
1

Chapter 2: OperatingChapter 2: Operating --System StructuresSystem Structures

2.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Chapter 2: OperatingChapter 2: Operating --System StructuresSystem Structures

� Operating System Services

� User Operating System Interface

� System Calls

� Types of System Calls

� System Programs

� Operating System Design and Implementation

� Operating System Structure

� Virtual Machines

� Operating System Generation

� System Boot

2

2.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

ObjectivesObjectives

� To describe the services an operating system provides to users,
processes, and other systems

� To discuss the various ways of structuring an operating system

� To explain how operating systems are installed and customized
and how they boot

2.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Operating System ServicesOperating System Services

� One set of operating-system services provides functions that are
helpful to the user:

� User interface - Almost all operating systems have a user interface (UI)

� Varies between Command-Line (CLI), Graphics User Interface
(GUI), Batch

� Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or
abnormally (indicating error)

� I/O operations - A running program may require I/O, which may involve
a file or an I/O device.

� File-system manipulation - The file system is of particular interest.
Obviously, programs need to read and write files and directories, create
and delete them, search them, list file Information, permission
management.

3

2.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Operating System Services (Cont.)Operating System Services (Cont.)

� One set of operating-system services provides functions that are
helpful to the user (Cont):

� Communications – Processes may exchange information, on the same
computer or between computers over a network

� Communications may be via shared memory or through message
passing (packets moved by the OS)

� Error detection – OS needs to be constantly aware of possible errors

� May occur in the CPU and memory hardware, in I/O devices, in user
program

� For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

� Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

2.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Operating System Services (Cont.)Operating System Services (Cont.)

� Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing

� Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

� Many types of resources - Some (such as CPU cycles,mainmemory,
and file storage) may have special allocation code, others (such as I/O
devices) may have general request and release code.

� Accounting - To keep track of which users use how much and what kinds
of computer resources

� Protection and security - The owners of information stored in a multiuser
or networked computer system may want to control use of that information,
concurrent processes should not interfere with each other

� Protection involves ensuring that all access to system resources is
controlled

� Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access attempts

� If a system is to be protected and secure, precautions must be
instituted throughout it. A chain is only as strong as its weakest link.

4

2.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

User Operating System Interface User Operating System Interface -- CLICLI

CLI allows direct command entry

� Sometimes implemented in kernel, sometimes by systems
program

� Sometimes multiple flavors implemented – shells

� Primarily fetches a command from user and executes it

– Sometimes commands built-in, sometimes just names of
programs

» If the latter, adding new features doesn’t require shell
modification

2.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

User Operating System Interface User Operating System Interface -- GUIGUI

� User-friendly desktop metaphor interface

� Usually mouse, keyboard, and monitor

� Icons represent files, programs, actions, etc

� Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute function,
open directory (known as a folder)

� Invented at Xerox PARC

� Many systems now include both CLI and GUI interfaces

� Microsoft Windows is GUI with CLI “command” shell

� Apple Mac OS X as “Aqua” GUI interface with UNIX kernel
underneath and shells available

� Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

5

2.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

System CallsSystem Calls

� Programming interface to the services provided by the OS

� Typically written in a high-level language (C or C++)

� Mostly accessed by programs via a high-level Application
Program Interface (API) rather than direct system call use

� Three most common APIs are Win32 API for Windows, POSIX API
for POSIX-based systems (including virtually all versions of UNIX,
Linux, and Mac OS X), and Java API for the Java virtual machine
(JVM)

� Why use APIs rather than system calls?

(Note that the system-call names used throughout this text are
generic)

2.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Example of System CallsExample of System Calls

� System call sequence to copy the contents of one file to another file

6

2.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Example of Standard APIExample of Standard API

� Consider the ReadFile() function in the

� Win32 API—a function for reading from a file

� A description of the parameters passed to ReadFile()

� HANDLE file—the file to be read

� LPVOID buffer—a buffer where the data will be read into and written
from

� DWORD bytesToRead—the number of bytes to be read into the buffer

� LPDWORD bytesRead—the number of bytes read during the last read

� LPOVERLAPPED ovl—indicates if overlapped I/O is being used

2.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

System Call ImplementationSystem Call Implementation

� Typically, a number associated with each system call

� System-call interface maintains a table indexed according to
these numbers

� The system call interface invokes intended system call in OS kernel
and returns status of the system call and any return values

� The caller need know nothing about how the system call is
implemented

� Just needs to obey API and understand what OS will do as a
result call

� Most details of OS interface hidden from programmer by API

� Managed by run-time support library (set of functions built
into libraries included with compiler)

7

2.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

API API –– System Call System Call –– OS RelationshipOS Relationship

2.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Standard C Library ExampleStandard C Library Example

� C program invoking printf() library call, which calls write() system call

8

2.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

System Call Parameter PassingSystem Call Parameter Passing

� Often, more information is required than simply identity of desired
system call

� Exact type and amount of information vary according to OS and
call

� Three general methods used to pass parameters to the OS

� Simplest: pass the parameters in registers

� In some cases, may be more parameters than registers

� Parameters stored in a block, or table, in memory, and address
of block passed as a parameter in a register

� This approach taken by Linux and Solaris

� Parameters placed, or pushed, onto the stack by the program
and popped off the stack by the operating system

� Block and stack methods do not limit the number or length of
parameters being passed

2.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Parameter Passing via TableParameter Passing via Table

9

2.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Types of System CallsTypes of System Calls

� Process control

� File management

� Device management

� Information maintenance

� Communications

2.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

MSMS--DOS executionDOS execution

(a) At system startup (b) running a program

10

2.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

FreeBSD Running Multiple ProgramsFreeBSD Running Multiple Programs

2.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

System ProgramsSystem Programs

� System programs provide a convenient environment for program
development and execution. The can be divided into:

� File manipulation

� Status information

� File modification

� Programming language support

� Program loading and execution

� Communications

� Application programs

� Most users’ view of the operation system is defined by system
programs, not the actual system calls

11

2.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Solaris 10 Solaris 10 dtracedtrace Following System CallFollowing System Call

2.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

System ProgramsSystem Programs

� Provide a convenient environment for program development and execution

� Some of them are simply user interfaces to system calls; others are
considerably more complex

� File management - Create, delete, copy, rename, print, dump, list, and
generally manipulate files and directories

� Status information

� Some ask the system for info - date, time, amount of available memory,
disk space, number of users

� Others provide detailed performance, logging, and debugging
information

� Typically, these programs format and print the output to the terminal or
other output devices

� Some systems implement a registry - used to store and retrieve
configuration information

12

2.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

System Programs (contSystem Programs (cont ’’d)d)

� File modification

� Text editors to create and modify files

� Special commands to search contents of files or perform
transformations of the text

� Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided

� Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems
for higher-level and machine language

� Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems

� Allow users to send messages to one another’s screens,
browse web pages, send electronic-mail messages, log in
remotely, transfer files from one machine to another

2.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Operating System Design and ImplementationOperating System Design and Implementation

� Design and Implementation of OS not “solvable”, but some
approaches have proven successful

� Internal structure of different Operating Systems can vary widely

� Start by defining goals and specifications

� Affected by choice of hardware, type of system

� User goals and System goals

� User goals – operating system should be convenient to use,
easy to learn, reliable, safe, and fast

� System goals – operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free,
and efficient

13

2.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Operating System Design and Implementation (Cont.)Operating System Design and Implementation (Cont.)

� Important principle to separate

Policy: What will be done?
Mechanism: How to do it?

� Mechanisms determine how to do something, policies decide what
will be done

� The separation of policy from mechanism is a very important
principle, it allows maximum flexibility if policy decisions are to
be changed later

2.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Simple Structure Simple Structure

� MS-DOS – written to provide the most functionality in the least
space

� Not divided into modules

� Although MS-DOS has some structure, its interfaces and levels
of functionality are not well separated

14

2.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

MSMS--DOS Layer StructureDOS Layer Structure

2.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Layered ApproachLayered Approach

� The operating system is divided into a number of layers (levels),
each built on top of lower layers. The bottom layer (layer 0), is the
hardware; the highest (layer N) is the user interface.

� With modularity, layers are selected such that each uses functions
(operations) and services of only lower-level layers

15

2.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Layered Operating SystemLayered Operating System

2.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

UNIXUNIX

� UNIX – limited by hardware functionality, the original UNIX operating
system had limited structuring. The UNIX OS consists of two
separable parts

� Systems programs

� The kernel

� Consists of everything below the system-call interface and
above the physical hardware

� Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level

16

2.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

UNIX System StructureUNIX System Structure

2.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Microkernel System Structure Microkernel System Structure

� Moves as much from the kernel into “user” space

� Communication takes place between user modules using message
passing

� Benefits:

� Easier to extend a microkernel

� Easier to port the operating system to new architectures

� More reliable (less code is running in kernel mode)

� More secure

� Detriments:

� Performance overhead of user space to kernel space
communication

17

2.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Mac OS X StructureMac OS X Structure

2.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

ModulesModules

� Most modern operating systems implement kernel modules

� Uses object-oriented approach

� Each core component is separate

� Each talks to the others over known interfaces

� Each is loadable as needed within the kernel

� Overall, similar to layers but with more flexible

18

2.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Solaris Modular ApproachSolaris Modular Approach

2.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Virtual MachinesVirtual Machines

� A virtual machine takes the layered approach to its logical
conclusion. It treats hardware and the operating system
kernel as though they were all hardware

� A virtual machine provides an interface identical to the
underlying bare hardware

� The operating system creates the illusion of multiple
processes, each executing on its own processor with its own
(virtual) memory

19

2.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Virtual Machines (Cont.)Virtual Machines (Cont.)

� The resources of the physical computer are shared to create the
virtual machines

� CPU scheduling can create the appearance that users have
their own processor

� Spooling and a file system can provide virtual card readers and
virtual line printers

� A normal user time-sharing terminal serves as the virtual
machine operator’s console

2.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Virtual Machines (Cont.)Virtual Machines (Cont.)

(a) Nonvirtual machine (b) virtual machine

Non-virtual Machine Virtual Machine

20

2.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Virtual MachinesVirtual Machines (Cont.)(Cont.)

� The virtual-machine concept provides complete protection of system
resources since each virtual machine is isolated from all other virtual
machines. This isolation, however, permits no direct sharing of
resources.

� A virtual-machine system is a perfect vehicle for operating-systems
research and development. System development is done on the
virtual machine, instead of on a physical machine and so does not
disrupt normal system operation.

� The virtual machine concept is difficult to implement due to the effort
required to provide an exact duplicate to the underlying machine

2.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

VMwareVMware ArchitectureArchitecture

21

2.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

The Java Virtual MachineThe Java Virtual Machine

2.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Operating System GenerationOperating System Generation

� Operating systems are designed to run on any of a class of
machines; the system must be configured for each specific
computer site

� SYSGEN program obtains information concerning the specific
configuration of the hardware system

� Booting – starting a computer by loading the kernel

� Bootstrap program – code stored in ROM that is able to locate the
kernel, load it into memory, and start its execution

22

2.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

System BootSystem Boot

� Operating system must be made available to hardware so
hardware can start it

� Small piece of code – bootstrap loader , locates the kernel,
loads it into memory, and starts it

� Sometimes two-step process where boot block at fixed
location loads bootstrap loader

� When power initialized on system, execution starts at a fixed
memory location

� Firmware used to hold initial boot code

2.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Chargement dChargement d ’’un OS / Bootun OS / Boot

� Lourdeur due au poids de l’histoire

� Initialisation doit être conforme au PC qui date de 1981 !

� Au début est le BIOS

� Mémoire vive et périphérique dans un état quelconque au
démarrage

� Prg stocké en ROM qui va prendre en charge

� Initialisation

� Démarrage d’un OS

� Basic Input/Output System

ROM mappée sur le bus mémoire 0xc0000 et 0xffff (1 Mo)

23

2.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Jan 14, 2005

Chargement dChargement d ’’un OS / Bootun OS / Boot

� 1ere instruction exécuté est en 0xfff0
(ROM)

� Jump vers le cœur du BIOS ensuite

� Initialisation / Beep ! (POwer On Self
Test)

� Initialisation des extensions (0xc0000
et 0xeffff)

� Carte vidéo, IDE

� Recherche des chargeurs d’OS

� Block de 512 Octets se terminant
par 0x55aa

� On charge le block en mémoire et
on l’exécute

End of Chapter 2End of Chapter 2

