Convex clustering (work in progress)

B. Gaujal, G. Huard, J. Pecero, E. Thierry and D. Trystram
Laboratoire ID-IMAG
Denis.Trystram@imag.fr
Guillaume.Huard@imag.fr
Context and Motivation

- High-performance computing on distributed memory architectures (PC clusters and grid infrastructures).
 - High latency of interconnection network.

- The objective is to schedule a parallel application:
 - Determining where and when to execute the tasks
 - Minimize the makespan (denoted by ω)

- Focus: taking into account large communication costs into the scheduling decision is a key point to reach high performance.
Classical application model: precedence task graph

- Vertices: computation tasks
- Edges: data dependencies between tasks.
The delay model

[Rayward-Smith 86, Papadimitriou and Yannakakis 90]

- Unit execution time for tasks
- Communications at a fixed cost c
- Simple model:
 - no overhead
 - no contention
 - total overlap
Recall of the basic scheduling problem

Instance: Precedence task graph and a delay C
Problem: Choose for each task a location and a date
Objective: minimize the makespan

NP-hard problem even for simple cases.
No constant guaranty for large communication delays!
Recall of the basic scheduling problem

Large number of heuristics, three main families:

– Extention of list algorithms:
 ETF (Earliest task first) [Hwang and al. 89]
– Locations assignment based on critical path:
 DSC (Dominant sequence clustering)
 [Gerasoulis and Yang 94]
– Graph decomposition:
 CLANS [McCreary and al. 89]
Convex clustering

- Idea:
 assign tasks to locations in convex groups
- Convexity:
 A cluster A is convex iff $\forall x, z \in A, x \rightarrow y \land y \rightarrow z \Rightarrow y \in A$
Characteristics

• Advantages:
 – Schedules based on convex clusters are 2-dominant [Trystram and Lepere 2000]
 – The resulting graph is acyclic and:
 • clustering makes the grain coarser
 • classical guaranteed algorithms can be used thereafter

• Related approach:
 – CLANS [McCreary and al. 89] are special case of convex clusters
Recursive approach of the problem

- Find in graph $G=(V,E)$ two independent sets of tasks A_1 and A_2.
- Split recursively A_1, A_2, $A^>$ and $A^<$ if such a splitting allows to decrease the longest path in regard to a sequential execution.
Illustration

Graph with 16 tasks and communication delay $C = 2$.
By construction, $\omega_R \leq |A^\prec| + 2.C + \max(|A_1|,|A_2|) + |A^\succ|$
Thus, $\omega_R \leq |V| + 2C - \min(|A_1|,|A_2|) \leq 14$
Second level of splitting
« partitioning » DAG problem

• **Instance:**
 oriented acyclic graph $G(V,E)$

• **Solution:**
 two disjoint groups of independent tasks : A_1 et A_2
such that for all task x in A_1 and y in A_2, there is no path between x and y (and vice versa)

• **Objective:**
 Maximize the size of the smallest group
 $\text{Max } (\min(|A_1|, |A_2|))$
« partitioning » DAG is NP-Complete

- Proof:
 From [Garey and Johnson 79]
 [GT24] BALANCED COMPLETE BIPARTITE SUBGRAPH
 INSTANCE: Bipartite graph $G=(V,E)$, positive integer $K \leq |V|$
 QUESTION: Are there two disjoint subsets $V_1, V_2 \subseteq V$ such that
 $|V_1| = |V_2| = K$ and such that $u \in V_1, v \in V_2$ implies that
 $\{u, v\} \in E$?
« partitioning » DAG is NP-Complete

Start from a bipartite graph
« partitioning » DAG is NP-Complete

Revert all its edges
« partitioning » DAG is NP-Complete

Add a direction to them
« partitioning » DAG is NP-Complete

Add proper strings of N nodes
« partitioning » DAG is NP-Complete

Find a convex decomposition with both A_1 and A_2 of size $N+K$: this has to include nodes of the strings
« partitioning » DAG is NP-Complete

Find a convex decomposition with both A_1 and A_2 of size $N+K$
« partitioning » DAG is NP-Complete

This gives us our complete balanced bipartite graph
\[\text{max } z \]
\[\text{such that} \]
\[z \leq \sum_{u \in V} A_1(u) \]
\[z \leq \sum_{u \in V} A_2(u) \]
\[\forall u \in V, A^\lt(u) + A_1(u) + A_2(u) + A^\gt(u) = 1 \]
\[\forall e = (u, v) \in E, \ A_1(u) + A^\lt(v) < 2 \]
\[A_2(u) + A^\lt(v) < 2 \]
\[A^\gt(u) + A^\lt(v) < 2 \]
\[A_1(u) + A_2(v) < 2 \]
\[A_2(u) + A_1(v) < 2 \]
\[A^\gt(u) + A_1(v) < 2 \]
\[A^\gt(u) + A_2(v) < 2 \]
Algorithm for the partitioning tree problem

- By dynamic programming: compute each possible (left,right) couple of possible independant sets sizes
 - Start from leaves, label them with (1,0)
 - Compute on each node all the possible couples of size repartition
 - use a decreasing order for sizes
 - keep only the dominant couples (greater in all coordinates)
 - at most $O(n^2)$ couples to store on each node
 - proceed child by child (updating the set)
 - three cases to consider for a pair of couples (a,b) and (c,d)
 - $(a+b+c+d+1, 0)$ (fuse)
 - $(a+c, b+d)$ (combine)
 - $(a+d, b+c)$ (cross)
 ... in the proper order
Exemple of partitioning a tree
Example of partitioning a tree
Example of partitioning a tree
Algorithm for the partitioning DAG problem

Repeat (K times)
 Choose a task x
 Determine y an independent task from x
 Compute both sets $S_x = \text{succ}(x)$ and $S_y = \text{succ}(y)$
 return $A_1 = (S_x \setminus S_y)$ and $A_2 = (S_y \setminus S_x)$

Algorithm from [Trystram and Lepere 2000]
Heuristic for the partitioning DAG problem

Repeat (K times)

Choose a task x

Determine y an independent task from x

Compute both sets $S_x = \text{succ}(x)$ and $S_y = \text{succ}(y)$

return $A_1 = (S_x \setminus S_y)$ and $A_2 = (S_y \setminus S_x)$
Heuristic for the partitioning DAG problem

Repeat (K times)

Choose a task x

Determine y an independent task from x

Compute both sets $S_x = \text{succ}(x)$ and $S_y = \text{succ}(y)$

return $A_1 = (S_x \setminus S_y)$ and $A_2 = (S_y \setminus S_x)$
Heuristic for the partitioning DAG problem

Repeat (K times)

Choose a task x

Determine y an independent task from x

Compute both sets $S_x = \text{succ}(x)$ and $S_y = \text{succ}(y)$

return $A_1 = (S_x \setminus S_y)$ and $A_2 = (S_y \setminus S_x)$
Heuristics for the partitioning DAG problem

Repeat (K times)

Choose a task \(x \)

Determine \(y \) an independent task from \(x \)

Compute both sets \(S_x = \text{succ}(x) \) and \(S_y = \text{succ}(y) \)

return \(A_1 = (S_x \setminus S_y) \) and \(A_2 = (S_y \setminus S_x) \)

\[
S_x \setminus S_y
\]

\[
S_y \cap S_x
\]

Cost of an itération \(O(e) \)
Conclusions

• A new approach for clustering:
 – resulting graph is acyclic
 – 2-dominant class of clustering approach

• Some possible recursive decomposition explored:
 – 4 sets division with maximal parallelism is strongly NP-Complete
 – polynomial for trees
 – previous heuristic still valid
Perspectives

- Find a better criterion for recursive decomposition
- Improve the randomized approach with genetic algorithms along with more complex criteria (J. Pecero)
- Combine non unit execution times for tasks with the transition to a coarser grain
- Find a guaranteed algorithm independant from c