Convex clustering (work in progress)

B. Gaujal, G. Huard, J. Pecero, E. Thierry and D. Trystram Laboratoire ID-IMAG Denis.Trystram@imag.fr Guillaume.Huard@imag.fr

de Grennide

APT NEUT NET/OASIE SE RECREMCINE EN MINING AND DE ET N HALFMAN CONTRACTOR

Context and Motivation

• High-performance computing on distributed memory architectures (PC clusters and grid infrastructures).

– High latency of interconnection network.

- The objective is to schedule a parallel application:
 - Determining where and when to execute the tasks
 - Minimize the makespan (denoted by ω)
- Focus: taking into account large communication costs into the scheduling decision is a key point to reach high performance.

Classical application model: precedence task graph

- Vertices: computation tasks
- Edges: data dependencies between tasks.

The delay model

[Rayward-Smith 86, Papadimitriou and Yannakakis 90]

- Unit execution time for tasks
- Communications at a fixed cost *c*

P2 T₂

Recall of the basic scheduling problem

Instance:Precedence task graph and a delay CProblem:Choose for each task a location and a dateObjective:minimize the makespan

NP-hard problem even for simple cases. No constant guaranty for large communication delays!

Recall of the basic scheduling problem

Large number of heuristics, three main families:

- Extention of list algorithms: ETF (Earliest task first) [Hwang and al.89]
 Locations assignment based on critical path: DSC (Dominant sequence clustering) [Gerasoulis and Yang 94]
 Graph decomposition:
 - CLANS [McCreary and al. 89]

Convex clustering

• Idea:

assign tasks to locations in convex groups

• Convexity:

A cluster *A* is convex iff $\forall x, z \in A, x \to y \land y \to z \Rightarrow y \in A$

Characteristics

- Advantages:
 - Schedules based on convex clusters are 2-dominant
 - [Trystram and Lepere 2000]
 - The resulting graph is acyclic and:
 - clustering makes the grain coarser
 - classical guaranteed algorithms can be used thereafter
- Related approach:
 - CLANS [McCreary and al. 89] are special case of convex clusters

Recursive approach of the problem

• Find in graph G=(V,E) two independent sets of tasks A_1 and A_2 .

 Split recursively A₁, A₂, A[>] and A[<] if such a splitting allows to decrease the longest path in regard to a sequential execution.

Illustration

Graph with 16 tasks and communication delay C = 2.

By construction, $\omega_{R} \leq |A^{<}| + 2.C + \max(|A_{1}|, |A_{2}|) + |A^{>}|$

as $\min(|A_1|, |A_2|) + \max(|A_1|, |A_2|) = |A_1| + |A_2|$ Thus, $\omega_R \le |V| + 2C - \min(|A_1|, |A_2|) \le 14$

Second level of splitting

« partitioning » DAG problem

• Instance:

oriented acyclic graph G(V,E)

• Solution:

two disjoint groups of independent tasks : A_1 et A_2 such that for all task x in A_1 and y in A_2 , there is no path between x and y (and vice versa)

• Objective:

Maximize the size of the smallest group Max (min($|A_1|$, $|A_2|$))

• Proof:

From [Garey and Johnson 79]

[GT24] BALANCED COMPLETE BIPARTITE SUBGRAPH INSTANCE: Bipartite graph G=(V,E), positive integer $K \leq |V|$ QUESTION: Are there two disjoint subsets $V_1, V_2 \subseteq V$ such that $|V_1|=|V_2|=K$ and such that $u \in V_1, v \in V_2$ implies that $\{u, v\} \in E$?

Start from a bipartite graph

Revert all its edges

Add a direction to them

Add proper strings of *N* nodes

Find a convex decomposition with both A_1 and A_2 of size N+K: this has to include nodes of the strings

Find a convex decomposition with both A_1 and A_2 of size N+K

This gives us our complete balanced bipartite graph

Linear program

max z such that $z \leq \sum A_1(u)$ $u \in V$ $z \leq \sum A_2(u)$ $u \in V$ $\forall u \in V, A^{<}(u) + A_{1}(u) + A_{2}(u) + A^{>}(u) = 1$ $\forall e = (u, v) \in E, A_1(u) + A^{<}(v) < 2$ $A_{2}(u) + A^{<}(v) < 2$ $A^{>}(u) + A^{<}(v) < 2$ $A_1(u) + A_2(v) < 2$ $A_{2}(u) + A_{1}(v) < 2$ $A^{>}(u) + A_{1}(v) < 2$ $A^{>}(u) + A_{2}(v) < 2$

Algorithm for the partitioning tree problem

- By dynamic programming: compute each possible (left,right) couple of possible independant sets sizes
 - Start from leaves, label them whith (1,0)
 - Compute on each node all the possible couples of size repartition
 - use a decreasing order for sizes
 - keep only the dominant couples (greater in all coordinates)
 - at most $O(n^2)$ couples to store on each node
 - proceed child by child (updating the set)
 - three cases to consider for a pair of couples (a,b) and (c,d)
 (a+b+c+d+1, 0) (fuse)
 - (a+c, b+d) (combine)
 - (a+d, b+c) (cross)
 - ... in the proper order

Algorithm for the partitioning DAG problem

Repeat (K times)

Choose a task x

Determine y an independent task from x

Compute both sets Sx = succ(x) and Sy = succ(y)

return $A_1 = (Sx \setminus Sy)$ and $A_2 = (Sy \setminus Sx)$

Algorithm from [Trystram and Lepere 2000]

Repeat (K times)

Choose a task x

Determine y an independent task from x

Compute both sets Sx = succ(x) and Sy = succ(y)

Repeat (K times)

Choose a task x

Determine y an independent task from x

Compute both sets Sx = succ(x) and Sy = succ(y)

Repeat (K times)

Choose a task x

Determine y an independent task from x

Compute both sets Sx = succ(x) and Sy = succ(y)

Repeat (K times)

Choose a task x

Determine y an independent task from x

Compute both sets Sx = succ(x) and Sy = succ(y)

Conclusions

- A new approach for clustering:
 - resulting graph is acyclic
 - 2-dominant class of clustering approach
- Some possible recursive decomposition explored:
 - 4 sets division with maximal parallelism is strongly NP-Complete
 - polynomial for trees
 - previous heuristic still valid

Perspectives

- Find a better criterion for recursive decomposition
- Improve the randomized approach with genetic algorithms along with more complex criteria (J. Pecero)
- Combine non unit execution times for tasks with the transition to a coarser grain
- Find a guaranteed algorithm independent from *c*