zagros
is separated from the SSZ [Stocklin, 1968] to the northeast by the Main Zagros Thrust (MZT) believed to be the suture
between the Eurasian and Arabian plates. During much of the Mesozoic, the SSZ represented an active Andean-like
margin [Agard et al., 2005]. The SSZ is bounded to the east by the UDMA in which there has been almost continuous
volcanic activity from the Eocene to the Pliocene [e.g., Şengör et al., 2008] and is believed to be the Andean-type arc
related to the subduction of the Neo-Tethys [Agard et al., 2005]. Other abbreviations: ZFT – Zagros Frontal Thrust;
NAF – North Anatolian Fault; EAF – East Anatolian Fault; DSF – Dead Sea Fault; AKBF – Ashgabat Fault.
determined for clusters consisting of a large number of paths, and we use these errors in place of \(\sigma_M(z) \) determined from a small number of paths.

The average velocity models from the clustered models are then combined in a tomographic inversion to obtain the 3D \(S_v \)-wave speed structure and the azimuthal anisotropy as a function of depth using the technique of Montagner [1986] as implemented by Debayle and Sambridge [2004] for massive data sets. The lateral smoothness of the 3D model is controlled by a Gaussian a priori covariance function defined by a scale length \(L_{\text{corr}} \), which defines the distance to which adjacent points of the model are correlated and acts as a spatial filter; a standard deviation \(\sigma \) controls the amplitude of the perturbation in the Earth structure allowed in the inversion. The tomographic model presented here was determined with \(L_{\text{corr}} = 250 \) km and \(\sigma = 0.05 \) km s\(^{-1} \).
Figure 2. (continued)
2.2. Upper Mantle Velocity Model of the Middle East Region

[11] The upper-mantle V_s model derived from the surface wave analysis is shown in Figure 3 and the resolution tests for the model are discussed in Figure 4. At 75 km depth (Figure 3a) most of the region is slow with respect to the reference velocity at this depth. Very slow wave speeds ($< -7\%$) exist beneath the East Anatolian Plateau and the northwestern part of the Iranian Plateau, below the southern end of the Red Sea and the adjacent parts of Arabia and Africa, and below northern Pakistan and the Hindu Kush. High wave speeds occur beneath the South Caspian Basin and the Turan Shield north of the Iranian Plateau. Wave speeds below the Mesopotamian Foredeep deviate little ($< \pm 1\%$) from the reference model. The resolution tests (Figures 4a and 4b) show that both the velocity anomaly amplitudes and geometries are well recovered at 75 km depth.

[12] The velocity structure changes dramatically at 125 km depth (Figure 3b). The slowest wave speed mantle at this depth occurs beneath Afar, western Arabia and the East Anatolian Plateau. A restricted area of the eastern Iranian Plateau is moderately slow, but the upper mantle beneath the Mesopotamian Foredeep, the Zagros Mountains and across the Strait of Hormuz into the adjacent part of Arabia is 2–5% fast with respect to the reference velocity. High velocities extend beneath the Caspian Sea. The continuous low-velocity band extending from east Anatolia to the southern end of the Red Sea seen at 75 km depth starts to separate into three low wave speed features at 125 km depth, one beneath east Anatolia, one centered beneath western Arabia, and one at the southern end of the Red Sea and Afar. Another low-velocity feature occurs in the Gulf of Aden between southern Arabia and the Horn of Africa. The resolution tests (Figures 4a and 4b) show that at these depths the geometry of the synthetic anomalies is well recovered and the full amplitude is recovered over most of the anomalies below the Zagros, Central Iran and the Caspian Sea. The amplitude of the anomaly beneath southeastern Arabia is reduced by 30–40%. The cross-sections for the synthetic tests indicate that the vertical resolution at 150 km depth is about ~ 25 km.

[13] At 175 km depth (Figure 3c) the slow wave speed feature beneath the East Anatolian Plateau is confined to the region south of the East Anatolian Fault. The other three low-velocity features seen at 125 km depth persist at 175 km depth, and the feature below the shield in western Arabia is the lowest velocity anomaly in the region at this depth. The amplitudes of these features are less than those at shallower depths, but the resolution tests (Figures 4e–4h) demonstrate that the amplitude recovery is reduced by $\sim 50\%$ at this depth beneath Arabia. Wave speeds beneath the central Zagros Mountains are as much as 6% higher at 175 km depth, shear wave speeds comparable to those found beneath shields. High velocities extend across the Mesopotamian Foredeep to beneath the Rub-al-Khali Basin in southeastern Arabia. The zone of high velocities below the southern Zagros persists as a weak feature at 250 km depth (Figure 3d), whereas low velocities beneath the Arabian Shield and the Afar persist to at least 250 km depth. Over most of the region the wave speed at this depth differs little ($< \pm 1\%$) from the reference model. The resolution tests (Figures 4e and 4f) demonstrate that below 250 km depth the geometry of the synthetic anomalies is reasonably well-resolved but that the amplitudes of the anomalies are severely reduced.

[14] Figures 3e and 3f show cross-sections through the V_s model approximately parallel and perpendicular to the Zagros. At shallow depths the uppermost mantle beneath the Zagros Mountains is slow, but by ~ 100 km depth the upper mantle wave speeds extending from the northern Zagros ($\sim 36^\circ N, 46^\circ E$) to the Strait of Hormuz are fast. The fast upper mantle S_v-wave speed persists beneath the Zagros Mountains to about 250 km depth; the S_v-wave speeds beneath the Arabian Platform and the central Iranian Plateau remain slow. The low-wave speed mantle beneath western Arabia has significantly lower V_v-wave speeds than those found beneath the adjacent parts of the Red Sea. Low wave speeds extend to deeper depths at the northwestern end of profile BB' beneath the East Anatolian Plateau (Figure 3f). This boundary between high shear wave speeds beneath the northern Zagros and low shear wave speeds beneath the East Anatolia Plateau is quite abrupt and extends to at least 200–250 km depth.

2.3. Teleseismic S-Wave Delay Times

[15] Relative teleseismic S-wave delay times measured across the Iranian Plateau reveal a similar strong contrast between the higher upper mantle shear wave velocity beneath the Zagros and the lower shear wave velocity beneath central Iran as does the surface wave tomography (Figure 5). The relative S-wave arrival times are measured using the multichannel cross-correlation method.
Figure 3
of VanDecar and Crosson [1990]. The observed relative residual travel-time for the ith ray is given by
\[\Delta t_i = t_{i}^{\text{obs}} - t_{i}^{\text{ef}} - t_{i}^{\text{ele}} - \langle t_i \rangle, \]
where \(t_{i}^{\text{obs}} \) is the observed relative arrival time, \(t_{i}^{\text{ef}} \) is the predicted travel-time for the reference model, in this case IASP91 [Kennett and Engdhal, 1991], and \(t_{i}^{\text{ele}} \) is the elevation correction term for each site. The average event arrival time \(\langle t_i \rangle \) is chosen separately for each earthquake so that the mean of the travel-time residuals is zero. Positive residuals indicate a delayed travel time and negative residuals indicate early arrivals with respect to the predicted IASP91 arrival time. Relative residual travel times are compared because absolute arrivals are less accurate in the presence of noise and relative residual travel times minimize any errors due to uncertainties in earthquake origin times.

[16] The teleseismic S-wave residuals for the profile crossing the Iranian Plateau use (Figure 5a) data recorded during the 2000–2001 IIEES-LGIT experiment [Paul et al., 2006] and the 2006–2008 IIEES-UCam experiments [Nowrouzi et al., 2007; Rham, 2009; Motaghi et al., 2011, 2012]. Sites occupied in the IIEES-LGIT experiment extend from the edge of the Zagros foreland basin in the southwest, across the Zagros fold-and-thrust belt, the Sanandaj-Sirjan volcanic arc and to the Urumich-Dokhtar magmatic arc to the edge of the central plateau (Figure 1). Sites occupied during the 2006–2008 IIEES-UCam experiments overlap in the central part of the plateau with the easternmost sites of the IIEES-LGIT experiment and extend across the central plateau and Kopet Dagh Mountains to the edge of the Turan Shield (Figure 1).

[17] The S-wave residuals that are uncorrected for lateral variations in crustal structure (Figure 5c) show a long wavelength trend with early arrivals (\(\sim -1 \) sec) in the southwest and late arrivals (\(\sim +1.5 \) sec) in the northeast. Kaviani et al. [2007] found a similar trend but one of smaller amplitude for relative teleseismic P-delays measured from IIEES-LGIT experiment recordings. Also shown in Figure 5c are S-delays computed for the mantle shear wave model derived from the surface wave tomography. The S-delays computed for the surface wave tomographic model show a similar SW-to-NE trend in delay time with early arrivals in the Zagros as do the observed S-wave residuals uncorrected for crustal structure. After correcting the S-wave residuals for lateral variations in crustal thickness and velocity along the profile (Figure 5d) by using results from crustal receiver function inversions [Nowrouzi et al., 2007; Rham, 2009; Motaghi et al., 2011, 2012], we found much earlier arrival times for stations in the Zagros (\(\sim -4 \) sec), ones that are suppressed in Figure 5c due to the thick (50–55 km) and somewhat slower Zagros crust compared to that in central Iran (35–40 km). The IIEES-LGIT and IIEES-UCam experiments were operated at different times and have no sites in common. However, the results agree where the IIEES-LGIT and IIEES-UCam sites overlap and the large negative relative arrival signal is confined to sites of the IIEES-LGIT experiment.

2.4. Constraints on Upper Mantle Structure of the Middle East From Previous Seismological Studies

[18] The surface wave tomography upper mantle \(V_s \) model (Figure 3) for the Middle East shows that a thick, high-velocity upper mantle lid exists beneath the Mesopotamian Foredeep, the Zagros fold-and-thrust belt, the South Caspian and Rub-al-Khali Basins. Teleseismic S-wave delay time differences across the Zagros and the central Iranian Plateau...
confirm the existence of the high velocities beneath the Zagros orogen. The shear wave speeds observed in the high velocity lid are comparable to those seen in the upper mantle beneath most of the Archean shields. Beneath the rest of the region, a high-velocity lid is either quite thin or absent altogether. In the model, very low shear wave speeds extend to depths of several hundred kilometers beneath the East Anatolian Plateau, the west-central part of the Arabian Shield and the Afar region.

[10] A number of the large-scale features seen in Figure 3 have been previously noted, but they are not at the same resolution or scale. Early fundamental mode Rayleigh wave phase velocity measurements [Asudeh, 1982] demonstrated that at 100 km depth, V_s varied from 4.24 km s$^{-1}$ beneath northern Iran, 4.65 km s$^{-1}$ below central Iran and 4.98 km s$^{-1}$ beneath the Zagros. The surface-wave tomographic study of Maggi and Priestley [2005] found a low shear wave velocity (<4.5 km s$^{-1}$) in the uppermost mantle (100 km depth) beneath the East Anatolian and central Iranian Plateaus and a high shear wave velocity beneath the bounding region of the Arabian plate. Fundamental mode Rayleigh wave phase velocity measurements by Kaviani et al. [2007] found that, beneath the Zagros, V_s varied from 4.5 ± 0.2 km s$^{-1}$ below the Moho to 4.9 ± 0.25 km s$^{-1}$ at 200 km depth. They observed that beneath the suture region from the Main Zagros Thrust (MZT) to the UDMA, shear wave velocities at shallow depths are somewhat lower than those beneath the Zagros with a minimum of 4.4 ± 0.2 km s$^{-1}$ at ~80 km depth, but at depths of 150 km and deeper, the shear wave velocities are as high as those beneath the Zagros. All these features are seen at a broader scale in our upper mantle V_s model.

[20] The Arabian Peninsula has been the focus of several surface wave studies. Rodgers et al. [1999] examined surface wave propagation across the Arabian Shield and Platform and concluded that P- and S-wave speeds immediately below the Moho are slower in the Arabian Shield than in the Arabian Platform (7.9 and 4.30 km s$^{-1}$ and 8.1 and 4.55 km s$^{-1}$, respectively). Tkalčič et al. [2006] found significant variations in high velocity lid thickness and anomalously low shear wave velocities beneath the Arabian Shield and Park et al. [2008] observed shear wave velocities as low as 4.2 km s$^{-1}$ at ~150 km depth beneath the Shield. Debayle et al. [2001] demonstrated that low shear wave velocities exist in the upper mantle beneath the Afar and the surrounding region similar to those seen in Figure 3. These observations compare favorably to the difference in upper mantle V_s we find between the Arabian Shield and Platform (Figure 3).

[21] Hansen et al. [2007] and Angus et al. [2006] used S-receiver functions to measure upper mantle lid thickness in the Arabian Peninsula and Eastern Turkey, respectively. To model the arrivals assumed to be from the base of the lid, Hansen et al. [2007] required sub-lid shear wave velocities of about 4.2 km s$^{-1}$. Near the Red Sea coast, the base of the lid is at a depth of about 50 km; however, it rapidly deepens to attain a maximum depth of about 120 km beneath the Arabian Shield within 300 km of the Red Sea. At the Shield-Platform boundary, they observed a step in the lid thickness where the depth increases rapidly to about 160 km in the region where we see higher shear wave velocities beneath parts of the Rub-al-Khali Basin. Angus et al. [2006] observed phases in the S-receiver functions from the northern Arabian Shield and
Iranian Plateau, indicating that the base of the lid for these regions is at 100–125 km depth and that eastern Turkey has an anomalously thin (between 60 and 80 km) upper mantle shear wave speed lid.

Propagation characteristics of the regional seismic phases P_n and S_n, which bottom in the uppermost mantle, provide important information on upper mantle lid structure in a shallow depth range where the vertical resolution of the long-period surface waves is poor. High P_n wave speeds (8.1–8.4 km s$^{-1}$), similar to the high P_n wave speeds observed for shields [Christensen and Mooney, 1995], occur beneath the central and eastern Arabian plate, the South Caspian Basin and the Zagros to the southwest of the suture [Hearn and Ni, 1994; Al-Lazki et al., 2004]. Low (<8.0 km s$^{-1}$) to very low (<7.8 km s$^{-1}$) P_n wave speeds occur beneath central Iran, the East Anatolian Plateau and a zone running from east Anatolia to the northern part of the Red Sea and then southward through western Arabia [Hearn and Ni, 1994; Al-Lazki et al., 2004]. The sharp P_n velocity contrast across the Bitlis-Zagros suture indicates the presence of a stable Arabian mantle lid south of the suture and suggests that the Arabian plate is not underthrusting the East Anatolian Plateau and that the suture extends down to the uppermost mantle [Al-Lazki et al., 2003].

[23] Efficient S_n propagation implies the presence of a high-velocity mantle lid with a positive velocity gradient with depth such as that found beneath shields, while inefficient S_n propagation implies high temperatures in the uppermost mantle and the possible presence of some melt [Molnar and Oliver, 1969]. S_n studies for the Middle East [Kadinsky-Cade et al., 1981; Rodgers et al., 1997; Sandvol et al., 2001; Gök et al., 2003; Al-Damegh et al., 2004] find that propagation is efficient for paths confined to the eastern parts of the Arabian Plate, including the Zagros, but S_n is blocked for paths crossing northern and central Iran east of the MZT and for paths crossing western Arabia beneath the shield where the surface wave tomography model shows very slow upper mantle S_v-wave speeds. S_n is not observed in eastern Turkey and...
is attenuated immediately beneath and to the east of the Dead Sea Fault zone [Al-Lazki et al., 2003; Al-Damegh et al., 2004]. South of the East Anatolian Fault Zone, S_n attenuation is high even though P_n velocities are normal. Across the Bitlis suture zone there is a sharp transition from efficient S_n propagation to the south to blocked S_n to the north. These S_n propagation characteristics are consistent with our S_n model at deeper depths that show a thick upper mantle, high-velocity lid with a positive gradient with increasing depth beneath the Zagros orogen. The S_n observations indicate that a high-velocity lid with a positive velocity gradient with depth must exist beneath the Arabian Platform, but this places no constraint on its thickness. If a high-velocity lid exists beneath the Arabian Shield, the East Anatolian Plateau or the central Iranian Plateau, it must be very thin or have a negative velocity gradient with depth.

3. The Zagros Core

[24] To map the lithospheric thickness beneath the Middle East we convert the shear wave speed vs. depth profiles of our seismic model to temperature vs. depth profiles. Various ways of relating seismic wave speed and temperature have been proposed [e.g., Goes et al., 2000; Shapiro et al., 2004; An and Shi, 2006], most of which are based on assumptions of the rheological properties and grain size and their relationship to seismic velocity. Here we use a parametrization $T(V_s, z)$ similar to that of Priestley and McKenzie [2006] which makes no such assumptions. Figure 6 shows the temperature estimate determined from the tomographic model at a depth of 125 km beneath the Middle East. The upper mantle potential temperature beneath mid-ocean ridges is $1330 \pm 20^\circ C$ [White et al., 1992]. Adding $75^\circ C$ which corresponds to an isentropic gradient of $0.6^\circ C/km$, the real temperature estimate at 125 km depth is $1405 \pm 20^\circ C$. The solidus at this depth is $1595^\circ C$. The temperature at 125 km depth is significantly less than $1405^\circ C$ beneath the Zagros, the Mesopotamian Foredeep, the Rub-al-Khali Basin and the South Caspian Basin. The temperature is significantly greater than $1405^\circ C$ beneath the Afar region and the belt extending from Yemen, through the Arabian Shield, parts of Jordan and Syria to eastern Anatolia and below the central part of the Iranian Plateau.

[25] Temperature profiles as a function of depth derived from the surface wave tomography model were fit with a geotherm in the manner described by McKenzie et al. [2005], revealing the depth at which the change in temperature gradient occurs at the base of the lithosphere. Comparisons between surface-wave-derived estimates of lithospheric thickness and those estimated from upper mantle nodule mineralogy for southern Africa demonstrate that they agree to within ~25 km [Priestley and McKenzie, 2006; McKenzie and Priestley, 2008]. However, because the crust and very shallow upper mantle structure are not well resolved by the long-period surface waves analyzed in Section 2, the geotherms determined from the seismic wave speeds are accurate only for lithospheric thicknesses greater than about 120 km.

[26] For most of the Middle East the lithosphere is thin (<120 km). However, there is a region below the Zagros Mountains and Mesopotamian Foredeep where the lithosphere reaches a thickness of more than 225 km (Figure 7). Lithosphere that is 180–200 km thick extends beneath the South Caspian Basin and a tongue of thickened lithosphere protrudes across the Persian Gulf from the southern Zagros to below the Rub-al-Khali Basin in the southeastern part of the Arabian Peninsula. With the exception of the Rub-al-Khali Basin, only an upper bound of ~120 km can be given for the depth to the base of the lithosphere below the Proterozoic Arabian Platform and Shield. Thick lithosphere has normally been associated with continental cratons, but it is also found beneath the Himalaya and Tibet orogen [Priestley et al., 2006]. Because thick lithosphere is not confined to merely the upper mantle below the ancient parts of the continents, Priestley and McKenzie [2006] suggested using the term ‘cores’ rather than ‘cratonic roots.’ We will refer to the thick lithosphere beneath the Zagros as the ‘Zagros core.’

[27] The Zagros Mountains are the active fold-and-thrust belt on the leading edge of the Arabian plate. Shortening in the Zagros crust is accomplished by a combination of folding in the sediments [Sattarzadeh et al., 1999], high-angle thrust faulting in the basement [Jackson, 1980; McQuarrie, 2004], and thickening of the lower crust [Hatzfeld et al., 2003; Paul et al., 2006]. Models proposed for the Zagros mantle include a rigid aseismic Arabian lithosphere sliding beneath the Zagros orogen [e.g., Snyder and Barazangi, 1986] or lithospheric slab break-off and foundering [e.g., Molinaro et al., 2005]. Figure 7 suggests that the lithosphere of the Arabian plate has thrust beneath the Zagros, but rather than being rigid, it has deformed and thickened significantly and now forms a thick lithospheric root beneath the orogen. This cool, thickened lithosphere has not delaminated.
The widespread volcanism over the Middle East (Figure 6) also suggests a warm upper mantle as the cause for the low shear wave velocities. The composition of the magmas for these volcanics is controlled by the composition of their mantle source region. D. McKenzie and K. Priestley (The planform of convection beneath the Middle East, equatorial and northern Africa, submitted to Earth and Planetary Science Letters, 2012) obtained models of melt generation by inverting rare earth element (REE) concentrations in samples from a number of these volcanic fields. Their inversions show that the very recent volcanics erupted along a belt stretching from Yemen at the southern end of the Red Sea northward to eastern Anatolia can be produced by decompression melting of an asthenospheric source, principally in the transition zone from garnet to spinel peridotite, (~70–90 km depth range). This is consistent with the lithosphere being less than 120 km thick beneath this region. The close resemblance of these magmas to ocean island basalts (OIB) has been pointed out in a number of

Figure 6. Contours of temperature at 125 km depth beneath the Middle East from the surface wave tomography model using a parametrization \(T(V_s, z) \) similar to that of Priestley and McKenzie [2006]. The upper mantle potential temperature beneath mid-ocean ridges is 1330 ± 20°C [White et al., 1992]. Adding 75°C which corresponds to an isentropic gradient of 0.6°C/km, the real temperature at 125 km depth is 1405 ± 20°C. The solidus at 125 km depth is 1595°C. In comparison to 1405°C, the mantle at this depth is cool beneath the Zagros orogen, the South Caspian Basin, the Rub-al-Khali Basin and the Turan Shield. Black areas denote locations of recent volcanic fields, mostly younger than 12 Ma [Camp and Roobol, 1989; Sen et al., 2004; Stocklin and Naloavi, 1971].
studies [e.g., Shaw et al., 2003] and, like OIBs, no depletion of the source regions of these basalts is required. Temperatures of the magma source regions are consistent with the upper mantle temperatures shown in Figure 6.

[29] Walker et al. [2009] inverted REE concentrations from young (2–5 Ma) volcanic rocks from the central part of the Iranian Plateau (Figure 6). They found that the composition of these volcanic rocks was typical of OIBs and, therefore, they were not from melting of the continental lithosphere. The observed REE concentrations require a small enrichment of a peridotite source within the garnet stability field followed by melting within the spinel stability field (<80 km depth). Again, this is consistent with thin lithosphere beneath central Iran. Walker et al. [2009] point out that such volcanic rocks are widespread within eastern and central Iran, but do not occur southwest of a NW-SE trending line to the north of the Zagros, the area where the surface wave tomography shows the lithosphere to be greater than ~120 km. However, there are several small, young volcanic fields on the Iranian Plateau above the region of thick
lithosphere (Figure 7). Because of the extreme enrichment of the light REE in these volcanic rocks, McKenzie and Priestley (submitted manuscript, 2012) believed them to be produced by melting depleted continental lithosphere and not from the convecting upper mantle.

Because their scheme models the behavior of major, minor and trace elements, as well as that of the modal mineralogy, McKenzie and Priestley (submitted manuscript, 2012) were able to calculate the density of the magma source regions. They found that the densities of all the magma source region they analyzed were close to that of MORB with the exception of the Iranian volcanics from above the region of thick lithosphere. Not only did these volcanic rocks show a depleted source region, their densities were much less than MORB (Figure 7). Rocks with such densities will sink into the mantle (delaminate) only if their potential temperature is less than \(\sim 900^\circ C \). As the densities for these show, this cool lithospheric root beneath the Zagros is stabilized against convective removal because it is depleted. If the temperature of the thickened mantle root was sufficiently cool for it to be convectively unstable, \(\sim 900^\circ C \), its viscosity would increase by \(\sim 10^4 \) times that of the background upper mantle. This difference will also make convective removal more difficult and therefore will also stabilize the lithosphere. Although recent volcanics are widespread over the Middle East, it is only these volcanics from above the Zagros core which show a low density, depleted source.

4. Summary and Discussion

[32] Using a \(T(V_p,z) \) relation similar to that of Priestley and McKenzie [2006], we find the upper mantle temperatures at 125 km depth beneath the Afar, the Arabian Shield, parts of Syria and Jordan, eastern Anatolia and central Iran are greater than \(1405 \pm 20^\circ C \), but are very low at this depth beneath the Mesopotamian Foredeep, the Zagros and the South Caspian Basin. The upper mantle temperatures derived from the seismic model are consistent with upper mantle temperatures derived from modeling the geochemistry of the volcanics in the region. Fitting temperature vs depth profiles with a geotherm allows us to determine the depth where heat transport changed from advection in the deeper mantle to conduction in the shallower mantle. This depth corresponds to the base of the lithosphere. The lithosphere is thin (<120 km) beneath most of the Middle East but a thick lithospheric keel extending to as much as 225 km depth exists beneath the Mesopotamian Foredeep and the Zagros Mountains.

Geochemical modeling of young volcanics from above the Zagros core shows they are small lithospheric melts and the density of their source region is \(\sim 60 \) kg m\(^{-3}\) less than fertile mantle, whereas the source region densities for magmas above regions of thin lithosphere are close to that of fertile mantle. Thus, the cool, thickened lithosphere beneath the Zagros Mountains and Mesopotamian Foredeep is stabilized from delamination by depletion.

[33] The spatial pattern of SKS-splitting in the Middle East is complex (Figure 8) and this complexity seems related to the Zagros Core. The observation that in many continental regions SKS-splitting patterns appear to be spatially related to geologic and tectonic features has led some [e.g., Silver, 1996] to suggest that the anisotropy responsible for the splitting exists largely in the continental lithosphere and is a result of recent, significant tectonic events. Others contend that this correlation results from complex patterns of mantle flow that are related to 3-D morphology of the lithospheric mantle [e.g., Bormann et al., 1996]. In the Middle East the strongest SKS-splitting is observed in regions of thin lithosphere and little or no splitting occurs in the region of the thick lithosphere below the Zagros orogen (Figure 8). We have only an upper bound of \(\sim 120 \) km on the lithospheric thickness in the central Iranian Plateau where receiver function measurements show the crust is 40–45 km thick [Nowrouzi et al., 2007; Rham, 2009; Motaghi et al., 2011, 2012]. Therefore, the thickness of the mantle layer of the lithosphere is probably <70 km. If the 1–2 s splitting observed in the central Iranian Plateau is
the result of anisotropy in the mantle layer of the lithosphere, 13% or higher anisotropy is required. While such large anisotropy is possible, the variation in SKS-splitting in the central Iranian Plateau suggests to us that, as for Europe [Bormann et al., 1996] and North America [Fouch et al., 2000], the anisotropic source of the observed SKS-splitting below the central Iranian Plateau is likely to be located in the asthenosphere, and the topography of the Zagros core may distort the large-scale asthenospheric flow pattern.

[34] Much of the geological and geophysical observations for the Iranian and East Anatolian Plateaus have been attributed to break-off of the
There are features of the Arabian-Eurasian collision that are similar to those of the Indo-Eurasian collision, but there is a striking difference in the heights of the Zagros (2–3 km elevation) and the Himalaya (5 km elevation) Mountains. This difference probably results from the more advanced stage of the Indo-Eurasian collision compared to the Arabian-Eurasian collision. On the other hand, the elevation difference could result from differences in the strength of the bounding lithosphere as proposed by Maggi et al. [2000a]. Lithospheric thickening is occurring throughout the Zagros Mountains (Figure 7) and beneath the Himalaya Mountains and southern Tibet [Priestley et al., 2006]. The lithosphere beneath Arabia to the west of the Zagros is less than 120 km thick whereas that beneath northern India to the south of the Himalayas is 200 km or more thick. Maggi et al. [2000a] estimated that the elastic thickness (T_e) for northern India supporting the 4–5 km elevation of the Himalaya was 37 km. The T_e of eastern Arabia supporting the 2–3 km elevation of the Zagros is not well constrained [Maggi et al., 2000a] but is ~30 km. The buoyancy force needed to support the Himalaya is on the order of 5 × 10^{12} N m^{-1} [e.g., Molinaro and Lyon-Caen, 1988] whereas the buoyancy force required to support the Zagros is of the order 2.5 × 10^{12} N m^{-1}. While T_e for the Himalayan and Mesopotamian foredeep is not significantly different, the hinterland of the Himalayan foredeep, southern India, has thick lithosphere extending for a great distance south of the collision zone. In comparison, the hinterland of the Mesopotamian foredeep, the Arabian plate, has a smaller extent of thin lithosphere. In addition, the eastern margin of the Arabian Platform was stretched in the Mesozoic [Koop and Stoneley, 1982]. For these reasons, the Arabian plate may be too weak to support elevations higher than that of the present Zagros Mountains.

Acknowledgments

A number of the figures were prepared using the Generic Mapping Tool [Wessel and Smith, 1995]. Some of the data obtained from within Iran were recorded on seismographs from SEISUK. We thank Denis Hatzfeld and Anne Paul for sharing data from the LGIT seismic experiments in the Zagros Mountains. We thank Celasengör, Andreas Fichtner, Thorsten Becker and James Jackson for constructive, thoughtful reviews. This is Cambridge University Department of Earth Sciences contribution 2603.

References

Acknowledgments

A number of the figures were prepared using the Generic Mapping Tool [Wessel and Smith, 1995]. Some of the data obtained from within Iran were recorded on seismographs from SEISUK. We thank Denis Hatzfeld and Anne Paul for sharing data from the LGIT seismic experiments in the Zagros Mountains. We thank Celasengör, Andreas Fichtner, Thorsten Becker and James Jackson for constructive, thoughtful reviews. This is Cambridge University Department of Earth Sciences contribution 2603.

References

Rham, D. (2009), The crustal structure of the Middle East, PhD thesis, Univ. of Cambridge, Cambridge, U. K.

Sattarzadeh, Y., J. Cosgrove, and C. Vita-Finzi (1999), The interplay of faulting and folding during the evolution of

Snyder, D., and M. Barazangi (1986), Deep crustal structure and flexure of the Arabian plate beneath the Zagros collisional mountain belt as inferred from gravity observations, Tectonics, 5, 361–373.

Stocklin, J., and M. Naloavi (1971), Tectonic map of Iran, scale 1:2,500,000, Geol. Surv. of Iran, Tehran.