
1

1

The Transport Layer: TCP and UDP
Jean-Yves Le Boudec

Fall 2007

 ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

2

Contents

1. Where should packet losses be repaired ?

2. Mechanisms for error recovery

3. Flow Control

4. The Transport Layer

5. TCP basics

6. TCP, advanced

2

3

1. Error Recovery

� In section 1, we first discuss where packet losses should be dealt
with.

� In sections 2 and following we will discuss how this is implemented
in the Internet in detail

4

The Philosophy of Errors in a Layered Model

� The physical layer is not completely error-free – there is always

some bit error rate (BER).
Information theory tells us that for every channel there is a capacity C such that

At any rate R < C, arbitrarily small BER can be achieved
At rates R ≥ C, any BER such that H2(BER) > 1 – C/R is achievable, with H2(p)

= entropy= – p log2(p) – (1 – p) log2(1 – p)

� The TCP/IP architecture decided
Every layer ≥ 2 offers an error free service to the upper layer:

SDUs are either delivered without error or discarded

� Example: MAC layer

Q1.Q1.Q1.Q1. How does an Ethernet adapter know whether a received Ethernet

frames has some bit errors ? What does it do with the frame ?

WiFi detects errors with CRC and does retransmissions if needed
Q2Q2Q2Q2. Why does not Ethernet do the same ?

solution

3

5

The Layered Model Transforms Errors into
Packet Losses

� Packet losses occur due to
error detection by MAC

buffer overflow in bridges and
routers

Other exceptional errors may
occur too
Q.Q.Q.Q. give some examples

solution

A R1 R2 B
P1

P1
P1

P2
P2

P2
P3

P4
P4

P4
P3 is missing

P3
P3

A R1 R2 B
P1

P1
P1

P2
P2

P2
P3

P3
P3

P3

P3 is missing

P4
P4P3

P4

� Therefore, packet losses must be
repaired.

� This can be done using either of the
following strategies:

end to end : host A sends 10 packets to
host B. B verifies if all packets are
received and asks for A to send again
the missing ones.

or hop by hop: every router would do
this job.

Which one is better ? We will discuss
this in the next slides.

6

� There are arguments in favour of the end-to-end strategy. The

keyword here is complexity:

The TCP/IP architecture tries to keep intermediate systems as simple

as possible. Hop by hop error recovery makes the job of routers too

complicated.

Needs to remember some information about every packet flow -> too much

processing per packet

Needs to store packets in case they have to be retransmitted -> too much

memory required

IP packets may follow parallel paths, this is incompatible with hop-by-

hop recovery.

R2 sees only 3 out of 7 packets but should not ask R1 for retransmisison

The Case for End-to-end Error Recovery

R2 BA

R3

R4R1

14 23567

4

7

The Case for Hop-By-Hop Error Recovery

� There are also arguments in favour of hop-by-hop strategy. To

understand them, we will use the following result.

Capacity of erasure channel: consider a channel with bit rate R that
either delivers correct packets or loses them. Assume the loss process
is stationary, such that the packet loss rate is p∈[0,1]. The capacity is

R×(1-p) packets/sec.

This means in practice that, for example, over a link at 10Mb/s that has a packet loss rate of

10% we can transmit 9 Mb/s of useful data.

The packet loss rate (PLR) can be derived from the bit error rate (BER) as follows, if bit

errors are independent events, as a function of the packet length in bits L:

PLR = 1 – (1 – BER)L

8

The Capacity of the End-to-End Path

� We can now compute the capacity of an end-to-end path with both

error recovery strategies.

Assumptions: same packet loss rate p on k links; same nominal rate R.

Losses are independent.

Q.Q.Q.Q. compute the capacity with end-to-end and with hop by hop error

recovery.

A

R1 R1 R1 R1 R1 R1

B

Loss probability p

k links

solution

5

9

End-to-end Error Recovery is Inefficient when
Packet Error Rate is high

� The table shows the capacity of an end-to-end path as a function of

the packet loss rate p

� Conclusion: end-to-end error recovery is not acceptable when

packet loss rate is high

� Q. Q. Q. Q. How can one reconcile the conflicting arguments for and

against hop-by-hop error recovery ?

0.9999 × R0.9990 × R0.000110

0.95 × R0.6 × R0.0510

C2 (hop-

by-hop)

C1 (end-to-

end)

Packet loss

rate

k

solution

10

Conclusion: Where is Error Recovery located in
the TCP/IP architecture ?

� The TCP/IP architecture assumes that

1. The MAC layer provides error—free packets to the network layer

2. The packet loss rate at the MAC layer (between two routers, or

between a router and a host) must be made very small. It is the job of

the MAC layer to achieve this.

3. Error recovery must also be implemented end-to-end.

� Thus, packet losses are repaired

At the MAC layer on lossy channels (wireless)

In the end systems (transport layer or application layer).

6

11

2. Mechanisms for Error Recovery

� In this section we discuss the methods for repairing packet losses

that are used in the Internet.

� We have seen one such method already:

Q. Q. Q. Q. which one ?

� Stop and Go is an example of packet retransmission protocol.
Packet retransmission is the general method used in the Internet

for repairing packet losses. It is also called Automatic Repeat
Request (ARQ).

� TCP is an ARQ protocol

solution

12

ARQ Protocols

� Why invented ?

Repair packet losses

� What does an ARQ protocol do ?

1. Recover lost packets

2. Deliver packets at destination in order, i.e. in the same order as
submitted by source

� How does an ARQ protocol work ?

Similar to Stop and Go but:

It may differ in many details such as

How packet loss is detected

The format and semantics of acknowledgements

Which action is taken when one loss is detected

Practically all protocols use the concept of sliding window, which we
review now.

7

13

Why Sliding Window ?

� Why invented ?

Overcome limitations of Stop and

Go

Q. Q. Q. Q. what is the limitation of Stop

and Go ?

solution

� What does it do ?

1. Allow mutiple transmissions

But this has a problem: the

required buffer at destination may

be very large

2. This problem is solved by the

sliding window. The sliding

window protocol puts a limit on

the number of packets that may

have to be stored at receive

buffer.

P0P0P0P0

A1A1A1A1

P1P1P1P1

P2P2P2P2

A2A2A2A2

PPPPnnnn

P0 P0 P0 P0 againagainagainagain

PPPPnnnn+1+1+1+1

P1P1P1P1

P1 P2P1 P2P1 P2P1 P2

P1 P2 ... P1 P2 ... P1 P2 ... P1 P2 ... PPPPnnnn

P1 P2 ... P1 P2 ... P1 P2 ... P1 P2 ... PPPPnnnn+1+1+1+1

ReceiveReceiveReceiveReceive

BufferBufferBufferBuffer

14

How Sliding Window Works.

Usable Window

P = 1

A = 0

P = 0

A =2

P = 2

P = 3

P = 4

A =1

P = 5

P = 6

P = 7

P = 8

P = 9

A =3

P = 10

A =4

A =5

A =6

A =7

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

Legend

Maximum

Send Window

=
Offered Window

(= 4 here)

8

15

On the example, packets are numbered 0, 1, 2, ..

The sliding window principle works as follows:

- a window size W is defined. In this example it is fixed. In general, it may vary
based on messages sent by the receiver. The sliding window principle
requires that, at any time: number of unacknowledged packets at the
receiver <= W

- the maximum send window, also called offered window is the set of packet
numbers for packets that either have been sent but are not (yet)
acknowledged or have not been sent but may be sent.

- the usable window is the set of packet numbers for packets that may be sent
for the first time. The usable window is always contained in the maximum
send window.

- the lower bound of the maximum send window is the smallest packet number
that has been sent and not acknowledged

- the maximum window slides (moves to the right) if the acknowledgement for
the packet with the lowest number in the window is received

A sliding window protocol is a protocol that uses the sliding window principle.
With a sliding window protocol, W is the maximum number of packets that
the receiver needs to buffer in the re-sequencing (= receive) buffer.

If there are no losses, a sliding window protocol can have a throughput of
100% of link rate (overhead is not accounted for) if the window size
satisfies: W ≥ b / L, where b is the bandwidth delay product, and L the
packet size. Counted in bytes, this means that the minimum window size the minimum window size the minimum window size the minimum window size
for 100% utilization is the bandwidthfor 100% utilization is the bandwidthfor 100% utilization is the bandwidthfor 100% utilization is the bandwidth----delay productdelay productdelay productdelay product.

16

An Example of ARQ Protocol with Selective
Repeat

A=1A=1A=1A=1

P=0P=0P=0P=0
P0; P0; P0; P0; 3333

UpperUpperUpperUpper BoundBoundBoundBound
Maximum Maximum Maximum Maximum SendSendSendSend

WindowWindowWindowWindow

RetransmissionRetransmissionRetransmissionRetransmission
BufferBufferBufferBuffer

P=1P=1P=1P=1

P=2P=2P=2P=2

P=3P=3P=3P=3 A=2A=2A=2A=2

A=3A=3A=3A=3TimeoutTimeoutTimeoutTimeout

TimeoutTimeoutTimeoutTimeout

P=0P=0P=0P=0

P=2P=2P=2P=2
A=0A=0A=0A=0

A=2A=2A=2A=2P=4P=4P=4P=4

P=5P=5P=5P=5

P=6P=6P=6P=6

P0; P1P0; P1P0; P1P0; P13333

P0; P2P0; P2P0; P2P0; P23333

P0; P2; P3P0; P2; P3P0; P2; P3P0; P2; P33333

P0; P2P0; P2P0; P2P0; P23333

P2P2P2P25555

P2; P4P2; P4P2; P4P2; P45555

P2; P4; P5P2; P4; P5P2; P4; P5P2; P4; P55555

P4; P5; P6P4; P5; P6P4; P5; P6P4; P5; P67777

ResequencingResequencingResequencingResequencing
BufferBufferBufferBuffer

LowestLowestLowestLowest
ExpectedExpectedExpectedExpected

PacketPacketPacketPacket NumberNumberNumberNumber

P1P1P1P1 0000

P1; P2P1; P2P1; P2P1; P2 0000

P1; P2; P3P1; P2; P3P1; P2; P3P1; P2; P3 0000

P0;P1;P2;P3P0;P1;P2;P3P0;P1;P2;P3P0;P1;P2;P3 0000

deliverdeliverdeliverdeliver
P0 ... P3P0 ... P3P0 ... P3P0 ... P3

4444

4444

P4P4P4P4 4444
deliverdeliverdeliverdeliver P4P4P4P4

5555A=4A=4A=4A=4
P5P5P5P5 5555

deliverdeliverdeliverdeliver P5P5P5P5

6666

0000

9

17

The previous slide shows an example of ARQ protocol, which uses the
following details:

1. packets are numbered by source, staring from 0.

2. window size = 4 packets;

3. Acknowledgements are positive and indicate exactly which packet is
being acknowledged

4. Loss detection is by timeout at sender when no acknowledgement has
arrived

5. When a loss is detected, only the packet that is detected as lost is re-
transmitted (this is called Selective Repeat).

Q.Q.Q.Q. Is it possible with this protocol that a packet is retransmitted whereas it
was correctly received?

solution

18

An Example of ARQ Protocol with Go Back N

LowestLowestLowestLowest
unacknowledgedunacknowledgedunacknowledgedunacknowledged
packetpacketpacketpacket numbernumbernumbernumber

V(A)V(A)V(A)V(A)

RetransmissionRetransmissionRetransmissionRetransmission
BufferBufferBufferBuffer

P=0P=0P=0P=0

NextNextNextNext ExpectedExpectedExpectedExpected
PacketPacketPacketPacket NumberNumberNumberNumber

V(R))V(R))V(R))V(R))

0000

NextNextNextNext SequenceSequenceSequenceSequence
NumberNumberNumberNumber forforforfor
SendingSendingSendingSending
V(S)V(S)V(S)V(S)

P0; P0; P0; P0; 11110000

P0; P1P0; P1P0; P1P0; P122220000

A=0A=0A=0A=0

deliverdeliverdeliverdeliver P0P0P0P0
1 1 1 1

P=1P=1P=1P=1

P0; P1; P2P0; P1; P2P0; P1; P2P0; P1; P233330000
P=2P=2P=2P=2

P0; P1; P2; P3P0; P1; P2; P3P0; P1; P2; P3P0; P1; P2; P344440000
P=3P=3P=3P=3 deliverdeliverdeliverdeliver P1P1P1P12222

deliverdeliverdeliverdeliver P2P2P2P23333

deliverdeliverdeliverdeliver P3P3P3P34444

A=1A=1A=1A=1

P=0P=0P=0P=0
P0; P1; P2; P3P0; P1; P2; P3P0; P1; P2; P3P0; P1; P2; P311110000

discarddiscarddiscarddiscard
4444

A=2A=2A=2A=2

A=3A=3A=3A=3
P0; P1; P2; P3P0; P1; P2; P3P0; P1; P2; P3P0; P1; P2; P322220000

P=1P=1P=1P=1

P0; P1; P2; P3P0; P1; P2; P3P0; P1; P2; P3P0; P1; P2; P333330000
P=2P=2P=2P=2

P0; P1; P2; P3P0; P1; P2; P3P0; P1; P2; P3P0; P1; P2; P344440000
P=3P=3P=3P=3

discarddiscarddiscarddiscard
4444

discarddiscarddiscarddiscard
4444

discarddiscarddiscarddiscard4444

P0; P1; P2; P3P0; P1; P2; P3P0; P1; P2; P3P0; P1; P2; P300000000

P2; P3P2; P3P2; P3P2; P344442222 P=2P=2P=2P=2

10

19

The previous slide shows an example of ARQ protocol, which uses the following details:

1. window size = 4 packets;

2. Acknowledgements are positive and are cumulative, i.e. indicate the highest packet
number upt to which all packets were correctly received

3. Loss detection is by timeout at sender

4. When a loss is detected, the source starts retransmitting packets from the last
acknowldeged packet (this is called Go Back n).

Q.Q.Q.Q. Is it possible with this protocol that a packet is retransmitted whereas it was
correctly received?

Solution

Go Back n is less efficient than selective repeat, since we may unneccesarily retransmit
a packet that was correctly transmitted. Its advantage is its extreme simplicity:

(less memory at destination) It is possible for the destination to reject all packets other than
the expected one. If so, the required buffer at destination is just one packet

(less processing) The actions taken by source and destination are simpler

Go Back n is thus suited for very simple implementations, for example on sensors.

20

An Example of ARQ Protocol with Go Back N
and Negative Acks

RetransmissionRetransmissionRetransmissionRetransmission
BufferBufferBufferBuffer

P=0P=0P=0P=0

V(R)V(R)V(R)V(R)

0000

V(S)V(S)V(S)V(S)

P0; P0; P0; P0; 11110000

P0; P1P0; P1P0; P1P0; P122220000 deliverdeliverdeliverdeliver P0P0P0P0
1111

P=1P=1P=1P=1

P0; P1; P2P0; P1; P2P0; P1; P2P0; P1; P233330000
P=2P=2P=2P=2

P0; P1; P2; P3P0; P1; P2; P3P0; P1; P2; P3P0; P1; P2; P344440000
P=3P=3P=3P=3

NACK, A=0NACK, A=0NACK, A=0NACK, A=0

P1; P2; P3P1; P2; P3P1; P2; P3P1; P2; P344441111

discarddiscarddiscarddiscard1111

deliverdeliverdeliverdeliver P1P1P1P1
2222

deliverdeliverdeliverdeliver P2P2P2P2
3333

A=1A=1A=1A=1

A=0A=0A=0A=0

P=4P=4P=4P=4

P1; P2; P3; P4P1; P2; P3; P4P1; P2; P3; P4P1; P2; P3; P455551111

P1; P2; P3; P4P1; P2; P3; P4P1; P2; P3; P4P1; P2; P3; P411111111 P=1P=1P=1P=1

P1; P2; P3; P4P1; P2; P3; P4P1; P2; P3; P4P1; P2; P3; P422221111 P=2P=2P=2P=2

NACK, A=0NACK, A=0NACK, A=0NACK, A=0 discarddiscarddiscarddiscard1111

discarddiscarddiscarddiscard1111

V(A)V(A)V(A)V(A)

11

21

The previous slide shows an example of ARQ protocol, which uses the

following details:

1. window size = 4 packets;

2. Acknowledgements are positive or negative and are cumulative. A
positive ack indicates that packet n was received as well as all

packets before it. A negative ack indicates that all packets up to n

were received but a packet after it was lost

3. Loss detection is either by timeout at sender or by reception of

negative ack.

4. When a loss is detected, the source starts retransmitting packets

from the last acknowldeged packet (Go Back n).

Q.Q.Q.Q. What is the benefit of this protocol compared to the previous ?

solution

22

Where are ARQ Protocols Used ?

� Hop-by-hop

MAC layer

Modems: Selective Repeat

WiFi: Stop and Go

� End-to-end

Transport Layer:

TCP: variant of selective repeat with some features of go back n

Application layer

DNS: Stop and Go

12

23

Are There Alternatives to ARQ ?

Coding is an alternative to ARQ.

� Forward Error Correction (FEC):

Principle:

Make a data block out of n packets

Add redundancy (ex Reed Solomon codes) to block and generate k+n
packets

If n out of k+n packets are received, the block can be reconstructed

Q. Q. Q. Q. What are the pros and cons ?

solution

Is used for data distribution over satellite links

Other FEC methods are used for voice or video (exploit the fact that

some distortion may be allowed – for example: interpolate a lost

packet by two adjacent packets)

24

FEC may be combined with ARQ

� Example with multicast, using digital fountain codes

Source has a file to transmit; it sends n packets

A destination that misses one packet sends a request for

retransmission; source uses a fountain code and sends packet n+1

If this or another destination still does not has enough, sources codes

and sends packets n+2, n+3,… as necessary

All packets are different

Any n packets received by any destination allows to reconstruct the
entire file

Used for data distribution over the Internet.

13

25

3. Flow Control

� Why invented ?
Differences in machine performance: A may send data to B much faster
than B can use. Or B may be shared by many processes and cannot
consume data received at the rate that A sends.

Data may be lost at B due to lack of buffer space – waste of resources !

� What does it do ?
Flow control prevents prevent buffer overflow at receiver

� How does it work ?
Backpressure, or

Credits

Flow ControlFlow ControlFlow ControlFlow Control ≠ Congestion controlCongestion controlCongestion controlCongestion control
congestion control is about preventing too many losses inside the network

26

Backpressure Flow Control

� Destination sends STOP (= PAUSE)

or GO messages

� Source stops sending for xmsec
after receiving a STOP message

� Simple to implement

� Q.Q.Q.Q. When does it work well ?

solution

� Where implemented ?

X-ON / X-OFF protocols inside a

computer

Between Bridges in a LAN

� Issues

Loops in feedback must be

avoided (otherwise deadlock)

P=0P=0P=0P=0

P0P0P0P0

P=1P=1P=1P=1

P=2P=2P=2P=2

P=3P=3P=3P=3
STOPSTOPSTOPSTOP

P1P1P1P1

P2P2P2P2

P3P3P3P3

STOPSTOPSTOPSTOP

GOGOGOGO

P=5P=5P=5P=5

P=6P=6P=6P=6

P=7P=7P=7P=7

P=4P=4P=4P=4

14

27

Can we use Sliding Window for Flow Control ?

� One could use a sliding window for flow control, as follows

Assume a source sends packets to a destination using an ARQ protocol

with sliding window. The window size is 4 packets and the destination

has buffer space for 4 packets.

Assume the destination delays sending acks until it has enough free

buffer space. For example, destination has just received (but not

acked) 4 packets. Destination will send an ack for the 4 packets only

when destination application has consumed them.

Q.Q.Q.Q. Does this solve the flow control problem ?

solution

28

Credit Flow Control

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

P = 1

A = -1, credit = 2

P = 0

P = 2

P = 3

P = 4

A = 0, credit = 2

P = 5

P = 6

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

A = 2, credit = 4

0 1 2 3 4 5 6 7 8 9 10 11 12

A = 0, credit = 4

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

A = 4, credit = 2

0 1 2 3 4 5 6 7 8 9 10 11 120 1 2 3 4 5 6 7 8 9 10 11 12 A = 6, credit = 0

0 1 2 3 4 5 6 7 8 9 10 11 12
A = 6, credit = 4

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

P = 7

15

29

� The credit scheme solves the issue with using the sliding window alone for flow
control. Credits are used by TCP, under the name of “window advertisement”.

� With a credit scheme, the receiver informs the sender about how much data it is
willing to receive (and have buffer for). Credits may be the basis for a stand-alone
protocol or, as shown here, be a part of an ARQ protocol. Credit schemes allow a
receiver to share buffer between several connections, and also to send
acknowledgements before packets are consumed by the receiving upper layer
(packets received in sequence may be ready to be delivered, but the application
program may take some time to actually read them).

� The picture shows the maximum send window (called “offered window” in TCP) (red
border) and the usable window (pink box). On the picture, like with TCP, credits
(= window advertisements) are sent together with acknowledgements. The
acknowledegements on the picture are cumulative.

� Credits are used to move the right edge of the maximum send window. (Remember
that acknowledgements are used to move the left edge of the maximum send
window).

� By acknowledging all packets up to number n and sending a credit of k, the receiver
commits to have enough buffer to receive all packets from n+1 to n+k. In principle,
the receiver(who sends acks and credits) should make sure that n+k is non-
decreasing, namely, that the right edge of the maximum send window does not move
to the left (because packets may have been sent already by the time the sdr receives
the credit).

� A receiver is blocked from sending if it receives credit = 0, or more generally, if the
received credit is equal to the number of unacknowledged packets. By the rule
above, the received credits should never be less than the number of
unacknowledged packets.

� With TCP, a sender may always send one byte of data even if there is no credit
(window probe, triggered by persistTimer) and test the receiver’s advertized
window, in order to avoid deadlocks (lost credits).

30

Credits are Modified as Receive Buffer Space Varies

A = 4, A = 4, A = 4, A = 4, creditcreditcreditcredit = 2= 2= 2= 2

P = 1P = 1P = 1P = 1

A = A = A = A = ----1, 1, 1, 1, creditcreditcreditcredit = 2= 2= 2= 2

P = 0P = 0P = 0P = 0

P = 2P = 2P = 2P = 2

P = 3P = 3P = 3P = 3

P = 4P = 4P = 4P = 4

A = 0, A = 0, A = 0, A = 0, creditcreditcreditcredit = 2= 2= 2= 2

P = 5P = 5P = 5P = 5

P = 6P = 6P = 6P = 6

A = 2, A = 2, A = 2, A = 2, creditcreditcreditcredit = 4= 4= 4= 4

A = 0, A = 0, A = 0, A = 0, creditcreditcreditcredit = 4= 4= 4= 4

A = 6, A = 6, A = 6, A = 6, creditcreditcreditcredit = 0= 0= 0= 0

A = 6, A = 6, A = 6, A = 6, creditcreditcreditcredit = 4= 4= 4= 4

P = 7P = 7P = 7P = 7

3 4 5 63 4 5 63 4 5 63 4 5 6

5 6 5 6 5 6 5 6

7 8 9 107 8 9 107 8 9 107 8 9 10

1 2 3 41 2 3 41 2 3 41 2 3 4

1 2 3 41 2 3 41 2 3 41 2 3 4

1 2 3 41 2 3 41 2 3 41 2 3 4

1 2 3 41 2 3 41 2 3 41 2 3 4

3 4 5 63 4 5 63 4 5 63 4 5 6

3 4 5 63 4 5 63 4 5 63 4 5 6

3 4 5 63 4 5 63 4 5 63 4 5 6

7 8 9 107 8 9 107 8 9 107 8 9 10

0 10 10 10 1

0 10 10 10 1

1 21 21 21 2

----2222 ----1111----3333

----2222 ----1111----3333

----2222 ----1111 0 0 0 0 ----3333

----2222 ----1111 0 0 0 0 ----3333

----2222 ----1111 0 0 0 0 1111----3333

----2222 ----1111 0 0 0 0 1111----3333 2222

----2222 ----1111 0 0 0 0 1111----3333 2222

----2222 ----1111 0 0 0 0 1111----3333 2222 3333

----2222 ----1111 0 0 0 0 1111----3333 2222 3333 4444

----2222 ----1111 0 0 0 0 1111----3333 2222 3333 4444 5555

----2222 ----1111 0 0 0 0 1111----3333 2222 3333 4444 5555 6666

----2222 ----1111 0 0 0 0 1111----3333 2222 3333 4444 5555 6666

free buffer, or free buffer, or free buffer, or free buffer, or unackedunackedunackedunacked datadatadatadata

data data data data ackedackedackedacked but not but not but not but not yetyetyetyet readreadreadread

16

31

� The figure shows the relation between buffer occupancy and the

credits sent to the source. This is an ideal representation. TCP

implementations may differ a little.

� The picture shows how credits are triggered by the status of the

receive buffer. The flows are the same as on the previous picture.

� The receiver has a buffer space of 4 data packets (assumed here to

be of constant size for simplicity). Data packets may be stored in

the buffer either because they are received out of sequence (not

shown here), or because the receiving application, or upper layer,

has not yet read them.

� The receiver sends window updates (=credits) in every

acknowledgement. The credit is equal to the available buffer space.

� Loss conditions are not shown on the picture. If losses occur, there

may be packets stored in the receive buffer that cannot be read by

the application (received out of sequence). In all cases, the credit

sent to the source is equal to the buffer size, minus the number of

packets that have been received in sequence. This is because the

sender is expected to move its window based only on the smallest

ack number received.

32

4. The Transport Layer

Reminder:

network + link + phy carry packets end-to-end

transport layertransport layertransport layertransport layer makes network services available to programs

is in end systems only, not in routers

� In TCP/IP there are two transport layers

UDP (User Datagram Protocol): offers only a programming interface,

no real function

TCP (Transmission Control Protocol): implements error recovery + flow

control

17

33

Why both TCP and UDP ?

� Most applications use TCP rather than UDP, as this avoids re-

inventing error recovery in every application

� But some applications do not need error recovery in the way TCP

does it (i.e. by packet retransmission)

For example: Voice applications

Q.Q.Q.Q. why ?

solution

For example: an application that sends just one message, like name

resolution (DNS). TCP sends several packets of overhead before one

single useful data message. Such an application is better served by a

Stop and Go protocol at the application layer.

For example: multicast (TCP does not support multicast IP addresses)

34

UDP Uses Port Numbers

Host

IP addr=B

Host

IP addr=B
Host

IP addr=A

Host

IP addr=A

IP SA=A DA=B prot=UDP

source port=1267

destination port=53

…data…

process

sa

process

ra

UDP

process

qa

process

pa

TCP

IP

1267

process

sb

process

rb

UDP

process

qb

process

pb

TCP

IP

53

IP network

UDP Source Port UDP Dest Port

UDP Message Length UDP Checksum

data

IP header

UDP datagramIP datagram

18

35

� The picture shows two processes (= application programs) pa, and pb, are
communicating. Each of them is associated locally with a port, as shown in
the figure.

� In addition, every machine (in reality: every communication adapter) has
an IP address.

� The example shows a packet sent by the name resolver process at host A,
to the name server process at host B. The UDP header contains the source
and destination ports. The destination port number is used to contact the
name server process at B; the source port is not used directly; it will be
used in the response from B to A.

� The UDP header also contains a checksum the protect the UDP data plus
the IP addresses and packet length. Checksum computation is not
performed by all systems. Ports are 16 bits unsigned integers. They are
defined statically or dynamically. Typically, a server uses a port number
defined statically.

� Standard services use well-known ports; for example, all DNS servers use
port 53 (look at /etc/services). Ports that are allocated dynamically are
called ephemeral. They are usually above 1024. If you write your own client
server application on a multiprogramming machine, you need to define
your own server port number and code it into your application.

36

The UDP service

� UDP service interface

one message, up to 8K

destination address, destination port, source address, source port

� UDP service is message oriented

delivers exactly the message or nothing

several messages may be delivered in disorder

Message may be lost, application must implement loss recovery.

� If a UDP message is larger than MTU, then fragmentation occurs at

the IP layer

19

37

UDP is used via a Socket Library

� The socket library provides a
programming interface to TCP
and UDP

� The figure shows toy client and
server UDP programs. The client
sends one string of chars to the
server, which simply receives
(and displays) it.

socket() creates a socket and
returns a number (=file descriptor)
if successful

bind() associates the local port
number with the socket

sendto() gives the destination IP
address, port number and the
message to send

recvFrom() blocks until one
message is received for this port
number. It returns the source IP
address and port number and the
message.

client

socket();

bind();

sendto();

close();

server

socket();

bind();

rcvfrom();

% ./udpClient <destAddr> bonjour les amis

%

% ./udpServ &

%

38

How the Operating System views UDP

id=3 id=4

buffer buffer

port=32456 port=32654

program

UDP

IP
address=128.178.151.84

socketsocket

20

39

5. TCP basics

� Why invented ?

Repair packet losses

Save application from doing it.

� What does TCP do ?

TCP guarantees that all data is delivered in sequence and without loss,

unless the connection is broken;

TCP should work for all applications that transfer data, either in small

or large quantities

TCP does not work with multicast IP addresses, UDP does.

TCP also does flow control

TCP also does congestion control (not seen in this module)

� How does TCP work ?

first, a connection (=synchronization of sequence numbers) is opened

between two processes

then TCP implements ARQ (for error recovery) and credits (for flow

control)

in the end, the connection is closed

40

The TCP Service

� TCP offers a stream service

A stream of bytes is accepted for transmission and delivered at

destination

TCP uses port numbers like UDP eg. TCP port 80 is used for web

server.

TCP requires that a connection is opened before data can be

transferred.

A TCP connection is identified by: srcesrcesrcesrce IP IP IP IP addraddraddraddr, , , , srcesrcesrcesrce port, port, port, port, destdestdestdest IP IP IP IP addraddraddraddr, , , ,

destdestdestdest portportportport

21

41

TCP views data as a stream of bytes

� TCP-PDUs are called TCP segments

bytes accumulated in buffer until sending TCP decides to create a
segment

MSS = maximum “segment“ size (maximum data part size)

“B sends MSS = 236” means that segments, without header, sent to B should
not exceed 236 bytes

536 bytes by default (576 bytes IP packet)

� Sequence numbers based on byte counts, not packet counts

� TCP builds segments independent of how application data is
broken

unlike UDP

� TCP segments never fragmented at source

possibly at intermediate points with IPv4

where are fragments re-assembled ?

TCP dataTCP hdr

IP data = TCP segmentIP hdr

prot=TCP

42

TCP is an ARQ protocol

� Basic operation:

sliding window

loss detection by timeout at sender

retransmission is a hybrid of go back and selective repeat

Cumulative acks

� Supplementary elements

fast retransmit

selective acknowledgements

� Flow control is by credit

� Congestion control

adapt to network conditions

22

43

TCP Basic Operation
8001:8501(500) ack 101 win 6000

101:201(100) ack 8501 win 14000

8501:9001(500) ack 201 win 14247

9001:9501(500) ack 201 win 14247

9501:10001(500) ack 201 win 14247

(0) ack 8501 win 13000

8501:9001(500) ack 251 win 14247
201:251(50) ack 8501 win 12000

251:401(150) ack 10001 win 12000

10001:10501(500) ack 401 win 14247

Timeout !

1

2

3

4

5
6

7

8

9

10

deliver

bytes

...:8500

deliver

bytes

8501:10000

deliver

bytes

10001:10500

A B

Reset timers

for packets

4, 5, 6

44

� The picture shows a sample exchange of messages. Every packet carries
the sequence number for the bytes in the packet; in the reverse direction,
packets contain the acknowledgements for the bytes already received in
sequence. The connection is bidirectional, with acknowledgements and
sequence numbers for each direction. Acknowledgements are not sent in
separate packets (“piggybacking”), but are in the TCP header. Every
segment thus contains a sequence number (for itself), plus an ack number
(for the reverse direction). The following notation is used:

firstByte”:”lastByte+1 “(“segmentDataLength”) ack” ackNumber+1 “win”
offeredWindowSise. Note the +1 with ack and lastByte numbers.

� At line 8, a retransmission timer expires, causing the retransmission of
data starting with byte number 8501 (Go Back n principle).Note however
that after segment 9 is received, transmission continues with byte number
10001. This is because the receiver stores segments received out of order.

� The window field (win) gives to the sender the size of the window. Only byte
numbers that are in the window may be sent. This makes sure the
destination is not flooded with data it cannot handle.

� Note that numbers on the figure are rounded for simplicity. Real examples
use non-round numbers between 0 and 232 -1. The initial sequence number
is not 0, but is chosen at random using a 4 µsec clock.

� The figure shows the implementation of TCP known as “TCP SACK”, which
is the basis for current implementations. An earlier implementation (“TCP
Tahoe”) did not reset the pending timers after a timeout; thus, this was
implementing a true Go Back n protocol; the drawback was that packets
were retransmitted unnecessarily, because packet losses are usually
simple.

23

45

Losses are Also Detected by “Fast Retransmit”
� Why invented: retransmission
timeout in practice often very

approximate thus timeout is often

too large. Go back n is less

efficient than SRP

� What it does

Detect losses earlier

Retransmit only the missing

packet

� How it works

if 3 duplicate acks for the same

bytes are received before

retransmission timeout, then

retransmit

Q. Q. Q. Q. which ack is sent last on the

figure ?

solution

P1 P2 P3 P4

A1 A2 A2

P5 P6

A2 A2

retransmit

P3

A ?

P7

46

Selective Acknowledgements

� Why invented ?

Fast retransmit works well if there is one isolated loss, not if there are

a few isolated losses

� What does it do ?

Acknowledge exactly which bytes are received and allow their

selective retransmission

� How does it do it ?

up to 3 SACK blocks are in TCP option, on the return path; a SACK

block is a positive ack for an interval of bytes; first block is most

recently received

source to detect a loss by gap in received acknowledgement

If gap detected, missing bytes are retransmitted

24

47

TCP uses Connections

� TCP requires that a connection (= synchronization) is opened

before transmitting data

Used to agree on sequence numbers

� The next slide shows the states of a TCP connection:

Before data transfer takes place, the TCP connection is opened using

SYN packets. The effect is to synchronize the counters on both sides.

The initial sequence number is a random number.

The connection can be closed in a number of ways. The picture shows

a graceful release where both sides of the connection are closed in

turn.

Remember that TCP connections involve only two hosts; routers in

between are not involved.

48

TCP Connection Phases

SYN, seq=x
syn_sent

SYN seq=y, ack=x+1

ack=y+1established
established

snc_rcvd

listen

FIN, seq=u

ack=v+1

ack=u+1

FIN seq=v
fin_wait_2

time_wait

close_wait

last_ack

closed

application
active open passive open

application close:

active close

fin_wait_1

C
o
n
n
e
c
t
i
o
n

S
e
t
u
p

D
a
t
a

T
r
a
n
s
f
e
r

C
o
n
n
e
c
t
i
o
n

R
e
l
e
a
s
e

25

49

paddingoptions (if any)

srce port dest port

sequence number

ack number

hlen windowcode bitsrsvd

urgent pointerchecksum

segment data (if any)

TCP
header
(20 Bytes +
options)

IP header (20 B + options)

<= MSS bytes

code bit meaning
urg urgent ptr is valid
ack ack field is valid
psh this seg requests a push
rst reset the connection
syn connection setup
fin sender has reached end of byte stream

50

TCP Segment Format
The next slide shows the TCP segment format.

� the push bit can be used by the upper layer using TCP; it forces TCP on the
sending side to create a segment immediately. If it is not set, TCP may pack
together several SDUs (=data passed to TCP by the upper layer) into one PDU (=
segment). On the receiving side, the push bit forces TCP to deliver the data
immediately. If it is not set, TCP may pack together several PDUs into one SDU.
This is because of the stream orientation of TCP. TCP accepts and delivers
contiguous sets of bytes, without any structure visible to TCP. The push bit used
by Telnet after every end of line.

� the urgent bit indicates that there is urgent data, pointed to by the urgent
pointer (the urgent data need not be in the segment). The receiving TCP must
inform the application that there is urgent data. Otherwise, the segments do not
receive any special treatment. This is used by Telnet to send interrupt type
commands.

� RST is used to indicate a RESET command. Its reception causes the connection
to be aborted.

� SYN and FIN are used to indicate connection setup and close. They each
consume one sequence number.

� The sequence number is that of the first byte in the data. The ack number is the
next expected sequence number.

� Options contain for example the Maximum Segment Size (MSS) normally in SYN
segments (negotiation of the maximum size for the connection results in the
smallest value to be selected).

� The checksum is mandatory.

26

51

TCP is used via a Socket Library
� The figure shows toy client and

servers. The client sends a string of
chars to the server which reads and
displays it.

socket() creates a socket and returns a
number (=file descriptor) if successful

bind() associates the local port number
with the socket

connect() associates the remote IP
address and port number with the
socket and sends a SYN packet

send() sends a block of data to the
remote destination

listen() can be omitted at first reading;
accept blocks until a SYN packet is
received for this local port number. It
creates a new socket (in pink) and
returns the file descriptor to be used to
interact with this new socket

receive() blocks until one block of data
is ready to be consumed on this port
number. You must tell in the argument
of receive how many bytes at most you
want to read. It returns the number of
bytes that is effectively retruned and
and the block of data.

% ./tcpClient <destAddr>
bonjour les amis
%

% ./tcpServ &
%

client
socket();

server
socket();

bind();

connect();

send();

close();

bind();

listen();

accept();

receive();

close();

52

How the Operating System views TCP Sockets

program

TCP

IP

id=3 id=4

incoming
connection

queue

buffer

port=32456

address=128.178.151.84

id=5

buffer

socketsocket socket

27

53

Test Your Understanding

� Consider the UDP and TCP services

Q1. Q1. Q1. Q1. what does service mean here ?

Q2.Q2.Q2.Q2. does UDP transfer the blocks of data delivered by the calling process

as they were submitted ? Analyze: delineation, order, missing blocks.

Q3.Q3.Q3.Q3. does TCP transfer the messages delivered by the calling process as

they were submitted ? Analyze: delineation, order, missing blocks.

� One more question

Q4.Q4.Q4.Q4. Is Stop and Go a sliding window protocol ?

solution

54

6. TCP, advanced

� TCP implements a large number of additional mechanisms. Why ?

1. The devils’ in the detail
Doing ARQ and flow control the right way poses a number of small

problems that need to be solved. We give some examples in the next

slides.

This will give you a feeling for the complexity of the real TCP code.

Note that there are many other details in TCP, not shown in this

lecture.

2. Congestion control is done in TCP
Congestion control is a network layer function (avoid congestion in the

network) that the IETF decided to implement in TCP – we discuss why

in the module on congestion control cc.pdf. We do not consider

congestion control in this module.

28

55

When to send an ACK

� Why is there an issue ?

When receiving a data segment, a TCP receiver may send an

acknowledgement immediately, or may wait until there is data to send

(“piggybacking”), or until other segments are received (cumulative

ack). Delaying ACKs reduces processing at both sender and receiver,

and may reduce the amount of IP packets in the network. However, if

ACKs are delayed too long, then receivers do not get early feedback

and the performance of the ARQ scheme decreases. Also, delaying

ACKs also delays new information about the window size.

� What is this algorithm doing ?

Decide when to send an ACK and when not.

� How does it do its job ?

Sending an ACK is delayed by at most 0.5 s. In addition, in a stream of

full size segments, there should be at least one ACK for every other

segment.

Note that a receiving TCP should send ACKs (possibly delayed ACKs)

even if the received segment is out of order. In that case, the ACK

number points to the last byte received in sequence + 1.

56

Nagle’s Algorithm
� Why is there an issue ?

A TCP source can group several blocks of data -- passed to it by sendto() –
into one single segment. This occurs when the application receives very small

blocks to transmit (ex: Telnet: 1 char at a time). Grouping saves processing and

capacity when there are many small blocks to transmit, but adds a delay.

� What is this algorithm doing ?

Decide when to create a segment and pass it the IP layer for transmission.

� How does it do its job ?

accept only one unacknowledged tinygram (= segment smaller than MSS):

Nagle’s algorithm can be disabled by application

example: X window system (TCP_NODELAY socket option)

if Nagle enabled, then applies also to pushed data

(data written by upper layer) or (new ack received) ->

if full segment ready
then send segment
elseif there is no unacknowledged data
then send segment
elsestart override timer; leave

override timer expires -> create segment and send

(data written by upper layer) or (new ack received) ->

if full segment ready
then send segment
elseif there is no unacknowledged data
then send segment
elsestart override timer; leave

override timer expires -> create segment and send

29

57

Example: Nagle’algorithm

8000:8001(1) ack 101 win 6000

1

A B

a ->

b ->

c ->

d ->

e ->

f ->

101:102(1) ack 8001 win 140002

8001:8003(2) ack 102 win 6000

3

102:102(0) ack 8003 win 139984

8003:8005(2) ack 102 win 6000

102:102(0) ack 8003 win 14000
5

6

102:102(0) ack 8005 win 139987

8005:8006(1) ack 102 win 6000

8

58

Silly Window Syndrome Avoidance: Why ?
� Silly Window Syndrome occurs when

Receiver is slow or busy

sender has large amount of data to send

but small window forces sender to send many small packets -> waste of

resources

ackackackack 0 win 2000 <0 win 2000 <0 win 2000 <0 win 2000 <--------------------

0:1000 0:1000 0:1000 0:1000 --------------------> > > > bufferSizebufferSizebufferSizebufferSize= 2000B, = 2000B, = 2000B, = 2000B, freebuffreebuffreebuffreebuf= 1000B= 1000B= 1000B= 1000B

1000:2000 1000:2000 1000:2000 1000:2000 --------------------> > > > freebuffreebuffreebuffreebuf= 0B= 0B= 0B= 0B

ackackackack 2000, win 0 <2000, win 0 <2000, win 0 <2000, win 0 <--------------------

application reads 1 Byte: application reads 1 Byte: application reads 1 Byte: application reads 1 Byte: freeBuffreeBuffreeBuffreeBuf = 1= 1= 1= 1

ackackackack 2000, win 1 <2000, win 1 <2000, win 1 <2000, win 1 <--------------------

2000:2001 2000:2001 2000:2001 2000:2001 --------------------> > > > freeBuffreeBuffreeBuffreeBuf = 0= 0= 0= 0

application reads 1 Byte: application reads 1 Byte: application reads 1 Byte: application reads 1 Byte: freeBuffreeBuffreeBuffreeBuf = 1= 1= 1= 1

ackackackack 2001, win 1 <2001, win 1 <2001, win 1 <2001, win 1 <--------------------

2001:2002 2001:2002 2001:2002 2001:2002 --------------------> > > > freeBuffreeBuffreeBuffreeBuf = 0= 0= 0= 0

application reads 1 Byte: application reads 1 Byte: application reads 1 Byte: application reads 1 Byte: freeBuffreeBuffreeBuffreeBuf = 1= 1= 1= 1

ackackackack 2002, win 1 <2002, win 1 <2002, win 1 <2002, win 1 <--------------------

2002:2003 2002:2003 2002:2003 2002:2003 --------------------> > > > freeBuffreeBuffreeBuffreeBuf = 0= 0= 0= 0

30

59

Silly Window Syndrome Avoidance

� What does SWS avoidance do ?

Prevent receiver from sending small incremental window updates

� How does SWS avoidance work ?

receiver moves the window by increments that are as large as one MSS

or 1/2 receiveBufferreceiveBufferreceiveBufferreceiveBuffer::::

keep nextByteExpected + offeredWindow fixed until:
reserve · min (MSS, 1/2 receiveBuffer)

keep nextByteExpected + offeredWindow fixed until:
reserve · min (MSS, 1/2 receiveBuffer)

highestByteReadhighestByteReadhighestByteReadhighestByteRead nextByteExpectednextByteExpectednextByteExpectednextByteExpected
------------||||--||||--||||--||||----------------

<<<<-------- offeredWindowofferedWindowofferedWindowofferedWindow --------> <> <> <> <---- reservereservereservereserve ---->>>>
<<<<-- receiveBufferreceiveBufferreceiveBufferreceiveBuffer --> > > >

60

SWS Avoidance Example
ack 0 win 2000 <-----

0:1000 -----> bufferSize= 2000B, freebuf = 1000B, reserve = 0B

1000:2000 -----> freebuf= 0B, reserve = 0B

ack 2000, win 0 <-----

application reads 1 Byte: freeBuf=reserve=1B,

....

application has read 500 B: reserve = 500

persistTimer expires

window probe packet sent

2000:2001 ----->

data is not accepted (out of window)

ack 2000, win 0 <-----

....

application has read 1000 B: reserve = 1000

ack 2000, win 1000 <-----

2000:3000 ----->

31

61

� There is also a SWS avoidance function at sender

Why ? Cope with destinations that do not implement SWS avoidance at
receiver – see the RFCs for what and how

� Q.Q.Q.Q. What is the difference in objective between Nagle’s algorithm

and SWS avoidance ?

solution

62

Round Trip Estimation
� Why ? The retransmission timer must be set at a value

slightly larger than the round trip time, but too much larger

� What ? RTT estimation computes an upper bound RTO on

the round trip time

� How ?

sampleRTT = last measured round trip time
estimatedRTT = last estimated average round trip time
deviation = last estimated round trip deviation

initialization (first sample):
estimatedRTT = sampleRTT + 0.5s; deviation = estimatedRTT/2
new value of sampleRTT available ->

Err = sampleRTT - estimatedRTT
estimatedRTT = estimatedRTT + 0.125 * Err
deviation = deviation + 0.250 * (|Err|- deviation)
RTO = estimatedRTT + 4*deviation

sampleRTT = last measured round trip time
estimatedRTT = last estimated average round trip time
deviation = last estimated round trip deviation

initialization (first sample):
estimatedRTT = sampleRTT + 0.5s; deviation = estimatedRTT/2
new value of sampleRTT available ->

Err = sampleRTT - estimatedRTT
estimatedRTT = estimatedRTT + 0.125 * Err
deviation = deviation + 0.250 * (|Err|- deviation)
RTO = estimatedRTT + 4*deviation

32

63

Sample RTO

0

2

4

6

8

10

12

14
1

11 21 31 41 51 61 71 81 91

10
1

11
1

12
1

13
1

14
1

seconds

seconds

RTO

SampledRTT

64

Conclusions

� TCP provides a reliable service to the application programmer.

� TCP is complex and is complex to use, but is powerful. It works well

with various applications such as short interactive messages or

large bulk transfer.

� TCP is even more complex than we have seen as it also implements

congestion control, a topic that we will study in a follow-up lecture.

33

65

Solutions

66

The Philosophy of Errors in a Layered Model

� The physical layer is not completely error-free – there is always

some bit error rate (BER).
Information theory tells us that for every channel there is a capacity C such that

At any rate R < C, arbitrarily small BER can be achieved
At rates R ≥ C, any BER such that H2(BER) > 1 – C/R is achievable

� The TCP/IP architecture decided
Every layer ≥ 2 offers an error free service to the upper layer:

SDUs are either delivered without error or discarded

� Example: MAC layer

Q1.Q1.Q1.Q1. How does an Ethernet adapter know whether a received Ethernet

frames has some bit errors ? What does it do with the frame ?

A1.A1.A1.A1. It checks the CRC. If there is an error, the frame is discarded

WiFi detects errors with CRC and does retransmissions if needed
Q2Q2Q2Q2. Why does not Ethernet do the same ?

A2.A2.A2.A2. BER is very small on cabled systems, not on wireless

back

34

67

The Layered Model Transforms Errors into
Packet Losses

� Packet losses occur due to

error detection by MAC

buffer overflow in bridges and
routers

Other exceptional errors may

occur too

Q.Q.Q.Q. give some examples

A. A. A. A. changes in routes may cause

some packets to be lost by TTL

exhaustion during the transients

back

68

The Capacity of the End-to-End Path

� Q.Q.Q.Q. compute the capacity with end-to-end and with hop by hop error

recovery

A.A.A.A.

Case 1: end-to-end error recovery

End to end Packet Error Rate = 1– (1 – p)k
Capacity C1 = R × (1-p)

k

Case 2: hop-by-hop error recovery
Capacity one hop = R × (1-p)

End-to-end capacity C2 = R × (1-p)

A

R1 R1 R1 R1 R1 R1

B

Loss probability p

k links

back

35

69

End-to-end Error Recovery is Inefficient when
Packet Error Rate is high

� The table shows the capacity of an end-to-end path as a function of
the packet loss rate p

� Conclusion: end-to-end error recovery is not acceptable when
packet loss rate is high

� Q. Q. Q. Q. How can one reconcile the conflicting arguments for and
against hop-by-hop error recovery ?
A. A. A. A.

1. Do hop-by-hop error recovery only on links that have high bit error
rate: ex on WiFi, not on Ethernet.

2. Do hop-by–hop error recovery at the MAC layer (in the adapter), not in
the router

3. In addition, do end-to-end error recovery in hosts

0.9999 × R0.9990 × R0.000110

0.95 × R0.6 × R0.0510

C2 (hop-

by-hop)

C1 (end-to-

end)

Packet loss

rate

k

back

70

2. Mechanisms for Error Recovery

� In this section we discuss the methods for repairing packet losses

that are used in the Internet.

� We have seen one such method already:

Q. Q. Q. Q. which one ?

A. A. A. A. the stop and go protocol.

Packets are numbered at source

Destination sends one acknowledgement for every packet received

Source waits for ack; if after T1 seconds the ack did not arrive, packet

is retransmitted

S

L

Packet 1 Ack 1 Packet

2
Ack 2 Packet 2

T1
L’

back

36

71

Why Sliding Window ?

� Why invented ?

Overcome limitations of Stop and

Go

Q. Q. Q. Q. what is the limitation of Stop

and Go ?

A. A. A. A. when the bandwidth-delay

product is not very small, the

throughput is small. The protocol

wastes time while waiting for

acks.

� What does it do ?

1. Allow mutiple transmissions

But this has a problem: the

required buffer at destination may

be very large

2. This problem is solved by the

sliding window. The sliding

window protocol puts a limit on

the number of packets that may

have to be stored at receive

buffer.

P0P0P0P0

A1A1A1A1

P1P1P1P1

P2P2P2P2

A2A2A2A2

PPPPnnnn

P0 P0 P0 P0 againagainagainagain

PPPPnnnn+1+1+1+1

P1P1P1P1

P1 P2P1 P2P1 P2P1 P2

P1 P2 ... P1 P2 ... P1 P2 ... P1 P2 ... PPPPnnnn

P1 P2 ... P1 P2 ... P1 P2 ... P1 P2 ... PPPPnnnn+1+1+1+1

ReceiveReceiveReceiveReceive

BufferBufferBufferBuffer

back

72

The previous slide shows an example of ARQ protocol, which uses the
following details:

1. packets are numbered by source, staring from 0.

2. window size = 4 packets;

3. Acknowledgements are positive and indicate exactly which packet is
being acknowledged

4. Loss detection is by timeout at sender when no acknowledgement has
arrived

5. When a loss is detected, only the packet that is detected as lost is re-
transmitted (this is called Selective Repeat).

Q.Q.Q.Q. Is it possible with this protocol that a packet is retransmitted whereas it
was already received correctly ?
A.A.A.A. Yes, if an ack is lost.

back

37

73

The previous slide shows an example of ARQ protocol, which uses the
following details:

1. window size = 4 packets;

2. Acknowledgements are positive and are cumulative, i.e. indicate the
highest packet number upt to which all packets were correctly received

3. Loss detection is by timeout at sender

4. When a loss is detected, the source starts retransmitting packets from the
last acknowldeged packet (this is called Go Back n).

Q.Q.Q.Q. Is it possible with this protocol that a packet is retransmitted whereas it
was correctly received?

A. A. A. A. Yes, for several reasons
1. If an ack is lost

2. If packet n is lost and packet n+ 1 is not

back

74

The previous slide shows an example of ARQ protocol, which uses the

following details:

1. window size = 4 packets;

2. Acknowledgements are positive or negative and are cumulative. A
positive ack indicates that packet n was received as well as all

packets before it. A negative ack indicates that all packets up to n

were received but a packet after it was lost

3. Loss detection is either by timeout at sender or by reception of

negative ack.

4. When a loss is detected, the source starts retransmitting packets

from the last acknowldeged packet (Go Back n).

Q.Q.Q.Q. What is the benefit of this protocol compared to the previous ?

A.A.A.A. If the timer T1 cannot be set very accurately, the previous

protocol may wait for a long time before detecting a loss. This

protocol reacts more rapidly.

back

38

75

Are There Alternatives to ARQ ?

Coding is an alternative to ARQ.

� Forward Error Correction (FEC):

Principle:

Make a data block out of n packets

Add redundancy (ex Reed Solomon codes) to block and generate k+n
packets

If n out of k+n packets are received, the block can be reconstructed

Q. Q. Q. Q. What are the pros and cons ?
A.A.A.A. Pro: does not require retransmission. On network with very large
delay, this is a benefit.
Pro: works better for multicast, since different destinations may
have lost different packets.
Con: less throughput: redundancy is used even if not needed, ARQ
transmits fewer packets
back

Is used for data distribution over satellite links

Other FEC methods are used for voice or video (exploit the fact that
some distortion may be allowed – for example: interpolate a lost
packet by two adjacent packets)

76

Backpressure Flow Control

� Destination sends STOP (= PAUSE)

or GO messages

� Destination stops sending for x
msec after receiving a STOP

message

� Simple to implement

� Q.Q.Q.Q. When does it work well ?

A.A.A.A. If bandwidth delay product is

small

back

P=0P=0P=0P=0

P0P0P0P0

P=1P=1P=1P=1

P=2P=2P=2P=2

P=3P=3P=3P=3
STOPSTOPSTOPSTOP

P1P1P1P1

P2P2P2P2

P3P3P3P3

STOPSTOPSTOPSTOP

GOGOGOGO

P=5P=5P=5P=5

P=6P=6P=6P=6

P=7P=7P=7P=7

P=4P=4P=4P=4

39

77

Can we use Sliding Window for Flow Control ?

� One could use a sliding window for flow control, as follows

Assume a source sends packets to a destination using an ARQ protocol

with sliding window. The window size is 4 packets and the destination

has buffer space for 4 packets.

Assume the destination delays sending acks until it has enough free

buffer space. For example, destination has just received (but not

acked) 4 packets. Destination will send an ack for the 4 packets only

when destination application has consumed them.

Q.Q.Q.Q. Does this solve the flow control problem ?

A.A.A.A. Yes, since with a sliding window of size W, the number of packets
sent but unacknowledged is ·W. However, this poses a problem at the

source: non acknowledged packets may be retransmitted, whereas

they were correctly received.
back

78

Why both TCP and UDP ?

� Most applications use TCP rather than UDP, as this avoids re-

inventing error recovery in every application

� But some applications do not need error recovery in the way TCP

does it (i.e. by packet retransmission)

For example: Voice applications

Q.Q.Q.Q. why ?

A. A. A. A. delay is important for voice. Packet retransmission introduces too

much delay in most cases.

back

For example: an application that sends just one message, like name

resolution (DNS). TCP sends several packets of overhead before one

single useful data message. Such an application is better served by a

Stop and Go protocol at the application layer.

40

79

Losses are Also Detected by “Fast Retransmit”
� Why invented: retransmission
timeout in practice often very

approximate thus timeout is often

too large. Go back n is less

efficient than SRP

� What it does

Detect losses earlier

Retransmit only the missing

packet

� How it works

if 3 duplicate acks for the same

bytes are received before

retransmission timeout, then

retransmit

Q. Q. Q. Q. which ack is sent last on the

figure ?

A. A. A. A. A6

back

P1 P2 P3 P4

A1 A2 A2

P5 P6

A2 A2

retransmit

P3

A ?

P7

80

Test Your Understanding

� Consider the UDP and TCP services

Q1. Q1. Q1. Q1. what does service mean here ?

A1. A1. A1. A1. the interface between TCPor UDP and the application layer

Q2.Q2.Q2.Q2. does UDP transfer the blocks of data delivered by the calling process

as they were submitted ? Analyze: delineation, order, missing blocks.

A2.A2.A2.A2. if not lost, the blocks are delivered the same as submitted. Order is

generally respected but not always. Some blocks may be missing.

Q3.Q3.Q3.Q3. does TCP transfer the messages delivered by the calling process as

they were submitted ? Analyze: delineation, order, missing blocks.

A3. A3. A3. A3. the delineation between blocks is lost. TCP does not respect block

boundaries; several blocks may be merged or split at the destination.

The order of bytes is respected. No byte is missing between the bytes

received.

� One more question

Q4.Q4.Q4.Q4. Is Stop and Go a sliding window protocol ?

A4.A4.A4.A4. Yes, with window = 1 packet

back

41

81

Sws avoid.

� There is also a SWS avoidance function at sender

Why ? Cope with destinations that do not implement SWS avoidance at
receiver – see the RFCs for what and how

� Q.Q.Q.Q. What is the difference in objective between Nagle’s algorithm

and SWS avoidance ?

A. A. A. A. Both aim to avoid sending many small packets. Nagle handles

the case of a source application that would repeatedly send many

small blocks of data; SWS avoidance handles the case of a

destination application that repeatedly consumes small blocks of

data. Both algorithms run concurrently.

back

