
Convex clustering
(work in progress)

B. Gaujal, G. Huard, J. Pecero, E. Thierry and
D. Trystram

Laboratoire ID-IMAG
Denis.Trystram@imag.fr

Guillaume.Huard@imag.fr

Context and Motivation

• High-performance computing on distributed memory
architectures (PC clusters and grid infrastructures).
– High latency of interconnection network.

• The objective is to schedule a parallel application:
– Determining where and when to execute the tasks

– Minimize the makespan (denoted by ω)

• Focus: taking into account large communication
costs into the scheduling decision is a key point to
reach high performance.

Classical application model:
precedence task graph

• Vertices:
computation tasks

• Edges:
data dependencies

between tasks.

T4 T5

T7

T3

T6

T2T1

[Rayward-Smith 86, Papadimitriou and Yannakakis 90]

T4 T5

T7

T3

T6

T2T1

The delay model

• Unit execution time for
tasks

• Communications at a
fixed cost c

T4 T5

T7

T3

T6

T2T1

T1

T2

P1

P2

T4 T5

T7

T3

T6

T2T1

T1

T2

T3P1

P2 T5

T4 T5

T7

T3

T6

T2T1

 timeT1

T2

T3

T4

P1

P2

C

T5

T6

T7

• Simple model :

– no overhead

– no contention

– total overlap

Recall of the basic scheduling problem

Instance: Precedence task graph and a delay C

Problem: Choose for each task a location and a date

Objective: minimize the makespan

NP-hard problem even for simple cases.
No constant guaranty for large communication delays!

Recall of the basic scheduling problem

Large number of heuristics, three main families:

– Extention of list algorithms:
ETF (Earliest task first) [Hwang and al.89]

– Locations assignment based on critical path:
DSC (Dominant sequence clustering)
 [Gerasoulis and Yang 94]

– Graph decomposition:
 CLANS [McCreary and al. 89]

Convex clustering

• Idea:
assign tasks to locations in convex groups

• Convexity:

A cluster A is convex iff

Ax

y

z

∀ x , z∈A , x y∧y z⇒ y∈A

Characteristics

• Advantages:
– Schedules based on convex clusters are 2-dominant

[Trystram and Lepere 2000]

– The resulting graph is acyclic and:

• clustering makes the grain coarser

• classical guaranteed algorithms can be used thereafter

• Related approach:
– CLANS [McCreary and al. 89] are special case of convex

clusters

Recursive approach of the problem

• Find in graph G=(V,E) two independent sets of tasks A1 and A2.

• Split recursively A1, A2, A> and A< if such a splitting allows to
decrease the longest path in regard to a sequential execution.

A2A1

A<

 A> successors

predecessors

Illustration

Graph with 16 tasks and
communication delay C = 2.

A1
A2

A1

A>

A<

A2

By construction, ωR≤ |A< | + 2.C + max(|A1|,|A2|) + |A>|

A1

A>

A<

A2

as min(|A1|,|A2|) + max(|A1|,|A2|) = |A1| + |A2|
Thus, ωR≤ |V | + 2C - min(|A1|,|A2|) ≤ 14

A1

A>

A<

A2

Second level of splitting

A1

A>

A<

A2

« partitioning » DAG problem

• Instance:
oriented acyclic graph G(V,E)

• Solution:
two disjoint groups of independent tasks : A1 et A2

such that for all task x in A1 and y in A2, there is no path
between x and y (and vice versa)

• Objective:
Maximize the size of the smallest group
Max (min(|A1|, | A2|))

« partitioning » DAG is NP-Complete

• Proof:
From [Garey and Johnson 79]

[GT24] BALANCED COMPLETE BIPARTITE SUBGRAPH

INSTANCE: Bipartite graph G=(V,E), positive integer

QUESTION: Are there two disjoint subsets such that

 and such that implies that

 ?

K∣V∣
V 1 ,V 2⊆V

∣V 1∣=∣V 2∣=K u∈V 1 , v∈V 2

{u , v}∈E

« partitioning » DAG is NP-Complete

Start from a bipartite graph

« partitioning » DAG is NP-Complete

Revert all its edges

« partitioning » DAG is NP-Complete

Add a direction to them

« partitioning » DAG is NP-Complete

Add proper strings of N nodes

« partitioning » DAG is NP-Complete

Find a convex decomposition with both A1 and A2
of size N+K: this has to include nodes of the strings

« partitioning » DAG is NP-Complete

Find a convex decomposition with both A1 and A2
of size N+K

« partitioning » DAG is NP-Complete

This gives us our complete balanced bipartite graph

Linear program

A1uAv2

A2 uA v2

A uAv2
A1uA2 v2
A2 uA1v2

A uA1v2

A uA2 v2

max z
such that
z∑

u∈V

A1u

z∑
u∈V

A2 u

∀ u∈V , AuA1uA2uAu=1
∀ e=u , v∈E ,

Algorithm for the partitioning tree problem

• By dynamic programming: compute each possible
(left,right) couple of possible independant sets sizes
– Start from leaves, label them whith (1,0)

– Compute on each node all the possible couples of size repartition

• use a decreasing order for sizes

• keep only the dominant couples (greater in all coordinates)

• at most couples to store on each node

• proceed child by child (updating the set)

• three cases to consider for a pair of couples (a,b) and (c,d)
(a+b+c+d+1, 0) (fuse)
(a+c, b+d) (combine)
(a+d, b+c) (cross)
... in the proper order

O n2

Exemple of partitioning a tree

(1,0)
(1,0)

(1,0)

(1,0)

(1,0)

(1,0)

Exemple of partitioning a tree

(1,0)
(1,0)

(1,0)

(1,0)

(1,0)

(1,0)

(3,0) (1,1)

Exemple of partitioning a tree

(1,0)
(1,0)

(1,0)

(1,0)

(1,0)

(1,0)

(3,0) (1,1)

(5,0) (3,1)

Exemple of partitioning a tree

(1,0)
(1,0)

(1,0)

(1,0)

(1,0)

(1,0)

(3,0) (1,1)

(5,0) (3,1)

(7,0) (5,1) (4,1) (3,2)

Exemple of partitioning a tree

(1,0)
(1,0)

(1,0)

(1,0)

(1,0)

(1,0)

(3,0) (1,1)

(5,0) (3,1)

(7,0) (5,1) (4,1) (3,2)

(9,0) (7,1) (5,2) (3,3)

Exemple of partitioning a tree

(1,0)
(1,0)

(1,0)

(1,0)

(1,0)

(1,0)

(3,0) (1,1)

(5,0) (3,1)

(7,0) (5,1) (4,1) (3,2)

(9,0) (7,1) (5,2) (3,3)

(11,0) (9,1) (7,2) (5,3)

Exemple of partitioning a tree

(1,0)

(1,0)

(1,0)

(1,0)

(3,0) (1,1)

(5,0) (3,1)

(7,0) (5,1) (4,1) (3,2)

(9,0) (7,1) (5,2) (3,3)

(11,0) (9,1) (7,2) (5,3)

(1,0) (1,0)

Algorithm for the partitioning DAG problem

Repeat (K times)

Choose a task x

Determine y an independent task from x

Compute both sets Sx = succ(x) and Sy = succ(y)

return A1 = (Sx \ Sy) and A2 = (Sy \ Sx)

Algorithm from [Trystram and Lepere 2000]

Heuristic for the partitioning DAG problem

Repeat (K times)

Choose a task x

Determine y an independent task from x

Compute both sets Sx = succ(x) and Sy = succ(y)

return A1 = (Sx \ Sy) and A2 = (Sy \ Sx)

x

Sx

Heuristic for the partitioning DAG problem

Repeat (K times)

Choose a task x

Determine y an independent task from x

Compute both sets Sx = succ(x) and Sy = succ(y)

return A1 = (Sx \ Sy) and A2 = (Sy \ Sx)

Sx \ Sy

x
y

Sy

Heuristic for the partitioning DAG problem

Repeat (K times)

Choose a task x

Determine y an independent task from x

Compute both sets Sx = succ(x) and Sy = succ(y)

return A1 = (Sx \ Sy) and A2 = (Sy \ Sx)

Sx \ Sy

x
y

Sy ∩ Sx

Heuristic for the partitioning DAG problem

Repeat (K times)

Choose a task x

Determine y an independent task from x

Compute both sets Sx = succ(x) and Sy = succ(y)

return A1 = (Sx \ Sy) and A2 = (Sy \ Sx)

Sx \ Sy

Cost of an itération O(e)

x
y

Sy ∩ Sx

Conclusions

• A new approach for clustering:

– resulting graph is acyclic

– 2-dominant class of clustering approach

• Some possible recursive decomposition explored:

– 4 sets division with maximal parallelism is strongly NP-
Complete

– polynomial for trees

– previous heuristic still valid

Perspectives

• Find a better criterion for recursive decomposition

• Improve the randomized approach with genetic algorithms along
with more complex criteria (J. Pecero)

• Combine non unit execution times for tasks with the transition to
a coarser grain

• Find a guaranteed algorithm independant from c

