
Chapter 3: ProcessesChapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Chapter 3: ProcessesChapter 3: Processes

� Process Concept

� Process Scheduling

� Operations on Processes

� Cooperating Processes

� Interprocess Communication

� Communication in Client-Server Systems

3.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Process ConceptProcess Concept

� An operating system executes a variety of programs:

� Batch system – jobs

� Time-shared systems – user programs or tasks

� Textbook uses the terms job and process almost interchangeably

� Process – a program in execution; process execution must
progress in sequential fashion

� A process includes:

� program counter

� stack

� data section

� Text section / program code

� More that just the program code

� Program is not a process == passive entity

� Process == active entity

3.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Process in MemoryProcess in Memory

3.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Process StateProcess State

� As a process executes, it changes state

� new : The process is being created

� running : Instructions are being executed

� waiting : The process is waiting for some event to occur

� ready : The process is waiting to be assigned to a processor

� terminated : The process has finished execution

3.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Diagram of Process StateDiagram of Process State

Only one process can be running on any processor at any in stant

3.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Process Control Block (PCB)Process Control Block (PCB)

Information associated with each process

� Process state (new, ready, running, waiting, halted…)

� Program counter (@ of the next instruction)

� CPU registers (accumulators, stack pointer, condition-code
information)

� CPU scheduling information

� Priority, ptr to scheduling queues (chap 5)

� Memory-management information

� Base, limit, page table (chap 8)

� Accounting information (CPU, real time)

� I/O status information (list of I/O allocated, open files)

3.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Process Control Block (PCB)Process Control Block (PCB)

3.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Process SchedulingProcess Scheduling

� Multiprogramming == maximize CPU utilization

� � have some process running at all times

� Time sharing == switch the CPU among processes so frequently

� � user can interact which each program

� Process Scheduler selects an available process

3.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

CPU Switch From Process to ProcessCPU Switch From Process to Process

3.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Process Scheduling QueuesProcess Scheduling Queues

� Job queue – set of all processes in the system

� Ready queue – set of all processes residing in main memory,
ready and waiting to execute

� Device queues – set of processes waiting for an I/O device

� Processes migrate among the various queues

3.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Ready Queue And Various I/O Device QueuesReady Queue And Various I/O Device Queues

3.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Representation of Process SchedulingRepresentation of Process Scheduling

3.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

SchedulersSchedulers

� A process migrates among the various scheduling que ues
during its lifetime

� The selection process is carried out by the appropr iated
scheduler

� Long-term scheduler (or job scheduler) – selects which processes
should be brought into the ready queue

� Batch style : more processes than can be executed. Pool on a
disk

� Short-term scheduler (or CPU scheduler) – selects which process
should be executed next and allocates CPU

3.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Schedulers (Cont.)Schedulers (Cont.)
� Short-term scheduler is invoked very frequently (milliseconds) ⇒ (must be fast)

� Once every 100 millisecond, 10 millisecond to decide

� � 9% wasted

� Long-term scheduler is invoked very infrequently (seconds, minutes) ⇒ (may be
slow)

� The long-term scheduler controls the degree of multiprogramming

� � # of processes in memory

� Stable == rate of proc. creation == proc. Departure

� � invoked only when a process leaves the system

� Processes can be described as either:

� I/O-bound process – spends more time doing I/O than computations, many
short CPU bursts

� CPU-bound process – spends more time doing computations; few very long
CPU bursts

3.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Long Long ––term schedulerterm scheduler

� Must select a good process mix

� All processes are I/0 bound

� Ready queue will almost always be empty

� Short term scheduler will have little to do

� All process are CPU Bound

� I/0 waiting queue will almost always be empty

� Devices will go unused � system will be unbalanced

� Best performance � combination of CPU-bound and I/O-bound

3.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Addition of Medium Term SchedulingAddition of Medium Term Scheduling

Long-term scheduler may be absent or minimal (UNIX / Microsoft – time sharing)

Advantageous to remove processes from the memory � reduce the degree of
multiprogramming (swapping)

3.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Context SwitchContext Switch
� When CPU switches to another process, the system must save the state

of the old process and load the saved state for the new process

� State save / state restore

� Context-switch time is pure overhead ; the system does no useful work
while switching

� Time dependent on hardware support

� Sun UltraSPARC have multi set of registers

� � context switch == changing the ptr to the current register set

� Address space must be preserved

� How / what amount of work depends on the memory-management
(Chap. 8)

3.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Operation on ProcessesOperation on Processes

� Processes can execute concurrently

� May be created and deleted dynamically

� System must provide a way for

� Creation

� Termination

3.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Process CreationProcess Creation

� Parent process create children processes (create-process system
call)

� which, in turn create other processes,

� forming a tree of processes

� Unique process identifier (pid)

� Resource sharing

� Parent and children share all resources

� Children share subset of parent’s resources (advantage ?)

� Parent and child share no resources

� Execution

� Parent and children execute concurrently

� Parent waits until children terminate

3.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Process Creation (Cont.)Process Creation (Cont.)

� Address space

� Child duplicate of parent

� Child has a program loaded into it

� UNIX examples

� fork system call creates new process

� exec system call used after a fork to replace the process’
memory space with a new program

3.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Process CreationProcess Creation

3.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

C Program Forking Separate ProcessC Program Forking Separate Process
#include <sys/types.h>

#include <unistd.h>

int main() {

pid_t pid;

/* fork another process */

pid = fork();

if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");

exit(-1);

}

else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);

}

else { /* parent process */

/* parent will wait for the child to
complete */

wait (NULL);

printf ("Child Complete");

exit(0);

}

}

fork(): new process == copy of
the address space of the original
� communication between
parent and child is easy

Both continue execution

Return value for the child is 0

Exec() system call used to
replace the program in memory.

Wait() system call to move off the
ready queue

3.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Note Note sursur forkfork

� fork crée un processus fils qui diffère du processus parent
uniquement par ses valeurs PID et PPID et par le fait que toutes
les statistiques d'utilisation des ressources sont remises à zéro.
Les verrouillages de fichiers, et les signaux en attente ne sont pas
hérités.

� Sous Linux, fork est implementé en utilisant une méthode de copie
à l'écriture. Ceci consiste à ne faire la véritable duplication d'une
page mémoire que lorsqu'un processus en modifie une instance

� . Tant qu'aucun des deux processus n'écrit dans une page
donnée, celle-ci n'est pas vraiment dupliquée. Ainsi les seules
pénalisations induites par fork sont le temps et la mémoire
nécessaires à la copie de la table des pages du parent ainsi
que la création d'une structure de tâche pour le fils.

3.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

A tree of processes on a typical SolarisA tree of processes on a typical Solaris

Managing memory &
file system

Root parent process
for all user processes

3.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Process TerminationProcess Termination

� Process executes last statement and asks the operating system to delete it
(exit)

� Output data from child to parent (via wait)

� Process’ resources are deallocated by operating system

� Physical / virtual memory, open files, I/O buffers

� Parent may terminate execution of children processes (abort)

� Child has exceeded allocated resources

� Task assigned to child is no longer required

� If parent is exiting

� Some operating systems (VMS) do not allow child to continue if its
parent terminates

– All children terminated - cascading termination

� On Linux, children are assigned as their new parent the init process

3.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Cooperating ProcessesCooperating Processes

� Independent process cannot affect or be affected by the execution
of another process

� Cooperating process can affect or be affected by the execution of
another process

� Advantages of process cooperation

� Information sharing

� Computation speed-up

� Modularity

� Convenience

3.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

ProducerProducer --Consumer ProblemConsumer Problem

� Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process

� unbounded-buffer places no practical limit on the size of
the buffer

� Consumer may have to wait

� Producer can always produce new item

� bounded-buffer assumes that there is a fixed buffer size

3.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

BoundedBounded --Buffer Buffer –– SharedShared --Memory SolutionMemory Solution

� Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

� Shared buffer == circular array

� Solution is correct, but can only use BUFFER_SIZE-1 elements

3.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

BoundedBounded --Buffer Buffer –– Insert() MethodInsert() Method

while (true) {
/* Produce an item */

while (((in = (in + 1) % BUFFER SIZE count) == out)

; /* do nothing -- no free buffers */

buffer[in] = item;

in = (in + 1) % BUFFER SIZE;

}

3.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Bounded Buffer Bounded Buffer –– Remove() MethodRemove() Method

while (true) {

while (in == out)

; // do nothing -- nothing to consume

// remove an item from the buffer

item = buffer[out];

out = (out + 1) % BUFFER SIZE;

return item;

}

3.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

InterprocessInterprocess Communication (IPC)Communication (IPC)

� Mechanism for processes to communicate and to synchronize their
actions

� Message system – processes communicate with each other without
resorting to shared variables

� IPC facility provides two operations:

� send (message) – message size fixed or variable

� receive (message)

� If P and Q wish to communicate, they need to:

� establish a communication link between them

� exchange messages via send/receive

� Implementation of communication link

� physical (e.g., shared memory, hardware bus)

� logical (e.g., logical properties)

3.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Implementation QuestionsImplementation Questions

� How are links established?

� Can a link be associated with more than two processes?

� How many links can there be between every pair of communicating
processes?

� What is the capacity of a link?

� Is the size of a message that the link can accommodate fixed or
variable?

� Is a link unidirectional or bi-directional?

3.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Communications Models Communications Models

3.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Direct CommunicationDirect Communication

� Processes must name each other explicitly:

� send (P, message) – send a message to process P

� receive (Q, message) – receive a message from process Q

� Properties of communication link

� Links are established automatically

� A link is associated with exactly one pair of communicating
processes

� Between each pair there exists exactly one link

� The link may be unidirectional, but is usually bi-directional

3.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Indirect CommunicationIndirect Communication

� Messages are directed and received from mailboxes (also
referred to as ports)

� Each mailbox has a unique id

� Processes can communicate only if they share a mailbox

� Properties of communication link

� Link established only if processes share a common mailbox

� A link may be associated with many processes

� Each pair of processes may share several communication
links

� Link may be unidirectional or bi-directional

3.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Indirect CommunicationIndirect Communication

� Operations

� create a new mailbox

� send and receive messages through mailbox

� destroy a mailbox

� Primitives are defined as:

send (A, message) – send a message to mailbox A

receive (A, message) – receive a message from mailbox A

3.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Indirect CommunicationIndirect Communication

� Mailbox sharing

� P1, P2, and P3 share mailbox A

� P1, sends; P2 and P3 receive

� Who gets the message?

� Solutions

� Allow a link to be associated with at most two processes

� Allow only one process at a time to execute a receive operation

� Allow the system to select arbitrarily the receiver. Sender is
notified who the receiver was.

3.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

SynchronizationSynchronization

� Message passing may be either blocking or non-blocking

� Blocking is considered synchronous

� Blocking send has the sender block until the message is
received

� Blocking receive has the receiver block until a message is
available

� Non-blocking is considered asynchronous

� Non-blocking send has the sender send the message and
continue

� Non-blocking receive has the receiver receive a valid
message or null

3.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

BufferingBuffering

� Queue of messages attached to the link; implemented in one of
three ways

1. Zero capacity – 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

3.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

ClientClient --Server CommunicationServer Communication

� Sockets

� Remote Procedure Calls

� Remote Method Invocation (Java)

3.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

SocketsSockets

� A socket is defined as an endpoint for communication

� Concatenation of IP address and port

� The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

� Communication consists between a pair of sockets

3.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Socket CommunicationSocket Communication

3.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Remote Procedure CallsRemote Procedure Calls

� Remote procedure call (RPC) abstracts procedure calls between
processes on networked systems.

� Stubs – client-side proxy for the actual procedure on the server.

� The client-side stub locates the server and marshalls the
parameters.

� The server-side stub receives this message, unpacks the
marshalled parameters, and peforms the procedure on the server.

3.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Execution of RPCExecution of RPC

3.46 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Remote Method InvocationRemote Method Invocation

� Remote Method Invocation (RMI) is a Java mechanism similar to
RPCs.

� RMI allows a Java program on one machine to invoke a method on
a remote object.

3.47 Silberschatz, Galvin and Gagne ©2005Operating System Concepts - 7 th Edition, Feb 7, 2006

Marshalling ParametersMarshalling Parameters

End of Chapter 3End of Chapter 3

