Chapter 9: Virtual Memory
CIEBBVILIEBBIIC B DI IS DI

Chapter 8: resume

® Various memory management strategies
e Keep many processes in memory—> multiprogramming
e Require that the entire process in memory

m Virtual memory allows the execution of a process not completely in
memory

e Programmer >> main memory size
e Abstract main memory into extremely large uniform array...
e Allow process to share file, to implement shared memory

Operating System Concepts —7 " Edition, Feb 22, 2005 9.2 Silberschatz, Galvin and Gagne ©2005

Chapter 9: Virtual Memory

Background

Demand Paging
Copy-on-Write

Page Replacement
Allocation of Frames
Thrashing
Memory-Mapped Files
Allocating Kernel Memory
Other Considerations

Operating-System Examples

=

Operating System Concepts —7 " Edition, Feb 22, 2005 9.3 Silberschatz, Galvin and Gagne ©2005

Objectives

® To describe the benefits of a virtual memory system

® To explain the concepts of demand paging, page-replacement
algorithms, and allocation of page frames

m To discuss the principle of the working-set model

Operating System Concepts —7 " Edition, Feb 22, 2005 9.4 Silberschatz, Galvin and Gagne ©2005

Background

® Memory management (chap 8)
e instruction being executed must be in physical memory
e Place the entire logical memory in physical memory
e Dynamic loading may help
» Special precaution / extra work
e Seems necessary & reasonable
» Unfortunate
» limits the size of a program

m Entire program is not needed in many cases:
e Code for unusual error condition
e Array /lists allocate more memory than needed...

e Some option/features rarely used -

7N

; ;
Operating System Concepts —7 " Edition, Feb 22, 2005 9.5 Silberschatz, Galvin and Gagne ©2005

Background (cont)

m Benefits
e No constraint by the limit of the physical memory
e More programs could be run at the same time
» Increase in CPU utilization, Throughput
» Same response time or turnaround
e Less I/O to load/swap each user program / run faster

&

Operating System Concepts —7 " Edition, Feb 22, 2005 9.6 Silberschatz, Galvin and Gagne ©2005

Background (cont)

m Virtual memory - separation of user logical memory from physical
memory.

e Only part of the program needs to be in memory for execution

e Logical address space can therefore be much larger than
physical address space

e Programming task much more easier
e Allows address spaces to be shared by several processes
e Allows for more efficient process creation

m Virtual memory can be implemented via:
e Demand paging
e Demand segmentation

Operating System Concepts —7 " Edition, Feb 22, 2005 9.7 Silberschatz, Galvin and Gagne ©2005

Virtual Memory That is Larger Than Physical Memory
page 0
page 1
page 2 ATy
e
"Bl E
=" N mEm
. H E E
' T~ EEE
O & O
memory v
map
page v physical
virtual AL
memory
Operating System Concepts —7 " Edition, Feb 22, 2005 9.8 Silberschatz, Galvin and Gagne ©2005

m Refers to the logical vie of how a process is
stored in memory

m |n fact physical memory may be organized in
page frames

m Pages frames may be assigned to a process in a
non contiguous way

m The MMU maps logical pages to physical pages

m Hole (sparse address space) is part of the
virtual address space

e Require physical addresses only if the
heap/stack grows

m Allows also sharing of files, memory, process
creation, libraries

Operating System Concepts — 7 th Edition, Feb 22, 2005 9.9

Virtual -address Space

Max
stack

| —»
heap
data
code

0

Silberschatz, Galvin and Gagne ©2005

Shared Library Using Virtual Memory

Mapped Read only

stack

. shared
shared library pages

heap

data

code

stack

shared library

heap

data

code

Operating System Concepts — 7 ' Edition, Feb 22, 2005 9.10

Silberschatz, Galvin and Gagne ©2005

Demand Paging

® Bring a page into memory only when it is needed

Less I/0 needed
Less memory needed

e Faster response

More users

m Page is needed = reference to it
e invalid reference = abort
e not-in-memory = bring to memory

® Lazy swapper — never swaps a page into memory unless page will

be needed

e Swapper that deals with pages is a pager

Operating System Concepts — 7 th Edition, Feb 22, 2005 9.11

Silberschatz, Galvin and Gagne ©2005

Transfer of a Paged Memory to Contiguous Disk Space

swap out

P N
N

o111 2[1 3]

program
A

program
B

_Swap in

40 50 603 70
8] 9[T1o[1111
1218141151

16|:|17[;|18|;|19|g

main
memory

201 [J22[1e3[]
- e

Operating System Concepts — 7 ' Edition, Feb 22, 2005 9.12

Silberschatz, Galvin and Gagne ©2005

Basic concept

m Pager “guesses” which pages will be used before the process is
swapped out again

® Need support to distinguish between the pages that are
e In memory

e On the disk

R

7N

/
Operating System Concepts —7 " Edition, Feb 22, 2005 9.13 Silberschatz, Galvin and Gagne ©2005

Valid -Invalid Bit

m With each page table entry a valid—invalid bit is associated
(v = in-memory, i = not-in-memory)

Initially valid—invalid bit is set to i on all entries
Example of a page table snapshot:

Frame # valid-invalid bit
\')
\
\'
\
|
|
i
page table

m During address translation, if valid—invalid bit in page table entry

R
is | = page fault A i

Operating System Concepts —7 " Edition, Feb 22, 2005 9.14 Silberschatz, Galvin and Gagne ©2005

Page Table When Some Pages Are Not in Main
Memory
m Page marked invalid has no effect 9
if the process never attempts to 1
access that page b| A 2
valid-invalid
= If we guess right, the process will [|'| 8 frame bt 3 R
run exactly as though we have 2| C 4 A S
brought in all pages bl D 5 EEE
+ INE s ¢ L]
m While pages are memory f ’ [D]
resident , execution proceeds 6L @ 8
normally 7| H 9| F
logical page table io
memory l:l D l:l
1"
v
12
13
14
15
physical memory
Operating System Concepts —7 " Edition, Feb 22, 2005 9.15 Silberschatz, Galvin and Gagne ©2005

Page Fault

m |f there is a reference to a page, first reference to that
page will trap to operating system:

page fault
1. Operating system looks at another table to decide:
e Invalid reference = abort
e Just notin memory - page itin.
Get empty frame
Swap page into frame
Reset tables
Set validation bit = v
Restart the instruction that caused the page fault

o g~ WD

Extreme case: start executing a process with no page in memory
- pure demand paging

Operating System Concepts —7 ™" Edition, Feb 22, 2005 9.16 Silberschatz, Galvin

and Gagne ©2005

Page Fault (Cont.)

Some programs could access several new pages of memory with
each instruction execution

- poor performances

- locality of reference
® Restart instruction
e Must save the state of the interrupt process

» Restart the the process in exactly the same place

e block move

e auto increment/decrement location

Operating System Concepts —7 " Edition, Feb 22, 2005 9.17 Silberschatz, Galvin and Gagne ©2005

Steps in Handling a Page Fault

page is on
backing store

operating
system @
reference
@ trap
load M [i—
restart page table
instruction
free frame
reset page bring in
table missing page

physical
memory ﬁ St

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts — 7 ' Edition, Feb 22, 2005 9.18

Performance of Demand Paging

m Page FaultRate0<p<1.0
e if p=0 no page faults
e if p=1, every reference is a fault

m Effective Access Time (EAT)
EAT = (1 — p) x memory access
+ p (page fault overhead
+ swap page out
+ swap page in
+ restart overhead

R

2N
Y

Operating System Concepts —7 " Edition, Feb 22, 2005 9.19 Silberschatz, Galvin and Gagne ©2005

Demand Paging Example

® Memory access time = 200 nanoseconds

m Average page-fault service time = 8 milliseconds

B EAT = (1-p) x 200 + p (8 milliseconds)
=(1-p x200 + p x 8,000,000
=200 + p x 7,999,800

m If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!!

m Performance degradation < 10%

e P <0.0000025 ﬁm\;:

Operating System Concepts —7 " Edition, Feb 22, 2005 9.20 Silberschatz, Galvin and Gagne ©2005

Process Creation

m Virtual memory allows other benefits during process creation:
e Copy-on-Write
e Memory-Mapped Files (later)

m fork() system call creates a child process as a duplicate of its parent
e Many child call exec() system call immediately after creation

e Unnecessary code copy... waste of time

R

2N
Y

Operating System Concepts —7 " Edition, Feb 22, 2005 9.21 Silberschatz, Galvin and Gagne ©2005

Copy -on-Write

m Copy-on-Write (COW) allows both parent and child processes to
initially share the same pages in memory

If either process modifies a shared page, only then is the page
copied

e Only pages that can be modified are marked CoW (not the
code)

m COW allows more efficient process creation as only modified
pages are copied

m Free pages are allocated from a pool of zeroed-out pages

&

Operating System Concepts —7 " Edition, Feb 22, 2005 9.22 Silberschatz, Galvin and Gagne ©2005

Before Process 1 Modifies Page C

After Process 1 Modifies Page C

physical
process; memory process,

A

[Ppage A

e pageB

page C e
Copy of
page C
Operating System Concepts —7 " Edition, Feb 22, 2005 9.23 Silberschatz, Galvin and Gagne ©2005

What happens if there is no free frame?

m Page replacement — find some page in memory, but not
really in use, swap it out

e algorithm

e performance — want an algorithm which will result in
minimum number of page faults

® Same page may be brought into memory several times

Operating System Concepts —7 " Edition, Feb 22, 2005 9.24 Silberschatz, Galvin and Gagne ©2005

12

Page Replacement

® Prevent over-allocation of memory by modifying page-fault service
routine to include page replacement

m Use modify (dirty) bit to reduce overhead of page transfers — only
modified pages are written to disk

m Page replacement completes separation between logical memory
and physical memory — large virtual memory can be provided on a
smaller physical memory

® Need
e Frame allocation algorithm
e Page replacement algorithm

=
Operating System Concepts —7 " Edition, Feb 22, 2005 9.25 Silberschatz, Galvin and Gagne ©2005

valid—invalid
0 H frame bit 0 | monitor
1] load M \ ¢ 1 l A
oa v
PC —> s v
2 B) 2| D
5 |v
3 M i 3| H
logical memory page table 4| load M
for user 1 for user 1
5 J
6 A
M
valid—invalid 7 E
0 A frame bit
o physical
1 B 5 v memory _/
2 [:
2 v
3 E AT
logical memory ~ Page table
for user 2 for user 2
m@
Operating System Concepts —7 " Edition, Feb 22, 2005 9.26 Silberschatz, Galvin and Gagne ©2005

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement
algorithm to select a victim frame

3. Bring the desired page into the (newly) free frame;
update the page and frame tables

4. Restart the process

Operating System Concepts —7 " Edition, Feb 22, 2005 9.27 Silberschatz, Galvin and Gagne ©2005

Page Replacement

frame valid—invalid bit

swap out
change victim
0 1 to invalid @page Ly |
- /
@ f| victim

reset page \
table for
page table
new page @ swap \D
desired

page in
physical
memory
Operating System Concepts —7 " Edition, Feb 22, 2005 9.28 Silberschatz, Galvin and Gagne ©2005

14

Page Replacement Algorithms

® Want lowest page-fault rate

m Evaluate algorithm by running it on a particular
string of memory references (reference string) and
computing the number of page faults on that string

®m [n all our examples, the reference string is

1,2,3,41,2,51,2,3,4,5

Operating System Concepts —7 " Edition, Feb 22, 2005 9.29 Silberschatz, Galvin and Gagne ©2005

Graph of Page Faults Versus The Number of Frames

16 |-
o 14F
=
8 12
()
& 10}
o
T gl
2
£ 6
>3
= 4_
2._
1 1 1 1 1 1
1 2 3 4 5 6
number of frames

Operating System Concepts —7 " Edition, Feb 22, 2005 9.30 Silberschatz, Galvin and Gagne ©2005

First -In-First -Out (FIFO) Algorithm

m 3 frames (3 pages can be in memory at a time per process)

[EE

CEl Bl

1

i
(S}

2 9 page faults

N
N

m 4 frames

4
5 10 page faults

1 5
2 1
3 2
4 3
m Belady's Anomaly: more frames = more page faults

Operating System Concepts —7 " Edition, Feb 22, 2005 9.31 Silberschatz, Galvin and Gagne ©2005

FIFO Page Replacement

page frames

Operating System Concepts —7 " Edition, Feb 22, 2005 9.32 Silberschatz, Galvin and Gagne ©2005

16

FIFO lllustrating Belady 's Anomaly

—_ O o
N O
T T T

number of page faults
S
1

1 2 3 4 5 6 7
number of frames

Operating System Concepts —7 " Edition, Feb 22, 2005 9.33 Silberschatz, Galvin and Gagne ©2005

Optimal Algorithm

m Replace page that will not be used for longest period of time
m 4 frames example
1,2,3,4,1,2,5/1,2,3,4,5

6 page faults

[ele]m]=

® How do you know this?
m Used for measuring how well your algorithm performs

Operating System Concepts —7 " Edition, Feb 22, 2005 9.34 Silberschatz, Galvin and Gagne ©2005

17

Optimal Page Replacement

7 01 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

page frames

Operating System Concepts —7 " Edition, Feb 22, 2005 9.35 Silberschatz, Galvin and Gagne ©2005

Least Recently Used (LRU) Algorithm

N
w
IN

®m Reference string: 1, .1,2,51,2,3,4,5

olep]=]

Ea]e]-
Ela]e]e

Ellelk]=]
el =]

® Counter implementation

e Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

e When a page needs to be changed, look at the counters to
determine which are to change

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts — 7 ' Edition, Feb 22, 2005 9.36

18

LRU Page Replacement

reference string
7 01 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0

page frames

Operating System Concepts —7 " Edition, Feb 22, 2005 9.37 Silberschatz, Galvin and Gagne ©2005

LRU Algorithm (Cont.)

m Stack implementation — keep a stack of page numbers in a double
link form:

e Page referenced:

» move it to the top

» requires 6 pointers to be changed
e No search for replacement

Operating System Concepts —7 " Edition, Feb 22, 2005 9.38 Silberschatz, Galvin and Gagne ©2005

19

Use Of A Stack to Record The Most Recent Page Refer ences

reference string
4 7 o0 7 1 0 1 2 1 2 7 1 2
) g 1
a b
il 2
0 1
7 0
4 4
stack stack
before after
a b
Operating System Concepts —7 " Edition, Feb 22, 2005 9.39 Silberschatz, Galvin and Gagne ©2005

LRU Approximation Algorithms

m Reference bit
e With each page associate a bit, initially = 0
e When page is referenced bit set to 1
e Replace the one which is 0 (if one exists)
» We do not know the order, however
m Additional reference bit
e Shift register to record reference bit periodically

m Second chance
e Need reference bit
o Clock replacement

e |f page to be replaced (in clock order) has reference bit = 1
then:

» set reference bit O
» leave page in memory
» replace next page (in clock order), subject to same rules

Operating System Concepts —7 " Edition, Feb 22, 2005 9.40 Silberschatz, Galvin and Gagne ©2005

20

Second -Chance (clock) Page -Replacement Algorithm

reference pages

B
B
o =p{1]
@ .

circular queue of pages

(a)

reference pages

bits

circular queue of pages

|

(b)

Operating System Concepts — 7 th Edition, Feb 22, 2005 9.41

Silberschatz, Galvin and Gagne ©2005

Counting Algorithms

m Keep a counter of the number of references that have been

made to each page

m LFU Algorithm : replaces page with smallest count

® MFU Algorithm : based on the argument that the page with
the smallest count was probably just brought in and has yet to

be used

Operating System Concepts — 7 ' Edition, Feb 22, 2005 9.42

Silberschatz, Galvin and Gagne ©2005

21

Allocation of Frames

® How do we allocate the fixed amount of free memory among the
various processes ?

Each process needs minimum number of pages

Example: IBM 370 — 6 pages to handle SS MOVE instruction:
e instruction is 6 bytes, might span 2 pages
e 2 pages to handle from
e 2 pages to handle to

® Two major allocation schemes

o fixed allocation
e priority allocation

R

2N
Y

Operating System Concepts —7 " Edition, Feb 22, 2005 9.43 Silberschatz, Galvin and Gagne ©2005

Fixed Allocation

m Equal allocation — For example, if there are 100 frames and 5
processes, give each process 20 frames.

m Proportional allocation — Allocate according to the size of process
—s; =size of process p;
—S =35
—m = total number of frames

_a =allocation for p. = >t
3 =allocation for p; =>m

m =64

Si =10

S, =127

a1:£><64=5
137

a, :gxs4=59
137

&

Operating System Concepts —7 " Edition, Feb 22, 2005 9.44 Silberschatz, Galvin and Gagne ©2005

22

Priority Allocation

m Use a proportional allocation scheme using priorities rather
than size

® [f process P, generates a page fault,
e select for replacement one of its frames

e select for replacement a frame from a process with
lower priority number

R

7N

/
Operating System Concepts —7 " Edition, Feb 22, 2005 9.45 Silberschatz, Galvin and Gagne ©2005

Global vs. Local Allocation

m Global replacement — process selects a replacement
frame from the set of all frames; one process can take a
frame from another

m Local replacement — each process selects from only its
own set of allocated frames

m With a global replacement, a process can not control its
own page fault behavior

&

Operating System Concepts —7 " Edition, Feb 22, 2005 9.46 Silberschatz, Galvin and Gagne ©2005

Thrashing

m |If a process does not have “enough” pages, the page-fault rate is
very high. This leads to:

e |low CPU utilization

e operating system thinks that it needs to increase the degree of
multiprogramming

e another process added to the system

m Thrashing = a process is busy swapping pages in and out

=

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts — 7 th Edition, Feb 22, 2005 9.47

Thrashing (Cont.)

thrashing

CPU utilization

degree of multiprogramming

Limit the trashing by using local replacement algorithm / priority replacement
—>process trashing = in paging queue most of the time - access time will increase

We need to provide a process with as many frames as it needs

How do we know how many frames it “needs” ?

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts — 7 ' Edition, Feb 22, 2005 9.48

24

Demand Paging and Thrashing

® Why does demand paging work?
Locality model

e Process migrates from one locality to another
e Localities may overlap

m Allocate enough frames to a process to accommodate its
current locality

® Why does thrashing occur?
> size of locality > total memory size

Operating System Concepts —7 " Edition, Feb 22, 2005 9.49 Silberschatz, Galvin and Gagne ©2005

Locality In A Memory -Reference Pattern

a4 i 1 f i q
] u””‘“ U A SN Locality model == unstated
principle behind several concepts
32
mr If accesses to any type of data
L7
0 — i“ i were random rather than
__MM‘}"‘“ i patterned, caching would be
2 useless...
2 % -
E
el nl P |
24 s
P i
I [} I
:;- Tt “"wh 1 e IR Mh
2 | il I
Lk ummu‘wmnu it “ ‘ I ‘[il ‘ \
i) "~ MLW Ll)
ﬁ 20 et i e i H\“,ML H I “"\‘
5 | Ty ‘m‘ n ol
% | ‘i‘ i U B e IH
S 19 e it il
execution time —»
Operating System Concepts —7 " Edition, Feb 22, 2005 9.50 Silberschatz, Galvin and éagne ©2005’

25

Working -Set Model

m A = working-set window = a fixed number of page references
Example: 10,000 instruction

B WSS, (working set of Process P;) =
total number of pages referenced in the most recent A (varies

in time)
e if Atoo small will not encompass entire locality
o if Atoo large will encompass several localities
e if A =oc = will encompass entire program

D = > WSS, = total demand frames

if D > m = Thrashing

Policy if D > m, then suspend one of the processes

=
Operating System Concepts —7 " Edition, Feb 22, 2005 9.51 Silberschatz, Galvin and Gagne ©2005

Working -set model

page reference table

...2615777751623412344434344413234443444...
A | A |

t1

WS(t,) = {1,2,5.6,7} WS(t,) = {3,4}

Operating System Concepts —7 " Edition, Feb 22, 2005 9.52 Silberschatz, Galvin and Gagne ©2005

26

Keeping Track of the Working Set

Approximate with interval timer + a reference bit
m Example: A =10,000
e Timer interrupts after every 5000 time units
e Keep in memory 2 bits for each page

e Whenever a timer interrupts copy and sets the values of all
reference bits to 0

e If one of the hits in memory = 1 = page in working set
Why is this not completely accurate?
Improvement = 10 bits and interrupt every 1000 time units

=

Operating System Concepts —7 " Edition, Feb 22, 2005 9.53 Silberschatz, Galvin and Gagne ©2005

Page-Fault Frequency Scheme

m Establish “acceptable” page-fault rate
e If actual rate too low, process loses frame
e If actual rate too high, process gains frame

% increase number
| of frames
3
< upper bound
@
D
©
Q
lower bound
decrease number
of frames
number of frames
fx\@
Operating System Concepts —7 " Edition, Feb 22, 2005 9.54 Silberschatz, Galvin and Gagne ©2005

27

Memory -Mapped Files

m Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory

m A file is initially read using demand paging. A page-sized portion of
the file is read from the file system into a physical page.
Subsequent reads/writes to/from the file are treated as ordinary
memory accesses.

m Simplifies file access by treating file 1/0 through memory rather
thanread() wite() system calls

m Also allows several processes to map the same file allowing the
pages in memory to be shared

7N

R

/
Operating System Concepts —7 " Edition, Feb 22, 2005 9.55 Silberschatz, Galvin and Gagne ©2005

Memory Mapped Files

e
R
| I
ror- -+ 3
. L b
I r— > N I ! =
2 o 11 3 < . 5
3 FoToort rr:‘rr- 6
4 | [
CIo el 11!
5 G b 6 Py
6 __:J.:_1.: P
Pia ! o P
1 L= 1 <---a'|::
rocessA |11 _[] e —— =1 | 1 rocess B
r > 5 1
irtual memory: X |:virtual memor
I
[!
o R S
1 — == 1 > 4 |
] e < I S 1 —
physical memory
— —
s
disk file @'\\
}’A £
Operating System Concepts —7 " Edition, Feb 22, 2005 9.56 Silberschatz, Galvin and Gagne ©2005

28

Memory -Mapped Shared Memory in Windows

process, process,
shared T memory-mapped
memory tee file
.
S~ shared TS
-~ ~ -
S~ memory ..
AT shared
.
S~ memory
Operating System Concepts —7 " Edition, Feb 22, 2005 9.57 Silberschatz, Galvin and Gagne ©2005
m Treated differently from user memory
m Often allocated from a free-memory pool
e Kernel requests memory for structures of varying sizes
e Some kernel memory needs to be contiguous
Operating System Concepts —7 " Edition, Feb 22, 2005 9.58 Silberschatz, Galvin and Gagne ©2005

29

Buddy System

m Allocates memory from fixed-size segment consisting of physically-
contiguous pages

® Memory allocated using power-of-2 allocator
e Satisfies requests in units sized as power of 2
e Request rounded up to next highest power of 2

e When smaller allocation needed than is available, current
chunk split into two buddies of next-lower power of 2

» Continue until appropriate sized chunk available

Operating System Concepts —7 " Edition, Feb 22, 2005 9.59 Silberschatz, Galvin and Gagne ©2005

Buddy System Allocator
physically contiguous pages
256 KB
128 KB 128 KB
A aH
64 KB 64 KB
B, By
32 KB | |32 KB
% s
Operating System Concepts —7 " Edition, Feb 22, 2005 9.60 Silberschatz, Galvin and Gagne ©2005

Slab Allocator

Alternate strategy
Slab is one or more physically contiguous pages
Cache consists of one or more slabs

Single cache for each unique kernel data structure

e Each cache filled with objects — instantiations of the data
structure

When cache created, filled with objects marked as free
When structures stored, objects marked as used
If slab is full of used objects, next object allocated from empty slab
e If no empty slabs, new slab allocated
m Benefits include no fragmentation, fast memory request satisfaction

=

Operating System Concepts —7 " Edition, Feb 22, 2005 9.61 Silberschatz, Galvin and Gagne ©2005

Slab Allocation

kernel objects caches slabs
3KB i T~
objects
S~ physical
B b contiguous
=7 pages
[=
7 KB I:'\ /
objects] H
(="

Operating System Concepts —7 " Edition, Feb 22, 2005 9.62 Silberschatz, Galvin and Gagne ©2005

Other Issues -- Prepaging

® Prepaging
e To reduce the large number of page faults that occurs at process
startup

e Prepage all or some of the pages a process will need, before
they are referenced

e But if prepaged pages are unused, I/O and memory was wasted
e Assume s pages are prepaged and a of the pages is used

» Is cost of s * @ save pages faults > or < than the cost of

prepaging
s * (1- a) unnecessary pages?

» O near zero = prepaging loses

R

7N

/
Operating System Concepts —7 " Edition, Feb 22, 2005 9.63 Silberschatz, Galvin and Gagne ©2005

Other Issues — Page Size

m Page size selection must take into consideration:
e fragmentation
e table size
e |/O overhead
e locality

&

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts — 7 ' Edition, Feb 22, 2005 9.64

Other Issues — TLB Reach

TLB Reach - The amount of memory accessible from the TLB
TLB Reach = (TLB Size) X (Page Size)
Ideally, the working set of each process is stored in the TLB
e Otherwise there is a high degree of page faults
B Increase the Page Size

e This may lead to an increase in fragmentation as not all
applications require a large page size

m Provide Multiple Page Sizes
e This allows applications that require larger page sizes the

opportunity to use them without an increase in
fragmentation

R

2N
Y

Operating System Concepts —7 " Edition, Feb 22, 2005 9.65 Silberschatz, Galvin and Gagne ©2005

Other Issues — Program Structure

® Program structure

e Int[128,128] data;

e Each row is stored in one page
Program 1

for (j = 0; j <128; j++)
for (i =0; i < 128; i++)
datafi,j] = O;

128 x 128 = 16,384 page faults

Program 2
for (i =0; i < 128; i++)
for (j =0; j < 128; j++)
datali,j] = 0;

128 page faults

&

Operating System Concepts —7 " Edition, Feb 22, 2005 9.66 Silberschatz, Galvin and Gagne ©2005

33

Other Issues - I/O interlock

m |/O Interlock — Pages must sometimes be locked into
memory

m Consider I/O - Pages that are used for copying a file
from a device must be locked from being selected for
eviction by a page replacement algorithm

Silberschatz, Galvin and éagne ©2005

Operating System Concepts — 7 th Edition, Feb 22, 2005 9.67

Reason Why Frames Used For I/O Must Be In Memory

buffer @

disk drive

Silberschatz, Galvin and éagne ©2005

Operating System Concepts — 7 ' Edition, Feb 22, 2005 9.68

Operating System Examples
B Windows XP
® Solaris
R
Operating System Concepts —7 " Edition, Feb 22, 2005 9.69 Silberschatz, Galvin and (;‘9"9 ©2005

Windows XP

m Uses demand paging with clustering . Clustering brings in pages
surrounding the faulting page.

® Processes are assigned working set minimum and working set
maximum

® Working set minimum is the minimum number of pages the process
is guaranteed to have in memory

m A process may be assigned as many pages up to its working set
maximum

® When the amount of free memory in the system falls below a
threshold, automatic working set trimming is performed to
restore the amount of free memory

® Working set trimming removes pages from processes that have
pages in excess of their working set minimum

&

Operating System Concepts —7 " Edition, Feb 22, 2005 9.70 Silberschatz, Galvin and Gagne ©2005

Solaris

® Maintains a list of free pages to assign faulting processes
Lotsfree — threshold parameter (amount of free memory) to begin
paging

Desfree — threshold parameter to increasing paging

Minfree — threshold parameter to being swapping

Paging is performed by pageout process

Pageout scans pages using modified clock algorithm

Scanrate is the rate at which pages are scanned. This ranges from
slowscan to fastscan

m Pageout is called more frequently depending upon the amount of
free memory available

Operating System Concepts —7 " Edition, Feb 22, 2005 9.71 Silberschatz, Galvin and Gagne ©2005

72N

Solaris 2 Page Scanner

8192 |
fastscan
1o}
2
[
c
@
Q
%)
100 |1
slowscan
I !
T T T
minfree desfree lotsfree
amount of free memory
ﬁ\@
Operating System Concepts —7 " Edition, Feb 22, 2005 9.72 Silberschatz, Galvin and Gagne ©2005

36

End of Chapter 9

37

