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Context and Motivation

• High-performance computing on distributed memory 
architectures (PC clusters and grid infrastructures).
– High latency of interconnection network.

• The objective is to schedule a parallel application: 
– Determining where and when to execute the tasks

– Minimize the makespan (denoted by ω)

• Focus: taking into account large communication 
costs into the scheduling decision is a key point to 
reach high performance.



Classical application model: 
precedence task graph

• Vertices: 
computation tasks

• Edges: 
data dependencies 

between tasks.
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[Rayward-Smith 86, Papadimitriou and Yannakakis 90]
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The delay model

• Unit execution time for 
tasks

• Communications at a 
fixed cost c
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• Simple model :

– no overhead

– no contention

– total overlap



Recall of the basic scheduling problem

Instance: Precedence task graph and a delay C

Problem: Choose for each task a location and a date

Objective: minimize the makespan

NP-hard problem even for simple cases. 
No constant guaranty for large communication delays!



Recall of the basic scheduling problem

Large number of heuristics, three main families:

– Extention of list algorithms:
ETF (Earliest task first) [Hwang and al.89]

– Locations assignment based on critical path:
DSC (Dominant sequence clustering)
 [Gerasoulis and Yang 94]

– Graph decomposition:
      CLANS  [McCreary and al. 89]



Convex clustering

• Idea:
assign tasks to locations in convex groups

• Convexity:

A cluster A is convex iff

Ax

y

z

∀ x , z∈A , x y∧y z⇒ y∈A



Characteristics

• Advantages:
– Schedules based on convex clusters are 2-dominant

[ Trystram and Lepere 2000]

– The resulting graph is acyclic and:

• clustering makes the grain coarser

• classical guaranteed algorithms can be used thereafter

• Related approach:
– CLANS [McCreary and al. 89] are special case of convex 

clusters



Recursive approach of the problem

• Find in graph G=(V,E) two independent sets of tasks A1 and A2.

• Split recursively A1, A2, A> and A< if such a splitting allows to 
decrease the longest path in regard to a sequential execution.
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Illustration 

Graph with 16 tasks and
communication delay C = 2.
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By construction, ωR≤ |A< | + 2.C + max(|A1|,|A2|) + |A>|
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as min(|A1|,|A2|) + max(|A1|,|A2|) = |A1| + |A2|
Thus, ωR≤ |V |  + 2C - min(|A1|,|A2|) ≤ 14 
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Second level of splitting 

A1

A>

A<

A2



« partitioning » DAG problem

• Instance: 
oriented acyclic graph G(V,E)

• Solution: 
two disjoint groups of independent tasks : A1 et A2

such that for all task x in A1 and y in A2, there is no path 
between x and y (and vice versa)

• Objective:
Maximize the size of the smallest group 
Max (min(|A1|, | A2|))



« partitioning » DAG is NP-Complete

• Proof:
From [ Garey and Johnson 79 ]

[GT24] BALANCED COMPLETE BIPARTITE SUBGRAPH

INSTANCE: Bipartite graph G=(V,E), positive integer

QUESTION: Are there two disjoint subsets                 such that

                      and such that                       implies that

               ? 

K∣V∣
V 1 ,V 2⊆V

∣V 1∣=∣V 2∣=K u∈V 1 , v∈V 2

{u , v}∈E



« partitioning » DAG is NP-Complete

Start from a bipartite graph



« partitioning » DAG is NP-Complete

Revert all its edges



« partitioning » DAG is NP-Complete

Add a direction to them



« partitioning » DAG is NP-Complete

Add proper strings of N nodes



« partitioning » DAG is NP-Complete

Find a convex decomposition with both A1  and A2 
of size N+K: this has to include nodes of the strings



« partitioning » DAG is NP-Complete

Find a convex decomposition with both A1  and A2 
of size N+K



« partitioning » DAG is NP-Complete

This gives us our complete balanced bipartite graph



Linear program

A1uAv2 

A2 uA v2 

A uAv2 
A1uA2 v2 
A2 uA1v2 

A uA1v2 

A uA2 v2 

max z
such that
z∑

u∈V

A1u

z∑
u∈V

A2 u

∀ u∈V , AuA1uA2uAu=1 
∀ e=u , v∈E ,



Algorithm for the partitioning tree problem

• By dynamic programming: compute each possible 
(left,right) couple of possible independant sets sizes
– Start from leaves, label them whith (1,0)

– Compute on each node all the possible couples of size repartition

• use a decreasing order for sizes

• keep only the dominant couples (greater in all coordinates)

• at most            couples to store on each node

• proceed child by child (updating the set)

• three cases to consider for a pair of couples (a,b) and (c,d)
(a+b+c+d+1, 0) (fuse)
(a+c, b+d) (combine)
(a+d, b+c) (cross)
... in the proper order

O n2



Exemple of partitioning a tree
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(1,0)
(1,0)

(1,0)

(1,0)

(1,0)

(1,0)

(3,0) (1,1)

(5,0) (3,1)



Exemple of partitioning a tree

(1,0)
(1,0)

(1,0)

(1,0)

(1,0)

(1,0)

(3,0) (1,1)

(5,0) (3,1)

(7,0) (5,1) (4,1) (3,2)



Exemple of partitioning a tree

(1,0)
(1,0)

(1,0)

(1,0)

(1,0)

(1,0)

(3,0) (1,1)

(5,0) (3,1)

(7,0) (5,1) (4,1) (3,2)

(9,0) (7,1) (5,2) (3,3)



Exemple of partitioning a tree

(1,0)
(1,0)

(1,0)

(1,0)

(1,0)

(1,0)

(3,0) (1,1)

(5,0) (3,1)

(7,0) (5,1) (4,1) (3,2)

(9,0) (7,1) (5,2) (3,3)

(11,0) (9,1) (7,2) (5,3)
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Algorithm for the partitioning DAG problem

Repeat (K times)

Choose a task x

Determine y an independent task from x

Compute both sets Sx = succ(x) and Sy = succ(y)

return A1 = (Sx \ Sy) and A2 = (Sy \ Sx)

Algorithm from [ Trystram and Lepere 2000 ] 



Heuristic for the partitioning DAG problem

Repeat (K times)

Choose a task x

Determine y an independent task from x

Compute both sets Sx = succ(x) and Sy = succ(y)

return A1 = (Sx \ Sy) and A2 = (Sy \ Sx) 

x

Sx



Heuristic for the partitioning DAG problem

Repeat (K times)

Choose a task x

Determine y an independent task from x

Compute both sets Sx = succ(x) and Sy = succ(y)

return A1 = (Sx \ Sy) and A2 = (Sy \ Sx) 

Sx \ Sy
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Heuristic for the partitioning DAG problem

Repeat (K times)

Choose a task x

Determine y an independent task from x

Compute both sets Sx = succ(x) and Sy = succ(y)

return A1 = (Sx \ Sy) and A2 = (Sy \ Sx) 

Sx \ Sy
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Heuristic for the partitioning DAG problem

Repeat (K times)

Choose a task x

Determine y an independent task from x

Compute both sets Sx = succ(x) and Sy = succ(y)

return A1 = (Sx \ Sy) and A2 = (Sy \ Sx) 

Sx \ Sy

Cost of an itération O(e)

x
y

Sy ∩ Sx



Conclusions

• A new approach for clustering:

– resulting graph is acyclic

– 2-dominant class of clustering approach

• Some possible recursive decomposition explored:

– 4 sets division with maximal parallelism is strongly NP-
Complete

– polynomial for trees

– previous heuristic still valid



Perspectives

• Find a better criterion for recursive decomposition

• Improve the randomized approach with genetic algorithms along 
with more complex criteria (J. Pecero)

• Combine non unit execution times for tasks with the transition to 
a coarser grain

• Find a guaranteed algorithm independant from c


