
1

Chapter 9: Virtual MemoryChapter 9: Virtual Memory

9.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Chapter 8: resumeChapter 8: resume

� Various memory management strategies

� Keep many processes in memory� multiprogramming

� Require that the entire process in memory

� Virtual memory allows the execution of a process not completely in
memory

� Programmer >> main memory size

� Abstract main memory into extremely large uniform array…

� Allow process to share file, to implement shared memory

2

9.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Chapter 9: Virtual MemoryChapter 9: Virtual Memory

� Background

� Demand Paging

� Copy-on-Write

� Page Replacement

� Allocation of Frames

� Thrashing

� Memory-Mapped Files

� Allocating Kernel Memory

� Other Considerations

� Operating-System Examples

9.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

ObjectivesObjectives

� To describe the benefits of a virtual memory system

� To explain the concepts of demand paging, page-replacement
algorithms, and allocation of page frames

� To discuss the principle of the working-set model

3

9.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

BackgroundBackground

� Memory management (chap 8)

� instruction being executed must be in physical memory

� Place the entire logical memory in physical memory

� Dynamic loading may help

� Special precaution / extra work

� Seems necessary & reasonable

� Unfortunate

� limits the size of a program

� Entire program is not needed in many cases:

� Code for unusual error condition

� Array /lists allocate more memory than needed…

� Some option/features rarely used

9.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Background (cont)Background (cont)

� Benefits

� No constraint by the limit of the physical memory

� More programs could be run at the same time

� Increase in CPU utilization, Throughput

� Same response time or turnaround

� Less I/O to load/swap each user program / run faster

4

9.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Background (cont)Background (cont)

� Virtual memory – separation of user logical memory from physical
memory.

� Only part of the program needs to be in memory for execution

� Logical address space can therefore be much larger than
physical address space

� Programming task much more easier

� Allows address spaces to be shared by several processes

� Allows for more efficient process creation

� Virtual memory can be implemented via:

� Demand paging

� Demand segmentation

9.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Virtual Memory That is Larger Than Physical MemoryVirtual Memory That is Larger Than Physical Memory

⇒

5

9.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

VirtualVirtual --address Spaceaddress Space

� Refers to the logical vie of how a process is
stored in memory

� In fact physical memory may be organized in
page frames

� Pages frames may be assigned to a process in a
non contiguous way

� The MMU maps logical pages to physical pages

� Hole (sparse address space) is part of the
virtual address space

� Require physical addresses only if the
heap/stack grows

� Allows also sharing of files, memory, process
creation, libraries

9.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Shared Library Using Virtual MemoryShared Library Using Virtual Memory

Mapped Read only

6

9.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Demand PagingDemand Paging

� Bring a page into memory only when it is needed

� Less I/O needed

� Less memory needed

� Faster response

� More users

� Page is needed ⇒ reference to it

� invalid reference ⇒ abort

� not-in-memory ⇒ bring to memory

� Lazy swapper – never swaps a page into memory unless page will
be needed

� Swapper that deals with pages is a pager

9.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Transfer of a Paged Memory to Contiguous Disk SpaceTransfer of a Paged Memory to Contiguous Disk Space

7

9.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Basic conceptBasic concept

� Pager “guesses” which pages will be used before the process is
swapped out again

� Need support to distinguish between the pages that are

� In memory

� On the disk

9.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

ValidValid --Invalid BitInvalid Bit

� With each page table entry a valid–invalid bit is associated
(v ⇒ in-memory, i ⇒ not-in-memory)

� Initially valid–invalid bit is set to i on all entries

� Example of a page table snapshot:

� During address translation, if valid–invalid bit in page table entry

is I ⇒ page fault

v
v
v
v
i

i
i

….

Frame # valid-invalid bit

page table

8

9.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Page Table When Some Pages Are Not in Main Page Table When Some Pages Are Not in Main
MemoryMemory

� Page marked invalid has no effect
if the process never attempts to
access that page

� If we guess right, the process will
run exactly as though we have
brought in all pages

� While pages are memory
resident , execution proceeds
normally

9.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Page FaultPage Fault

� If there is a reference to a page, first reference to that
page will trap to operating system:

page fault

1. Operating system looks at another table to decide:

� Invalid reference ⇒ abort

� Just not in memory � page it in.

2. Get empty frame

3. Swap page into frame

4. Reset tables

5. Set validation bit = v

6. Restart the instruction that caused the page fault

Extreme case: start executing a process with no page in memory
� pure demand paging

9

9.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Page Fault (Cont.)Page Fault (Cont.)

� Restart instruction

� Must save the state of the interrupt process

� Restart the the process in exactly the same place

� block move

� auto increment/decrement location

Some programs could access several new pages of memory with
each instruction execution

� poor performances

� locality of reference

9.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Steps in Handling a Page FaultSteps in Handling a Page Fault

10

9.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Performance of Demand PagingPerformance of Demand Paging

� Page Fault Rate 0 ≤ p ≤ 1.0

� if p = 0 no page faults

� if p = 1, every reference is a fault

� Effective Access Time (EAT)

EAT = (1 – p) x memory access

+ p (page fault overhead

+ swap page out

+ swap page in

+ restart overhead

)

9.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Demand Paging ExampleDemand Paging Example

� Memory access time = 200 nanoseconds

� Average page-fault service time = 8 milliseconds

� EAT = (1 – p) x 200 + p (8 milliseconds)

= (1 – p x 200 + p x 8,000,000

= 200 + p x 7,999,800

� If one access out of 1,000 causes a page fault, then

EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!

� Performance degradation < 10%

� P < 0.0000025

11

9.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Process CreationProcess Creation

� Virtual memory allows other benefits during process creation:

� Copy-on-Write

� Memory-Mapped Files (later)

� fork() system call creates a child process as a duplicate of its parent

� Many child call exec() system call immediately after creation

� Unnecessary code copy… waste of time

9.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

CopyCopy --onon --WriteWrite

� Copy-on-Write (COW) allows both parent and child processes to
initially share the same pages in memory

If either process modifies a shared page, only then is the page
copied

� Only pages that can be modified are marked CoW (not the
code)

� COW allows more efficient process creation as only modified
pages are copied

� Free pages are allocated from a pool of zeroed-out pages

12

9.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Before Process 1 Modifies Page CBefore Process 1 Modifies Page C

Copy of
page C

After Process 1 Modifies Page CAfter Process 1 Modifies Page C

9.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

What happens if there is no free frame?What happens if there is no free frame?

� Page replacement – find some page in memory, but not
really in use, swap it out

� algorithm

� performance – want an algorithm which will result in
minimum number of page faults

� Same page may be brought into memory several times

13

9.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Page ReplacementPage Replacement

� Prevent over-allocation of memory by modifying page-fault service
routine to include page replacement

� Use modify (dirty) bit to reduce overhead of page transfers – only
modified pages are written to disk

� Page replacement completes separation between logical memory
and physical memory – large virtual memory can be provided on a
smaller physical memory

� Need

� Frame allocation algorithm

� Page replacement algorithm

9.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Need For Page ReplacementNeed For Page Replacement

14

9.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Basic Page ReplacementBasic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement

algorithm to select a victim frame

3. Bring the desired page into the (newly) free frame;
update the page and frame tables

4. Restart the process

9.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Page ReplacementPage Replacement

15

9.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Page Replacement AlgorithmsPage Replacement Algorithms

� Want lowest page-fault rate

� Evaluate algorithm by running it on a particular
string of memory references (reference string) and
computing the number of page faults on that string

� In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

9.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Graph of Page Faults Versus The Number of FramesGraph of Page Faults Versus The Number of Frames

16

9.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

FirstFirst --InIn--FirstFirst --Out (FIFO) AlgorithmOut (FIFO) Algorithm

� Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

� 3 frames (3 pages can be in memory at a time per process)

� 4 frames

� Belady’s Anomaly: more frames ⇒ more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

9.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

FIFO Page ReplacementFIFO Page Replacement

17

9.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

FIFO Illustrating BeladyFIFO Illustrating Belady ’’s Anomalys Anomaly

9.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Optimal AlgorithmOptimal Algorithm

� Replace page that will not be used for longest period of time

� 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

� How do you know this?

� Used for measuring how well your algorithm performs

1

2

3

4

6 page faults

4 5

18

9.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Optimal Page ReplacementOptimal Page Replacement

9.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Least Recently Used (LRU) AlgorithmLeast Recently Used (LRU) Algorithm

� Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

� Counter implementation

� Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

� When a page needs to be changed, look at the counters to
determine which are to change

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

19

9.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

LRU Page ReplacementLRU Page Replacement

9.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

LRU Algorithm (Cont.)LRU Algorithm (Cont.)

� Stack implementation – keep a stack of page numbers in a double
link form:

� Page referenced:

� move it to the top

� requires 6 pointers to be changed

� No search for replacement

20

9.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Use Of A Stack to Record The Most Recent Page Refer encesUse Of A Stack to Record The Most Recent Page Refer ences

9.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

LRU Approximation AlgorithmsLRU Approximation Algorithms

� Reference bit
� With each page associate a bit, initially = 0

� When page is referenced bit set to 1

� Replace the one which is 0 (if one exists)

� We do not know the order, however

� Additional reference bit

� Shift register to record reference bit periodically

� Second chance
� Need reference bit

� Clock replacement

� If page to be replaced (in clock order) has reference bit = 1
then:

� set reference bit 0

� leave page in memory

� replace next page (in clock order), subject to same rules

21

9.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

SecondSecond --Chance (clock) PageChance (clock) Page --Replacement AlgorithmReplacement Algorithm

9.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Counting AlgorithmsCounting Algorithms

� Keep a counter of the number of references that have been
made to each page

� LFU Algorithm : replaces page with smallest count

� MFU Algorithm : based on the argument that the page with
the smallest count was probably just brought in and has yet to
be used

22

9.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Allocation of FramesAllocation of Frames

� How do we allocate the fixed amount of free memory among the
various processes ?

� Each process needs minimum number of pages

� Example: IBM 370 – 6 pages to handle SS MOVE instruction:

� instruction is 6 bytes, might span 2 pages

� 2 pages to handle from

� 2 pages to handle to

� Two major allocation schemes

� fixed allocation

� priority allocation

9.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Fixed AllocationFixed Allocation

� Equal allocation – For example, if there are 100 frames and 5
processes, give each process 20 frames.

� Proportional allocation – Allocate according to the size of process

m
S
s

pa

m

sS

ps

i
ii

i

ii

×==

=
∑=

=

 for allocation

frames of number total

 process of size

5964
137
127

564
137
10

127

10

64

2

1

2

≈×=

≈×=

=
=
=

a

a

s

s

m

i

23

9.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Priority AllocationPriority Allocation

� Use a proportional allocation scheme using priorities rather
than size

� If process Pi generates a page fault,

� select for replacement one of its frames

� select for replacement a frame from a process with
lower priority number

9.46 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Global vs. Local AllocationGlobal vs. Local Allocation

� Global replacement – process selects a replacement
frame from the set of all frames; one process can take a
frame from another

� Local replacement – each process selects from only its
own set of allocated frames

� With a global replacement, a process can not control its
own page fault behavior

24

9.47 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

ThrashingThrashing

� If a process does not have “enough” pages, the page-fault rate is
very high. This leads to:

� low CPU utilization

� operating system thinks that it needs to increase the degree of
multiprogramming

� another process added to the system

� Thrashing ≡ a process is busy swapping pages in and out

9.48 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Thrashing (Cont.)Thrashing (Cont.)

Limit the trashing by using local replacement algorithm / priority replacement
�process trashing � in paging queue most of the time � access time will increase
We need to provide a process with as many frames as it needs

How do we know how many frames it “needs” ?

25

9.49 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Demand Paging and Thrashing Demand Paging and Thrashing

� Why does demand paging work?
Locality model

� Process migrates from one locality to another

� Localities may overlap

� Allocate enough frames to a process to accommodate its
current locality

� Why does thrashing occur?
Σ size of locality > total memory size

9.50 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Locality In A MemoryLocality In A Memory --Reference PatternReference Pattern

Locality model == unstated
principle behind several concepts

If accesses to any type of data
were random rather than
patterned, caching would be
useless…

26

9.51 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

WorkingWorking --Set ModelSet Model

� ∆ ≡ working-set window ≡ a fixed number of page references
Example: 10,000 instruction

� WSSi (working set of Process Pi) =
total number of pages referenced in the most recent ∆ (varies
in time)

� if ∆ too small will not encompass entire locality

� if ∆ too large will encompass several localities

� if ∆ = ∞ ⇒ will encompass entire program

� D = Σ WSSi ≡ total demand frames

� if D > m ⇒ Thrashing

� Policy if D > m, then suspend one of the processes

9.52 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

WorkingWorking --set modelset model

27

9.53 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Keeping Track of the Working SetKeeping Track of the Working Set

� Approximate with interval timer + a reference bit

� Example: ∆ = 10,000

� Timer interrupts after every 5000 time units

� Keep in memory 2 bits for each page

� Whenever a timer interrupts copy and sets the values of all
reference bits to 0

� If one of the bits in memory = 1 ⇒ page in working set

� Why is this not completely accurate?

� Improvement = 10 bits and interrupt every 1000 time units

9.54 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

PagePage--Fault Frequency SchemeFault Frequency Scheme

� Establish “acceptable” page-fault rate

� If actual rate too low, process loses frame

� If actual rate too high, process gains frame

28

9.55 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

MemoryMemory --Mapped FilesMapped Files

� Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory

� A file is initially read using demand paging. A page-sized portion of
the file is read from the file system into a physical page.
Subsequent reads/writes to/from the file are treated as ordinary
memory accesses.

� Simplifies file access by treating file I/O through memory rather
than read() write() system calls

� Also allows several processes to map the same file allowing the
pages in memory to be shared

9.56 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Memory Mapped FilesMemory Mapped Files

29

9.57 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

MemoryMemory --Mapped Shared Memory in WindowsMapped Shared Memory in Windows

9.58 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Allocating Kernel MemoryAllocating Kernel Memory

� Treated differently from user memory

� Often allocated from a free-memory pool

� Kernel requests memory for structures of varying sizes

� Some kernel memory needs to be contiguous

30

9.59 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Buddy SystemBuddy System

� Allocates memory from fixed-size segment consisting of physically-
contiguous pages

� Memory allocated using power-of-2 allocator

� Satisfies requests in units sized as power of 2

� Request rounded up to next highest power of 2

� When smaller allocation needed than is available, current
chunk split into two buddies of next-lower power of 2

� Continue until appropriate sized chunk available

9.60 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Buddy System Buddy System AllocatorAllocator

31

9.61 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Slab Slab AllocatorAllocator

� Alternate strategy

� Slab is one or more physically contiguous pages

� Cache consists of one or more slabs

� Single cache for each unique kernel data structure

� Each cache filled with objects – instantiations of the data
structure

� When cache created, filled with objects marked as free

� When structures stored, objects marked as used

� If slab is full of used objects, next object allocated from empty slab

� If no empty slabs, new slab allocated

� Benefits include no fragmentation, fast memory request satisfaction

9.62 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Slab AllocationSlab Allocation

32

9.63 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Other Issues Other Issues ---- PrepagingPrepaging

� Prepaging

� To reduce the large number of page faults that occurs at process
startup

� Prepage all or some of the pages a process will need, before
they are referenced

� But if prepaged pages are unused, I/O and memory was wasted

� Assume s pages are prepaged and α of the pages is used

� Is cost of s * α save pages faults > or < than the cost of
prepaging
s * (1- α) unnecessary pages?

� α near zero ⇒ prepaging loses

9.64 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Other Issues Other Issues –– Page SizePage Size

� Page size selection must take into consideration:

� fragmentation

� table size

� I/O overhead

� locality

33

9.65 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Other Issues Other Issues –– TLB Reach TLB Reach

� TLB Reach - The amount of memory accessible from the TLB

� TLB Reach = (TLB Size) X (Page Size)

� Ideally, the working set of each process is stored in the TLB

� Otherwise there is a high degree of page faults

� Increase the Page Size

� This may lead to an increase in fragmentation as not all
applications require a large page size

� Provide Multiple Page Sizes

� This allows applications that require larger page sizes the
opportunity to use them without an increase in
fragmentation

9.66 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Other Issues Other Issues –– Program StructureProgram Structure

� Program structure
� Int[128,128] data;

� Each row is stored in one page

� Program 1
for (j = 0; j <128; j++)

for (i = 0; i < 128; i++)
data[i,j] = 0;

128 x 128 = 16,384 page faults

� Program 2
for (i = 0; i < 128; i++)

for (j = 0; j < 128; j++)
data[i,j] = 0;

128 page faults

34

9.67 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Other Issues Other Issues –– I/O interlockI/O interlock

� I/O Interlock – Pages must sometimes be locked into
memory

� Consider I/O - Pages that are used for copying a file
from a device must be locked from being selected for
eviction by a page replacement algorithm

9.68 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Reason Why Frames Used For I/O Must Be In MemoryReason Why Frames Used For I/O Must Be In Memory

35

9.69 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Operating System ExamplesOperating System Examples

� Windows XP

� Solaris

9.70 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Windows XPWindows XP

� Uses demand paging with clustering . Clustering brings in pages
surrounding the faulting page.

� Processes are assigned working set minimum and working set
maximum

� Working set minimum is the minimum number of pages the process
is guaranteed to have in memory

� A process may be assigned as many pages up to its working set
maximum

� When the amount of free memory in the system falls below a
threshold, automatic working set trimming is performed to
restore the amount of free memory

� Working set trimming removes pages from processes that have
pages in excess of their working set minimum

36

9.71 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Solaris Solaris

� Maintains a list of free pages to assign faulting processes

� Lotsfree – threshold parameter (amount of free memory) to begin
paging

� Desfree – threshold parameter to increasing paging

� Minfree – threshold parameter to being swapping

� Paging is performed by pageout process

� Pageout scans pages using modified clock algorithm

� Scanrate is the rate at which pages are scanned. This ranges from
slowscan to fastscan

� Pageout is called more frequently depending upon the amount of
free memory available

9.72 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7 th Edition, Feb 22, 2005

Solaris 2 Page ScannerSolaris 2 Page Scanner

37

End of Chapter 9End of Chapter 9

