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[1] We present a series of synthetic tests showing that
regional surface wave tomographies with a dense path
coverage of the target region can be safely conducted under
ray theory because the shortcomings of ray theory in
considering finite-frequency effects can be counterbalanced
by a physically-based regularization of the inversion. In
particular, we show that with ray theory applied under the
above conditions, it is possible to detect heterogeneities
with length scales smaller than the wavelength of the data
set. INDEX TERMS: 7255 Seismology: Surface waves and free

oscillations; 7260 Seismology: Theory and modeling; 8180

Tectonophysics: Tomography. Citation: Sieminski, A., J.-J.

Lévêque, and E. Debayle (2004), Can finite-frequency effects

be accounted for in ray theory surface wave tomography?,

Geophys. Res. Lett., 31, L24614, doi:10.1029/2004GL021402.

1. Introduction

[2] Most of the present day surface wave tomographies
are based on the assumption that surface waves propagate
along the source-station great circle without mode-coupling
and that they are only sensitive to the structure along the
zero-width ray [e.g., Trampert and Woodhouse, 1995;
Ritsema et al., 2004; Debayle and Sambridge, 2004]. This
‘‘great circle ray theory’’ has been widely used because it
provides a simple theoretical framework for the efficient
analysis of large volumes of data. The obvious drawback of
retrieving information only along the ray paths is generally
overcome by extending the properties found along the rays
to their immediate vicinity. This can be done through the
parameterization of the model, for example by spreading to
a whole block what is found for a ray crossing the block,
and/or by adding some kind of regularization into the
inverse operator. In this context, retrieving small scale
details, such as heterogeneities smaller than a wavelength,
is in principle precluded because of the poor description of
the surface wave sensitivity, and also because ray theory is
valid only for a medium that does not vary significantly
over a wavelength (or the Fresnel zone width) [e.g., Spetzler
et al., 2002]. More accurate descriptions of wave propaga-
tion have been proposed in an attempt to obtain higher
resolution images. For surface wave tomography, the focus
has been on taking into account a finite-size sensitivity zone
around the paths [Spetzler et al., 2002; Ritzwoller et al.,
2002; Yoshizawa and Kennett, 2002].
[3] This paper addresses whether the theoretical short-

comings of ray theory in considering finite-frequency
effects can be counterbalanced by other factors, such as a

dense ray coverage or a physically-based choice of regular-
ization scheme. We explore, using a series of surface wave
tomography synthetic tests, whether inverting the data
set using a finite-frequency theory provides a significant
improvement compared to great circle ray theory combined
with a physically-based regularization. We use a represen-
tation of the finite-frequency effects based on single scat-
tering theory.

2. Finite-Size Sensitivity Zones

[4] In great circle ray theory the phase slowness 1/cobs

observed for each path is interpreted as the great circle path-
average slowness

1

cobs
¼ 1

D0

Z
D0

1

c sð Þ ds ð1Þ

with D0 the distance along the great circle and 1/c(s) the
local phase slowness.
[5] To account for finite-frequency effects the observed

phase slowness has to be interpreted as a weighted average
over a 2D zone

1

cobs
¼

Z
D0

Z
L sð Þ

K s; nð Þ 1

c s; nð Þ dn ds ð2Þ

where the weighting function (sensitivity kernel) K(s, n)
describes the sensitivity to the structure and L(s) is the width
of the 2D zone. Different definitions of K(s, n) and L(s)
have been proposed [Spetzler et al., 2002; Yoshizawa and
Kennett, 2002; Ritzwoller et al., 2002]. We follow here a
description similar to that of Spetzler et al. [2002], based on
the linearized scattering theory developed by Snieder
[2002], which only considers near forward, single scattering
(first Born-Rytov approximation) without mode coupling
nor source directivity effect.
[6] In classical surface wave analysis, cobs is measured

via a gaussian band-pass filtering of the seismograms [e.g.,
Dziewonski et al., 1969], and is actually a gaussian average
over a frequency-band. The corresponding sensitivity kernel
should therefore be the integral of the scattering kernel
weighted in frequency by the same filter, as suggested by
Spetzler et al. [2002]. A side effect of the summation
happens to be a significant attenuation of the kernel oscil-
lations transversely to the path (Figure 1), so that the exact
averaged kernel is accurately represented by a small number
of oscillations that depends on the frequency width of the
filter. The larger the frequency width, the more attenuated
the kernel oscillations, while the central lobe remains
essentially unchanged. We present the results obtained with
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a gaussian filter whose width at �30 dB is equal to the
central frequency. With this filter, a truncation at the fifth
zero-crossing (Figure 1) is a very good approximation of the
entire kernel. We therefore set L(s) equal to the width of the
fifth Fresnel zone, as defined by Spetzler et al. [2002].

3. Synthetic Tests and Results

[7] In the following tests, the synthetic data are funda-
mental mode Rayleigh wave phase velocities cobs calculated
at different periods using the finite-frequency theory sum-
marized above (equation (2)) for realistic path distributions
in a model with a plume-like perturbation (Figure 2). The
path distributions shown in Figure 2 correspond to two
different subsets of the path distribution used by Sieminski
et al. [2003] in a regional surface wave tomography of
Antarctica. The dense path coverage subset ensures a good
coverage of the target, a plume-like perturbation, while the
poor path coverage subset misses this perturbation entirely.
In both cases, the path lengths range from 1200 to 9700 km.

[8] We inverted data both with great circle ray theory
(equation (1)) and the finite-frequency theory (equation (2)),
and repeated the tests twice, first assuming perfect data
without noise and then adding random noise to the data. We
found that adding noise reduces the differences between ray
theory and finite-frequency results. Only the results from
perfect data are presented here as they provide an upper
bound on the relative effect of finite-frequency theory
versus great circle ray theory.
[9] The great circle inversion is performed with the

continuous regionalization algorithm of Montagner [1986]
recently optimized by Debayle and Sambridge [2004] to
process large data sets. An important parameter in our
scheme is Lc, the correlation length between the model
parameters, which controls the lateral smoothing of the
inverted model. Only the points located within a 2D
finite-size zone around each path contribute to the compu-
tation of the final model [Debayle and Sambridge, 2004].
The width of this ‘‘influence zone’’ is a function of Lc
(Figure 3a). Adapting Lc to the wavelength of the data is
thus a crude way to account for finite-size sensitivity zones,
while still using ray theory framework. The 3D S wave
velocity model by Sieminski et al. [2003] was obtained by
regionalizing a set of 1D depth-dependent path-average S
wave velocity models with Lc = 400 km, corresponding to
the average wavelength of the data set. In the following, the
ray theory inversions are performed with this same Lc value,
which is comparable to the first Fresnel zone maximum
width at 160 s for a 3300 km path, the average path length
of the data set (Figure 3b). We have extended the Debayle
and Sambridge’s [2004] scheme to incorporate finite-
frequency theory and use this modified scheme in our
finite-frequency inversion. For the finite-frequency inver-
sion, the overlap between the surfaces covered by the 2D
sensitivity kernels centered around each path ensures a
complete coverage of the area under study, rendering a
priori lateral smoothing on the model unnecessary.
[10] Figure 4 shows the dense path coverage results for

fundamental mode Rayleigh waves at 160 s using great

Figure 1. Scattering sensitivity kernel of the fundamental
mode of a 160 s Rayleigh wave for a 30� path a) 2D view,
b) cross section at mid-distance: complete scattering kernel
for a single frequency (dotted black line), with summation
over a frequency-band (solid black line) and the truncated
kernel eventually considered (red line).

Figure 2. Path distributions of the test. The initial anomaly
is a �6% S wave velocity perturbation extending from
Moho to 670 km depth with a width of 300 km. Its initial
position is marked by the green square.

Figure 3. ‘‘Influence zone’’ related to Lc for the same path
as in Figure 1 with Lc = 400 km a) 2D view b) cross section
at mid-distance. The shape of the ‘‘influence zone’’
transverse to the path is given by a gaussian (in blue), and
the red dotted line is the truncated 160 s scattering
sensitivity kernel of Figure 1 (amplitude normalized).
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circle ray theory (Figure 4a) and finite-frequency theory
(Figure 4b). Similar results are obtained for other periods.
At 160 s, despite the fact that the width of the input
heterogeneity (300 km) is smaller than the wavelength
(l160s ’ 700 km), the plume-like anomaly is detected and
correctly located with ray theory, suggesting that in this case
the influence zone related to Lc is an adequate description of
the finite-size sensitivity zones. With finite-frequency the-
ory (Figure 4b) the anomaly is in better focus and its
amplitude is higher, however, the resulting model would
not be interpreted any differently than the ray theory model.
Moreover, the apparent superiority of the finite-frequency
inversion in this case must be tempered for at least two
reasons. First, in this noise-free case most of the difference
between the two models is actually due to the smoothing
effect of the ray theory parameter Lc. Indeed, applying the
same a priori smoothing to the finite-frequency inversion
leads to a very similar model to that obtained using ray
theory. Second, tests carried out after adding noise to the
perfect data showed that focusing and amplitude recovery in
the finite-frequency inversion are significantly degraded.
[11] Let us now investigate what happens when the path

coverage is degraded. Figure 5 shows the results obtained
at 160 s and 100 s when the input plume-like anomaly is
not crossed by any ray (Figure 2b) but still perturbs
the synthetic data due to the finite-frequency effect. The
amplitude of this perturbation depends on the width of the
sensitivity zone and therefore on the period and path length.
At 160 s, ray theory with the Lc influence zone (Figure 5a)
retrieves a broad low velocity anomaly in the region of the
input anomaly, while finite-frequency theory (Figure 5b)
retrieves the anomaly much better. At 100 s, the effect of the
anomaly on the synthetic data is much smaller since, due to
the poor coverage, the wave sensitivity to the anomaly is
limited to a very marginal part of the kernel, where its
amplitude is very small (Figure 1). At this period, while
ray theory completely fails to retrieve the input anomaly
(Figure 5c), a small low velocity perturbation is found at the
correct location with finite-frequency theory (Figure 5d).
However, the high performance of the finite-frequency

inversion is dependent on the use of noiseless synthetic data
computed with the same theory as used in the inversion,
since adding noise to the data strongly weakens this result.

4. Discussion

[12] Several recent studies present comparisons of ray
theory and finite-frequency tomography. For example,
Montelli et al. [2004] obtain velocity perturbations up to
30–50% larger when finite-frequency effects are included
in global P and PP travel time tomography, suggesting that
wave front healing cannot be neglected when analyzing
long period body waves. Discussing our results in terms of
wave front healing is beyond the scope of this study.
Spetzler et al. [2002] retrieve the large-scale structures
(>1000 km) equally well by inverting Love wave phase
shift data using ray theory or finite-frequency theory,
whereas Ritzwoller et al. [2002], who approximate the
central lobe of Spetzler et al.’s [2002] kernel by a boxcar
transverse to the paths, find significant differences between
finite-frequency and ray theory surface wave tomography at
long periods and in regions covered only by long paths. As
finite-frequency effects are indeed more important for long
periods and long paths, and as our data set is limited to
paths shorter than those for which Ritzwoller et al. [2002]
observe the greatest differences, it is not surprising that we
do not find as strong differences.
[13] Our tests point out the importance of the path

coverage for obtaining high resolution images with ray
theory. They suggest that heterogeneities smaller than a

Figure 4. Models inverted in the case of a dense path
coverage (Figure 2a) a) with great circle ray theory (GC
Ray) and Lc = 400 km b) with the finite-frequency theory
(without further correlation between the model parameters)
for the fundamental mode of a Rayleigh wave at 160 s. The
green square is the position of the input anomaly.

Figure 5. Same as Figure 4 but in a case of a very poor
path coverage of the anomaly (Figure 2b) for the
fundamental mode of a) and b) a 160 s Rayleigh wave
and c) and d) a 100 s Rayleigh wave.
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wavelength or the first Fresnel zone width can be resolved
with ray theory when combined with a physically-based
regularization. This result is at first glance counterintuitive
as ray theory is supposed to break down when the size of
seismic heterogeneities is close to the wavelength or the
Fresnel zone width. It is however in agreement with results
from the recent migration experiment of Spetzler and
Snieder [2004].
[14] Our regularization of the great circle ray theory

inversion makes use of a ‘‘gaussian beam’’ centered around
the great circle paths that defines an influence zone around
the paths (Figure 3). The main difference with finite-
frequency theory is that our influence zone is a gaussian
function scaled by a fixed parameter Lc whose width does
not change along the path nor with the path length. Even in
our test situation, where 50% of the paths are longer than the
average 3300 km length, the single Lc value of 400 km leads
to results that are consistent with those of finite-frequency
inversion, provided the path coverage is dense enough.
[15] Indeed, with this dense coverage, every part of the

model is mainly sampled through the central lobe of the
sensitivity kernel. The corresponding data perturbation is
thus large enough to be conveniently described by approx-
imate kernels such as a boxcar or a gaussian function.
With the poor coverage (Figure 2b) however, the data
perturbations due to the input anomaly are small, and
obtained through the tiny sidelobes of the sensitivity kernel
(Figure 1). Not surprisingly, only the use of the exact
sensitivity kernels can correctly retrieve the anomaly
(Figure 5). Note however that because of this weak
sensitivity, any inaccuracy or noise in the data can
prevent even the finite-frequency theory from retrieving
the anomaly correctly.
[16] In the poor coverage case, slightly different images

would be obtained with another choice for the frequency
averaging of the kernels since the number of sidelobes
depends on this width, but the qualitative conclusions
would be the same. Conversely, the results for a dense
coverage do not depend much on the frequency width, as
the central lobe is not strongly affected by this parameter.
[17] Besides a poor path coverage, other effects can

impair the anomaly retrieval with ray theory. For example,
for surface wave tomographies that include a wide variety
of path lengths, and where a single Lc ‘‘influence zone’’
cannot mimic properly the variety of the 2D sensitivity
zones, we expect more difficulties with ray theory. We have
not tested the path bending effect that may be important
especially for long paths [Ritzwoller et al., 2002].

[18] In conclusion, regional surface wave tomographies,
which commonly meet the conditions of our experiments
(i.e., good path coverage and short path lengths), can be
safely conducted under the great circle ray theory assump-
tion when combined with a proper inversion scheme.
However, the case with which finite-frequency effects can
be counterbalanced by using regularization parameters
depends on the inversion technique. A regularization
operator based on a priori physical assumptions, like in
Tarantola and Valette [1982], is particularly well suited to
the problem.

[19] Acknowledgment. This research is supported by program
DyETI conducted by the French ‘‘Intitut National des Sciences de
l’Univers’’ (INSU).
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