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1. Introduction
Why were routing protocols invented

� IP assumes routing tables are maintained at hosts and routers used 
by Packet ForwardingPacket ForwardingPacket ForwardingPacket Forwarding

� Routing = control method 

maintain routing tables automatically 

in routers

� At host routing tables are usually maintained by

default rules

plus ICMP redirect

in old times: was done also by a routing protocol  (RIP). Today, a host 
usually does not run any routing protocol

� Compare to: LANs connected by bridges operate at layer 2 like 
connectionless packet forwarders

Q. Q. Q. Q. How do they maintain routing information ?

solution
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Routing vs Packet Forwarding
� Packet Forwarding

for every packet

done in real time

� Routing

computation of routing tables or data structures for unicast and 
multicast

normally only between routers

non-real time: latency up to 2 minutes

uses dedicated protocols (RIP, OSPF, EIGRP (Cisco) for unicast
and DVMRP, M-OSPF, PIM)

ICMP-redirect may alter routing tables, but only in hosts
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Interior Routing

� Routing methods are of two types

Inside an administrative domain = Interior Routing

Between domains = Exterior Routing

� ProblemProblemProblemProblem solved by a routing protocol
What  a routing protocol does

find reachable destinations

find best paths towards destinations

best in the sense of some metric

in this module, best means along shortest path, for some additive metric 
(number of hops, delay)
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Metrics

� Distance vector and link state find paths that minimize a metricmetricmetricmetric

Static metric - does not depend on the network state; for example:

number of hops

link capacity and static delay

cost

Dynamic metric- depend on the network state

link load

current delay

see end of section
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Simple Routing Methods
How routing protocols work

� static configurationstatic configurationstatic configurationstatic configuration
for toy networks only

� floodingfloodingfloodingflooding
each packet duplicated on each outgoing link; loops prevented by 
packet id or other mechanism ; duplicate packets may be received at
destination

simple and robust
no need for routing tables

robust - tolerates link or router failures

optimal in some sense
the first packet has found the shortest path to the destination

costly
many duplicated packets – little useful traffic

used as an ingredient by mobile ad-hoc routing methods (AODV, OLSR)

� source source source source routingroutingroutingrouting

source writes route into packet header

router reads next hop from packet header, moves pointer

route discovered by flooding
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Source Routing
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A B 2.2222.4

A B 2.2.4444

Q.Q.Q.Q. What are the routes that can be used from A to B ?

solutionsolutionsolutionsolution
A route is described by a sequence of port numbers
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Route Discovery in Token Rings

B1

A R1

R2

B4

R4

B3

B5

R5

B6

R6

B2

R3

B

One “All Route Broadcast” packet is generated by A. This 
creates 5 different packets.
1. A-R1-B1-R2-B2-R3
2. A-R1-B1-R2-B3-R5-B6-R6
3. A-R1-B1-R2-B3-R5-B5-R4
4. A-R1-B4-R4-B5-R5-B3-R2-R3
5. A-R1-B4-R4-B5-R5-B6-R6

2 of them  reach B  (numbers 2 and 5)
route_1 = R1.B1.R2.B3.R5.B6.R6
route_2 = R1.B4.R4.B5.R5.B6.R6
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In the 1980’s, the token was invented as a competitor to Ethernet. Bridging is in 
theory independent of whether we use token ring or ethrnet, however in practice 
token ring LANs used source routing bridges instead of spanning tree bridges.

Source routing bridges work as illustrated on the figure:
Bridges and token rings have numbers. Think of a token ring as functionally the same as an 
Ethernet collision domain
Assume A has a packet to send to B (here A and B are MAC addresses, but this works 
equally well with IP addresses). A needs to find a description of a route to B. To this end, A 
floods the network with an “all-route-broadcast” packet. The packet is generated by A and 
sent over ring R1. This packet has a special destination address that means “all-route-
broadcast”.
All bridges listen to all rings that they are attached to (this is their job as forwarding 
devices). When they see a packet with destination address “all-route-broadcast”, they 
forward the packet to all other rings they are attached to, except if the packet has already 
visited this ring (the packet contains in its header the list of rings and bridges that it has 
already visited). 

For example, the packet created by A is seen by B1 [resp. B4] who forwards a copy on R2 
[resp. R4]. B2 and B3 see the packet on R2 and forward it to R5 and R3. Etc.
At some point in time, B4 sees a packet on R4 put by B5, which contains as list of visits: “A-
R1-B1-R2-B3-R5-B5-R4” (packet number 3). This packet contains R1 in its list, therefore B4 
does not forward it.
This generates 5 packets in total (numbered 1 to 5 on the figure), 2 of them reach ring R6. 
When B sees any of them, it sends an acknowledgement to A. This ack is source routed, 
along the reverse route. 
A then receives two acks, each of them contains source route information that can be 
inverted by A. A now has two routes to B and can choose for example the shortest (in 
number of hops).

DSR (Dynamic Source Routing) is  a protocol for routing in ad-hoc networks that 
uses the same mechanism, but with IP addresses instead of MAC addresses.



11

Other Methods

� Distance vectorDistance vectorDistance vectorDistance vector (Bellman-Ford)

routers only know their local state

link metric and neighbor estimates

interior routing protocols (RIP, IGRP)

� Link stateLink stateLink stateLink state

knowledge of the global state

topology database

global optimization (Shortest Path First - Dijkstra)

interior routing protocols (OSPF, PNNI (ATM))

� Path vectorPath vectorPath vectorPath vector

no knowledge of the global state

path: sequence of AS with attributes

global optimization and policy routing

exterior routing protocols (BGP)
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2. Distance Vector

� What it does:

Computes best paths to all destinations

Fully distributed

Using as only information the distances from self to all destinations

� How it works

uses distributed Bellman-Ford – see next slides

Note: individual link cost is setup by network management

We first describe the centralized Bellman-Ford algorithm.
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The Centralized Bellman-Ford Algorithm
� What:What:What:What: Given a directed graph with links costs A(i,j), computes the best 
path from i to j for any couple (i,j). 

We assume A(i, j) > 0 and A(i,j) = ∝ when i and j are not connected.

� HowHowHowHow: Take for example j=1 and let p(i) be the cost of the best path from i to 
1. 

Define pk(i) as the cost of the best path from i to 1 in at most k hops. Let p0(1) = 
0, p0(i) = ∝ for i ≠ 1.  
(Bellman Ford, BF1)

� TheoremTheoremTheoremTheorem
1. If the network is fully connected, the algorithm stops at the latest for 
k=n and then pk(i)=p(i) for all i

2. The shortest path from i ≠ 1 to 1 is defined by pred(i) = Argminj≠i [A(i,j) + 
p(j)]. 

Idea of Proof: pk(i) is the distance from i to 1 in at most k hops.
Comment: recursion is equivalent to : pk(i) = min{ minj≠i, j≠1 [A(i,j) + p

k-1(j)] , A(i,1) } 
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Example

� Apply the theorem: write pk(i), pred(i) and draw the shortest paths 
to node 1.

solution

3

2 1

45

6
1

1

1

1 3
3
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Impact of Initial Conditions

� Example: Q. Q. Q. Q. does the algorithm converge to the shortest path with
initial condition as shown ?

solution

3

2 1

45

6
1

1

1

1 3
3

k\i 1 2 3 4 5
0   0 0 0 0 0
1   
2   
3   
4   

k\i 1 2 3 4 5
0   0 6 1 1 0
1   
2   
3   
4
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Impact of Initial Condition

TheoremTheoremTheoremTheorem

The algorithm converges in  a finite number of steps to the correct 
values for all initial conditions such that p0(1)=0 and for every node i 
that is connected to 1
If there is no path from i to 1, the algorithm lets pk(i) converge to ∞
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Proof Proof Proof Proof 
We do the proof assuming all nodes are connected.

1. Let pk be the vector pk[i], i=2,…. Let B be the mapping that transforms an array  
x[i]i=2…into the array Bx defined for i ≠ 1 by 

Bx[i]=min j ≠ i, j ≠ 1[A(i,j) + x(j)]

Let b be the array defined for i ≠ 1 by 
b[i]= A(i,1)

The algorithm can be rewritten in vector form as
(1) pk = B pk-1 ∧ b
where ∧ is the pointwise minimum

2. Eq (1) is a min-plus linear equation and the operator B satisfies B(x ∧y)= Bx ∧By. 
Thus, Eq(1) can be solved using min-plus algebra into
(2) pk = Bkp0 ∧ Bk-1b ∧… ∧ Bb ∧ b

3. Define the array e for i ≠ 1 by e[i]= ∝. Let p0=e. Eq (2) becomes
(3) pk = Bk-1b ∧… ∧ Bb ∧ b. Now we have the Bellman Ford algorithm with 
classical initial conditions, thus, by Theorem 1: 
(4) for k ≥ n-1: Bk-1b ∧… ∧ Bb ∧ b = q
where q[i] is the distance from i to 1.

4. We can rewrite Eq(2) for k ≥ n-1  as
(5) pk = Bkp0 ∧ q

5. Bkp0[i] can be written as A[i,i1]+ A[i1,i2]+ …+ A[ik-1,ik]+ p[ik] thus 
(6) Bkp0[i] ≥ k a,  where  a is the minimum of all A[i,j]. Thus Bkp0[i] tends to ∝
when k grows. Thus for k large enough, Bkp0 is larger than q and can be ignored 
in Eq(5). In other words, for k large enough :
(6) pk = q               R
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Distributed Bellman Ford

� BF1 can be used in a centralized algorithm to compute p(i) i.e. find the 
spanning tree. However, this is not its main interest, because there is a 
better algorithm (Dijkstra) that can be used in a centralized method

� But: it can be distributed, as follows.

� TheoremTheoremTheoremTheorem: if the time to reliably send a message is bounded by T, the algo
converges to the same result as the centralized version in at most nT time 
units (if the network is fully connected)

Distributed Bellman-Ford Algorithm v1, BFD1
every node, say i,  maintains an estimate q(i) of the distance p(i) to some fixed node 1; 
initial conditions are arbitrary but q(1)=0 at all steps
from time to time, i sends the new value q(i) to all its neighbours
when node i receives a value q(j0) from any neighbour j0, it sets q(j0) to the received 
value and updates q(i) by recomputing

eq (1) q(i) := min j neighbour(A(i,j)+q(j))

if eq (1) causes q(i) to be modified, pred(i) is set to a value of j that achieves the min

Distributed Bellman-Ford Algorithm v1, BFD1
every node, say i,  maintains an estimate q(i) of the distance p(i) to some fixed node 1; 
initial conditions are arbitrary but q(1)=0 at all steps
from time to time, i sends the new value q(i) to all its neighbours
when node i receives a value q(j0) from any neighbour j0, it sets q(j0) to the received 
value and updates q(i) by recomputing

eq (1) q(i) := min j neighbour(A(i,j)+q(j))

if eq (1) causes q(i) to be modified, pred(i) is set to a value of j that achieves the min
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Distributed Bellman-Ford v1

3

2 1

45

6
1

2

1

1 3
3

A possible run of algorithm v1. The
table shows the successive values of q(i)

solution

i   1   2   3   4   5

0    ∝ ∝ ∝ ∝
0    1 ∝ ∝ ∝
0    1    ∝ ∝ 4
0    1    7 ∝ 4
0    1    7    5 4
0    1    7    4 4 
0    1    7    2 4
0    1    7    2    3
0    1    7    2    3
0    1    4 2    3                    

1 -> 2
2 -> 5
2 -> 3
5 -> 4
2 -> 4
1 -> 4
4 -> 5
5 -> 2
5 -> 3

link breaks

Q: give a possible 
scenario after link
4—5 breaks
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Naive Distributed Bellman-Ford

� The previous distributed version requires a node to remember all 
previously received estimates q(j) for all neighbours, even if they are not 
the best ones

� In practice this is a problem if we need to compute the shortest paths to 
not just one destination, but to a large number.

� A naive distributed Bellman-Ford would be as v1 except we replace  eq(1) 
by:

� Q.Q.Q.Q. does this work ? why or why not ?

solution

Distributed Bellman-Ford Algorithm v1a, BFD1a
when node i receives new value q(j) from node j do

eq (1a) q(i) := min { A(i,j) + q(j), q(i) } 

Distributed Bellman-Ford Algorithm v1a, BFD1a
when node i receives new value q(j) from node j do

eq (1a) q(i) := min { A(i,j) + q(j), q(i) } 
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Distributed Bellman-Ford, cont’d

� There is an alternative algorithm, that requires only to remember the best 
neighbour (pred(i))

Distributed Bellman-Ford Algorithm, version 2 BFD2
every node, say i,  maintains an estimate q(i) of the distance p(i) to some fixed 
node 1; initial conditions are arbitrary but q(1)=0 at all steps

from time to time, i sends its value q(i) to all its neighbours

when node i receives a value q(j0) from any neighbour j0, it sets q(j0) to the 
received value and updates q(i) by recomputing

eq (2) if j0 == pred(i) 
then q(i) := A(i,j0)+q(j0)
else q(i) := min { A(i,j0) + q(j0), q(i) }

if eq (2) causes q(i) to be modified, pred(i) is set to j0

Distributed Bellman-Ford Algorithm, version 2 BFD2
every node, say i,  maintains an estimate q(i) of the distance p(i) to some fixed 
node 1; initial conditions are arbitrary but q(1)=0 at all steps

from time to time, i sends its value q(i) to all its neighbours

when node i receives a value q(j0) from any neighbour j0, it sets q(j0) to the 
received value and updates q(i) by recomputing

eq (2) if j0 == pred(i) 
then q(i) := A(i,j0)+q(j0)
else q(i) := min { A(i,j0) + q(j0), q(i) }

if eq (2) causes q(i) to be modified, pred(i) is set to j0
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Distributed Bellman-Ford v2

� Theorem: Theorem: Theorem: Theorem: If the time to reliably send a message to all neighbours and perform local 
computations is bounded by T’, then the algorithm BFD2 converges to the correct 
values in at most m (T+T’) time units, where m is the number of steps of convergence 
of the centralized algorithm with same initial conditions

� Comment: Comment: Comment: Comment: The main difference with version 1 is that eq(2) replaces eq(1). Assume 
we use v2, and we start from a condition such that q(i) is indeed equal to the 
minimum given by eq (1) (which is what, intuitively, is true most of the time).

When j is not equal to pred(i), both eq(1) and eq(2) have the same effect: the new 
value of q(i) is the same in both cases. In contrast, if j == pred(i), then eq (2) sets q(i) 

to the new value A(i,j)+q(j), whereas eq(1) sets it to  minj neighbour (A(i,j)+q(j)). Eq(2) 
provides an upper bound on eq(1), in this case. It turns out that the algorithm still 
works, by the same mechanism that makes the algorithm work even when the initial 
conditions are arbitrary. Indeed, node i will send its new value to all remaining 
neighbours, who will in turn do an update and eventually, node i will receive values 
of q(j) that will correct the problem. In other words, if the new value of q(i) is too high 
(compared to what would be obtained with eq (1)), this is repaired in one round of 
exchanges with the neighbours.
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Distributed Bellman-Ford v2

3

2 1

45

6
1

2

1

1 3
3

A possible run of algorithm v1:

i   1   2   3   4   5

0    ∝ ∝ ∝ ∝
0    1 ∝ ∝ ∝
0    1    ∝ ∝ 4
0    1    7 ∝ 4
0    1    7    5 4
0    1    7    4 4 
0    1    7    2 4
0    1    7    2    3
0    1    7    2    3
0    1    4 2    3                    

1 -> 2
2 -> 5
2 -> 3
5 -> 4
2 -> 4
1 -> 4
4 -> 5
5 -> 2
5 -> 3

link breaks

solution

Q: give a possible 
scenario after link
4—5 breaks
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How it is used in practice
� Node i computes shortest path and next hop for all network prefixes n that 
it heard of.

� Initially: D(i,n) = 0 if i directly connected to n and D(i,n) = +∞ for any n that 
was never heard of.

� Node i receives from neighbour k latest values of D(k,n) for all n (this is the 
distance vector). Node i computes the best estimates according to 
algorithm BFD2

� This converges if network is stable
hello mechanism to reset computation after changes
if neighbour k is no longer present, node i will no longer receive hello messages, 
and after a timeout, this has the same effect as if node iwould receive the 
message from k:  D(k,n)=∞ for all n. Then algorithm BFD2 is run

c(i,m)

c(i,1) D(1,n)

c(i,k) D(k,n)

D(m,n)

i n

1

k

m
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Example 1

n1A B

n3
D C

n2n4

net dist nxt

n1   0   n1,A
n4   0   n4,A

net dist nxt

n1   0   n1,B
n2   0   n2,B

net dist nxt

n3   0   n3,D
n4   0   n4,D
m3   0   m3,D

net dist nxt

n2   0   n2,C
n3   0   n3,C
m1   0   m1,C
m2   0   m2,C

A B

CD
m1

m2

m3

26

Example 1

n1A B

n3
D C

n2n4

net dist nxt

n1   0   n1,A
n4   0   n4,A

net dist nxt

n1   0   n1,B
n2   0   n2,B
n4   1   n1,A

net dist nxt

n3   0   n3,D
n4   0   n4,D
m3   0   m3,D

net dist nxt

n2   0   n2,C
n3   0   n3,C
m1   0   m1,C
m2   0   m2,C
n4   1   n3,D
m3   1   n3,D

from A
n1   0   
n4   0   

A B

CD
m1

m2

m3

from D
n3   0   
n4   0
m3   0   
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Example 1

n1A B

n3
D C

n2n4

net dist nxt

n1   0   n1,A
n4   0   n4,A

net dist nxt

n3   0   n3,D
n4   0   n4,D
m3   0   m3,D

net dist nxt

n2   0   n2,C
n3   0   n3,C
m1   0   m1,C
m2   0   m2,C
n4   1   n3,D
m3   1   n3,D

A

CD
m1

m2

m3

from C
n2   0   
n3   0
m1   0
m2   0   
n4   1
m3   1   

net dist nxt

n1   0   n1,B
n2   0   n2,B
n3   1   n2,C
n4   1   n1,A
m1   1   n2,C
m2   1   n2,C
m3   2   n2,C

B
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Example 1 - Final   

n1A B

n3
D C

n2n4

net dist nxt

n1   0   n1,A
n2   1   n1,B
n3   1   n4,D
n4   0   n4,A
m1   2   n4,D
m2   2   n4,D
m3   1   n4,D

net dist nxt

n1   1   n4,A
n2   1   n3,C
n3   0   n3,D
n4   0   n4,D
m1   1   n3,C
m2   1   n3,C
m3   0   m3,D

A

C

D

m1

m2

m3

net dist nxt

n1   1   n2,B
n2   0   n2,C
n3   0   n3,C
m1   0   m1,C
m2   0   m2,C
n4   1   n3,D
m3   1   n3,D

net dist nxt

n1   0   n1,B
n2   0   n2,B
n3   1   n2,C
n4   1   n1,A
m1   1   n2,C
m2   1   n2,C
m3   2   n2,C

B
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Example 1 - Failure 

n1A B

n3
D C

n2n4

m1

m2

m3

net dist nxt

n1   1   A
n2   1   C
n3   0   D
n4   0   D
m1   1   C
m2   1   C
m3   0   D

D

C

net dist nxt

n1   1   B
n2   0   C
n3   0   C
m1   0   C
m2   0   C
n4   1   D
m3   1   D

net dist nxt

n1   0   B
n2   0   B
n3   1   C
n4   1   A
m1   1   C
m2   1   C
m3   2   C

B

We show only the router in the next hop field
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Example 1 - Failure 

n1A B

n3
D C

n2n4

m1

m2

m3

timeout 

net dist nxt

n1   0   B
n2   0   B
n3   1   C
n4   1   A
m1   1   C
m2   1   C
m3   2   C

B

C

net dist nxt

n1   1   B
n2   0   C
n3   0   C
m1   0   C
m2   0   C
n4   1   D
m3   1   D

net dist nxt

n1   1   A
n2   1   C
n3   0   D
n4   0   D
m1   1   C
m2   1   C
m3   0   D

D

timeout 
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Example 1 - Failure 

n1A B

n3
D C

n2n4

m1

m2

m3

net dist nxt

n1   0   B
n2   0   B
n3   1   C

m1   1   C
m2   1   C
m3   2   C

B

C

net dist nxt

n1   1   B
n2   0   C
n3   0   C
m1   0   C
m2   0   C
n4   1   D
m3   1   D

net dist nxt

n1   2   C
n2   1   C
n3   0   D
n4   0   D
m1   1   C
m2   1   C
m3   0   D

D

From C:
n1   1   B
n2   0   C
n3   0   C
m1   0   C
m2   0   C
n4   1   D
m3   1   D
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Example 1 - After Failure 

n1A B

n3
D C

n2n4

m1

m2

m3

net dist nxt

n1   0   B
n2   0   B
n3   1   C
n4   2   C
m1   1   C
m2   1   C
m3   2   C

B

C

net dist nxt

n1   1   B
n2   0   C
n3   0   C
m1   0   C
m2   0   C
n4   1   D
m3   1   D

net dist nxt

n1   2   C
n2   1   C
n3   0   D
n4   0   D
m1   1   C
m2   1   C
m3   0   D

D
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Example 1: conclusions

� Example 1 illustrates

how Bellman Ford is mapped to the network concepts

how topology changes are taken into account

most recent announcement replaces previous ones

non refreshed announcements become obsolete

how distance vector carries reachability information
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Example 2

dest link cost

A   local   0
B    l1     1
D    l3     1
C    l1     2
E    l1     2

A

l1A B 

l6
D E 

l4l3 C 
l5

l2

dest link cost

B   local   0
A    l1     1
C    l2     1
E    l4     1
D    l1     2

B

dest link cost

C   local   0
A    l2     2
B    l2     1
D    l2     3
E    l2     2

C

dest link cost

D   local   0
A    l3     1
B    l3     2
C    l3     3
E    l6     1

D

dest link cost

E   local   0
A    l4     2
B    l4     1
D    l6     1
C    l4     2

E

To simplify, we identify destination with router
Assume algorithm has converged

cost =1

cost =1

cost =1

cost =1

cost =5
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Example 2

l1A B 

l6
D E 

l4l3 C 
l5

� we now show only table entries: to C

� link 2 fails

� B updates its table

C    l1     2 C    l2    ∞∞∞∞

C    l3     3 C    l4     2

C    local    0
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Example 2: Link failure
� Just before B updates its table, A broadcasts its table with cost 2 to C

� B updates

l1A B 

l6
D E 

l4l3 C 
l5

C    l1     2 C    l1     3

C    l3     3 C    l4     2

from A: C l1 2

C    local    0
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Example 2: Link failure
B sends update to A and E

A and E update

l1A B 

l6
D E 

l4l3 C 
l5

C    l1     4 C    l1     3

C    l3     3 C    l4    4

from B: C l1 3

from B: C l1 3

C    local    0
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Example 2: Link failure
C sends update

it is ignored by E because it it less good

l1A B 

l6
D E 

l4l3 C 
l5

C    l1     4 C    l1     3

C    l3     3 C    l4    4

C    local    0

from C: C local 0
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Example 2: Link failure
A broadcasts its table with cost 4 to C

B updates … we have a loop between A and C

cost is increase by 2 at every iteration

l1A B 

l6
D E 

l4l3 C 
l5

C    l1     4 C    l1     5

C    l3     3 C    l4     4

from A: C l1 4

C    local    0
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Example 2: Link failure

l1A B 

l6
D E 

l4l3 C 
l5

C    l1     6 C    l1     7

C    l3     7 C    l5     5

from C: C local 0

E now accepts announcement from C 

C    local    0
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Example 2: Link failure

l1A B 

l6
D E 

l4l3 C 
l5

C    l1     7 C    l4     6

C    l6     6 C    l5     5

E sends announcements to D and B

B and D send announcements to A

the algorithm has converged – stable state

from E: C l5 5

from B: C l4 6
from E: C l5 5

C    local    0
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Conclusions from Example 2

� the algorithm converges after modification of the topology, but the 
convergence may be very slow

bounce effect

� Q: during convergence time, how are routing tables ?
solution
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Example 3

dest link cost

A   local   0
B    l3     3
D    l3     1
C    l3     3
E    l3     2

A

A B 

D E 

l4l3 C 
l5

l2

dest link cost

B   local   0
A    l4     3
C    l2     1
E    l4     1
D    l4     2

B

dest link cost

C   local   0
A    l5     3
B    l2     1
D    l5     2
E    l5     1

C

dest link cost

D   local   0
A    l3     1
B    l3     ∞∞∞∞
C    l6     ∞∞∞∞
E    l6     ∞∞∞∞

D

dest link cost

E   local   0
A    l6     2
B    l4     1
D    l6     1
C    l5     1

E

Assume now all link costs are equal to 1
Links l1 and l6 fail
D detects failure and sets costs to ∞
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Example 3

dest link cost

A   local   0
B    l3     3
D    l3     1
C    l3     3
E    l3     2

A

A 

D 

l3

dest link cost

D   local   0
A    l3     1
B    l3     4
C    l3     4
E    l3     3

D

from A:
dest cost
A    0
B,C  3
D    1
E    2

dest link cost

A   local   0
B    l3     5
D    l3     1
C    l3     5
E    l3     4

A

A 

D 

l3

dest link cost

D   local   0
A    l3     1
B    l3     4
C    l3     4
E    l3     3

D

from B:
dest cost
A    1
B,C  4
D    0
E    3

dest link cost

A   local   0
B    l3     3
D    l3     1
C    l3     3
E    l3     2

A

A 

D 

l3

dest link cost

D   local   0
A    l3     1
B    l3     6
C    l3     6
E    l3     5

D

from A:
dest cost
A    0
B,C  5
D    1
E    3



45

Conclusion from Example 3

� The costs to C, B, E grow unbounded “Count to Infinity”

the true costs are infinite

� Convergence to a stable state if we set

∞∞∞∞ = large number

e.g. RIP: ∞∞∞∞ = 16

� “Split Horizon”

a heuristic to prevent this

if A routes packets to X via B, it does not announce this route to B
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Example 3: with Split Horizon

dest link cost

A   local   0
B    l3     3
D    l3     1
C    l3     3
E    l3     2

A

A B 

D E 

l4l3 C 
l5

l2

dest link cost

B   local   0
A    l4     3
C    l2     1
E    l4     1
D    l4     2

B

dest link cost

C   local   0
A    l5     3
B    l2     1
D    l5     2
E    l5     1

C

dest link cost

D   local   0
A    l3     1
B    l3     ∞∞∞∞
C    l6     ∞∞∞∞
E    l6     ∞∞∞∞

D

dest link cost

E   local   0
A    l6     2
B    l4     1
D    l6     1
C    l5     1

E
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Example 3: with Split Horizon

dest link cost

A   local   0
B    l3     3
D    l3     1
C    l3     3
E    l3     2

A

A 

D 

l3

dest link cost

D   local   0
A    l3     1
B    l3     ∞∞∞∞
C    l6     ∞∞∞∞
E    l6     ∞∞∞∞

D

from A:
dest cost
A    0
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Split horizon

dest link cost

A   local   0
B    l3 ∞∞∞∞
D    l3     1
C    l3     ∞∞∞∞
E    l3     ∞∞∞∞

A

A 

D 

l3

dest link cost

D   local   0
A    l3     1
B    l3     ∞∞∞∞
C    l6     ∞∞∞∞
E    l6     ∞∞∞∞

D

from D:
dest cost
D   0
B,C,E  ∞∞∞∞

� Split horizon cuts the process of 
counting to infinity  
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Split horizon may fail

B 

E 

l4 C 
l5

l2

dest link cost

B   local   0
A    l4 ∞∞∞∞
C    l2     1
E    l4     1
D    l4     ∞∞∞∞

B

dest link cost

C   local   0
A    l5     3
B    l2     1
D    l5     2
E    l5     1

C

dest link cost

E   local   0
A    l6 ∞∞∞∞
B    l4     1
D    l6     ∞∞∞∞
C    l5     1

E

from E:
dest cost
A ∞∞∞∞
B    1
C    1
D    ∞∞∞∞
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Split horizon may fail

B 

E 

l4 C 
l5

l2

dest link cost

B   local   0
A    l2 4
C    l2     1
E    l4     1
D    l2     3

B

dest link cost

C   local   0
A    l5     3
B    l2     1
D    l5     2
E    l5     1

C

dest link cost

E   local   0
A    l6 ∞∞∞∞
B    l4     1
D    l6     ∞∞∞∞
C    l5     1

E

from C:
dest cost
A    3
D    2
E    1

from C:
dest cost
B    1
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Split horizon may fail

B 

E 

l4 C 
l5

l2

dest link cost

B   local   0
A    l2 4
C    l2     1
E    l4     1
D    l2     3

B

dest link cost

C   local   0
A    l5     3
B    l2     1
D    l5     2
E    l5     1

C

dest link cost

E   local   0
A    l4 5
B    l4     1
D    l4     4
C    l5     1

E

from B:
dest cost
A 4
B    0
C    1
D    3
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Conclusion: Distance Vector

� convergence to stable state may be slow after changes

� count to infinity must be prevented by setting a maximum distance
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3. Distance Vector Protocols
RIP

� Distance vector protocol

� Metric - hops

� Network span limited to 15

∞∞∞∞ = 16

� Split horizon

� Destination network identified by IP address

Netmasks in RIPv2

� Encapsulated as UDP packets, port 520

� Largely implemented (routed on Unix) 

� Broadcast every 30 seconds or when update detected

� Route not announced during 3 minutes

cost becomes ∞∞∞∞

� Authentication in RIPv2 by MD5 (shared secret)

54

IGRP (Interior Gateway Routing
Protocol)

� Proprietary protocol by CISCO

� Metric that estimates the global delay

� Maintains several routes of similar cost

load sharing

� Takes into account netmasks

� No limit of 15

number of routers included in messages

� Broadcast every 90 sec



55

Metric example

� Metric

Trans = 10000000/Bandwidth (time to send 10 Kb)

delay = (sum of Delay)/10

m = [K1*Trans  + (K2*Trans )/(256-load) + K3*delay] 

default: K1=1, K2=0, K3=1, K4=0, K5=0

if K5 ≠ 0, m = m * [K5/(Reliability + K4)]
� Bandwidth in Kb/s, Delay in µs

At Venus: Route for 172.17/16: Metric = 10000000/784 + 
(20000+1000)/10 = 14855  

At Saturn: Route for 12./8: Metric = 10000000/224 + (20000 + 
1000)/10 = 46742  
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3. Load Dependent Routing

� We come back in this section to whatwhatwhatwhat routing protocols do.

� Instead of maximizing a “path quality” metric (nb hops, delay) 
assume we want to maximize the total network utilitytotal network utilitytotal network utilitytotal network utility

for example: total transported flows

see congestion control chapter for other definitions

� how should routing be done ? 

� Q1: show an example where shortest path routing does not provide
the optimal total flow (where path cost is static)

solution

� One solution might be to take delay as the path cost

high load on a link => high cost => link is less used

however, this does not solve the problem: there is the Braess paradox
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Braess Paradox (1)
� Assume all flows pick the route with shortest delay
� Assume parallel paths exist and flows can make use of them
� Delay is function of load as given below; link 5 is (temporarily) closed
� Total offered load is b0 = 6 Gb/s
� For example, 

if we split traffic into : route 1-3: b = 1, route 2-4 b = 5
the delay along route 1-3 is 61, along route 2-4 is 105  
thus the link costs will change and routing decisions will change also

� Eventually, there will be an equilibrium (called “Wardrop Equilibrium”)
delay is equal on all competing routes

� Q: compute the equilibrium traffic flow on every link
Solution
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Braess Paradox (2)

� Q: same question when we open link 5 with delay function:

Solution
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Braess Paradox

� With shortest delay routing, adding a new link may decrease overall 
throughput

Thus shortest delay routing is not either a global optimum
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Optimal Routing

� One can change the objective of routing: instead of computing 
shortest paths,one could solve a global optimization problem:

minimize total delay subject to flow constraints

this is a well posed optimization problem

the optimal solution depends on all flows 

but it can be implemented in a distributed algorithm similar to TCP 
congestion control ; see [BertsekasGallager92]

� Q. Q. Q. Q. Can you imagine a way to use classical routing (like distance 
vector, which finds shortest paths) and still find the optimum 
network utility ?

solution
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Conclusion

� Distance vector is smart
Fully distributed, little information stored

� Largely deployed (Unix BSD routed)

� Simplicity

� But: slow convergence
Not suited for large and complex networks

Link State protocols should be used instead
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Review Questions
Explain the following terms:

distance vector

bounce effect

count to infinity

split horizon

Bellman Ford

RIP, IGMP

source routing

� Explain why shortest path routing is not necessarily a globally 
optimum

� What is the Braess paradox ?
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Solutions
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1. Introduction
Why were routing protocols invented

� Connectionless Network Layer assumes routing tables are 
maintained at hosts and routers

used by Packet ForwardingPacket ForwardingPacket ForwardingPacket Forwarding

� Routing = control method 

maintain routing tables automatically 

in routers

� At host

normally done by default rules

plus ICMP redirect

in old times: was done also by a routing protocol  (RIP)

� Compare to: LANs connected by bridges operate at layer 2 like 
connectionless packet forwarders

Q. Q. Q. Q. How do they maintain routing information ?
A.A.A.A. By learning from the packets they observe; broadcast is used to
bootstrap

back
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Source Routing

A B 2222.2.4

IS

B
IS

IS

IS

A

SA DA  RI     data

1

2

3

1 2

1 3

1

3

4
3

2
2
4

A B 2.2222.4

A B 2.2.4444

Q.Q.Q.Q. What are the routes that can be used from A to B ?
A. A. A. A. A 2 2 4A 2 2 4A 2 2 4A 2 2 4

A 2 3 4A 2 3 4A 2 3 4A 2 3 4
A 2 4 3 4A 2 4 3 4A 2 4 3 4A 2 4 3 4
A 3 3 4A 3 3 4A 3 3 4A 3 3 4
A 3 2 2 4A 3 2 2 4A 3 2 2 4A 3 2 2 4
A 3 2 3 4A 3 2 3 4A 3 2 3 4A 3 2 3 4

backbackbackback
A route is described by a sequence of port numbers
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Example

� Apply the theorem: write pk(i,1), pred(i) and draw the shortest paths 
to node 1.

back

3

2 1

45

6
1

1

1

1 3
3 i  1   2   3   4   5     

pred(i)  1   1   5   1   4

k\i 1 2 3 4 5
0   0 ∝ ∝ ∝ ∝
1   0 1 ∝ 1 ∝
2   0 1 7 1 2
3   0 1 3 1 2
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Impact of Initial Conditions

� Example: Q.Q.Q.Q. does the algorithm converge 
to the shortest path with initial condition 
as shown ? A.A.A.A. yes

� back

3

2 1

45

6
1

1

1

1 3
3

k\i 1 2 3 4 5
0   0 0 0 0 0
1   0 1 1 1 1
2   0 1 2 1 2
3   0 1 3 1 3
4   0 1 3 1 2

k\i 1 2 3 4 5
0   0 6 1 1 0
1   0 1 1 1 2
2   0 1 2 1 2
3   0 1 3 1 2
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Distributed Bellman-Ford v1

3

2 1

45

6
1

2

1

1 3
3

A possible run of algorithm v1:

i   1   2   3   4   5

0    ∝ ∝ ∝ ∝
0    1 ∝ ∝ ∝
0    1    ∝ ∝ 4
0    1    7 ∝ 4
0    1    7    5 4
0    1    7    4 4 
0    1    7    2 4
0    1    7    2    3
0    1    7    2    3
0    1    4 2    3                    

4 does as if received ∝ from 5
5 does as if received ∝ from 4
and continue computations from 
there
0    1    4    2    4
0    1    5 2    4

1 -> 2
2 -> 5
2 -> 3
5 -> 4
2 -> 4
1 -> 4
4 -> 5
5 -> 2
5 -> 3

link breaks

5 -> 3back

Q: give a possible 
scenario after link
4—5 breaks
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Naive Distributed Bellman-Ford
� The previous distributed version requires a node to remember all 
previously received estimates q(j) for all neighbours, even if they are not 
the best ones

� In practice this is a problem if we need to compute the shortest paths to 
not just one destination, but to a large number.

� A naive distributed Bellman-Ford would be as v1 except we replace  eq(1) 
by:

� Q.Q.Q.Q. does this work ? why or why not ?
A.A.A.A. no. q(i) can only decrease. So if we start from initial conditions as in 
example « Impact of Initial Conditions », the algorithm will not converge to 
the right value. It gets « stuck » with a low value. It is possible to show that
it works if all initial conditions are above the final values, for example
q(j)=∞ initially. But even then, it will not work if there is a topology change, 

since this is equivalent to starting from different initial conditions

� back

Distributed Bellman-Ford Algorithm v1a, BFD1a
when node i receives new value q(j) from node j do

eq (1a) q(i) := min { A(i,j) + q(j), q(i) } 

Distributed Bellman-Ford Algorithm v1a, BFD1a
when node i receives new value q(j) from node j do

eq (1a) q(i) := min { A(i,j) + q(j), q(i) } 
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Distributed Bellman-Ford v2

3

2 1

45

6
1

2

1

1 3
3

A possible run of algorithm v1:

i   1   2   3   4   5

0    ∝ ∝ ∝ ∝
0    1 ∝ ∝ ∝
0    1    ∝ ∝ 4
0    1    7 ∝ 4
0    1    7    5 4
0    1    7    4 4 
0    1    7    2 4
0    1    7    2    3
0    1    7    2    3
0    1    4 2    3                    

4 does as if received ∝ from 5
5 ≠ pred(4)
0    1    4    2    3

5 does as if received ∝ from 4
4 == pred(5)

0    1    4    2 ∝
0    1    ∝ 2    ∝
0    1    7 2    ∝
0    1    7    2    4
0    1    5    2    4

1 -> 2
2 -> 5
2 -> 3
5 -> 4
2 -> 4
1 -> 4
4 -> 5
5 -> 2
5 -> 3

link breaks

5 -> 3
2 -> 3
2 -> 5
5 -> 3back

Q: give a possible 
scenario after link
4—5 breaks
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Conclusions from Example 2

� Q: during convergence time, how are routing tables ?
A:

they are incorrect 

there are loops – packets are discarded (TTL expires)

back
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3. Load Dependent Routing

Q.Q.Q.Q. show an example where shortest path routing does not provide the optimal 
total flow (where path cost is static)

A.A.A.A. assume all data flow goes from B  to E: Static shortest path routing will pick 
the direct link BE only instead of distributing the load also on some of the 
longer links (BADE and BCE)

back

l1A B 

l6
D E 

l4l3 C 
l5

l2

E

cost =1

cost =1

cost =1

cost =1

cost =5
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Braess Paradox (1)
�A. there are two paths 
1: links 1, 3;  2: links 2,4
let bi be the traffic on path I

Delay equations:

50+ 11b1 = 50 + 11b2

Total flow

b1 + b2 = b0

equilibrium is for b1 = b2 = 3
delay is 83

back
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Braess Paradox (2)

� Q: same question when we open link 5 with delay function:

� A: there are three paths 
1: links 1, 3;  
2: links 2,4; 
3: links 1, 5, 4

delay equations
50 + 11b1 + 10b3 = 50 + 11b2 + 10b3 = 10 + 10b1 + 10 b2 + 21 b3

total flow

b1 + b2 + b3 = b0

We find b1= b2 = b3 = 2 Gb/s

The total delay on all paths is the same, equal to 92 : larger than before!

back
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Optimal Routing

� One can change the objective of routing: instead of computing 
shortest paths,one could solve a global optimization problem:

minimize total delay subject to flow constraints

this is a well posed optimization problem

the optimal solution depends on all flows 

but it can be implemented in a distributed algorithm similar to TCP 
congestion control ; see [BertsekasGallager92]

� Q. Q. Q. Q. Can you imagine a way to use classical routing (like distance 
vector, which finds shortest paths) and still find the optimum 
network utility ?
A. A. A. A. 

Let a centralized network management procedure update the link costs 
(used by distance vector routing).

given link costs ci and traffic matrix compute total throughput or 
average delay ( a hard optimization problem, solved with heuristics)

every few minutes, update the link costs in all routers – let the routing 
algorithm compute new paths

back


