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In ‘‘Bulgarian Solitaire,’’ a player divides a deck of n cards into piles. Each move
consists of taking a card from each pile to form a single new pile. One is concerned
only with how many piles there are of each size. Starting from any division into
piles, one always reaches some cycle of partitions of n. Brandt proved that for
n s 1 q 2 q ??? qk, the cycle is just the single partition into piles of distinct sizes

Ž .1, 2, . . . , k. Let D n denote the maximum number of moves required to reach aBB

Ž . 2cycle. Igusa and Etienne proved that D n F k y k whenever n F 1 q 2BB

q ??? qk, and equality holds when n s 1 q 2 q ??? qk. We present a simple new
Ž . 2derivation of these facts. We improve the bound to D n F k y 2k y 1, when-BB

Ž .ever n - 1 q 2 q ??? qk with k G 4. We present a lower bound for D n that isBB

likely to be the actual value. We introduce a new version of the game, Carolina
Solitaire, in which the piles are kept in order, so we work with compositions rather
than partitions. Many analogous results can be obtained. Q 1998 Academic Press

1. INTRODUCTION

In the early 1980s, an article by Martin Gardner brought widespread
attention to a card game that had attracted the curiosity of some Euro-
pean mathematicians. Called Bulgarian Solitaire, the game works as fol-
lows: First divide a finite deck of n cards into piles. A move consists of
removing one card from each pile and forming a new pile. The operation is
repeated over and over. We pay attention only to how many piles there are
of each positive size, ignoring the locations of the piles.

Thus, Bulgarian Solitaire can be viewed as a way of changing one
partition into another. For instance, the partition into k parts of distinct
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sizes from 1 to k is preserved under the operation. Clearly, for any n, any
start eventually leads to a cycle of partitions, since there are only finitely
many partitions of n altogether. What is striking in playing the game is
that, starting from any partition of a deck of size n s 1 q 2 q ??? qk
cards, one always arrives eventually at this stable partition into sizes 1
through k. This effect is all the more dramatic in that it seems to take
quite a while in some cases with only moderately large k, say k s 5.

We do not know yet the reason for the appellation ‘‘Bulgarian.’’ How-
ever, we were introduced to an ordered variation of the game by a
Bulgarian visitor, Andrey Andreev. In his game, which we shall call
Carolina Solitaire, one also maintains an ordering of the nonempty piles.
Say we begin with n cards divided into a row of piles of sizes c , . . . , c ) 0,1 r
Ý c s n. One card is removed from each pile, and these r cards are theni i

Ž .placed in a pile ahead of the others. Any exhausted pile size 0 is ignored;
only nonempty piles are considered. For a triangular number n, say
n s 1 q 2 q ??? qk, this game also appears to arrive at a stable division,
with piles of sizes k, k y 1, . . . , 1.

After proving this fact for Carolina Solitaire, as well as deriving bounds
on how soon the cycling begins for arbitrary n, we asked experts for
references to related work, and our search finally led us to the literature
on Bulgarian Solitaire. Our methods are easily adapted to this simpler
unordered game. In fact, we obtain improved bounds on the maximum
number of shifts needed for any game on n cards to cycle. We shall also

Ž .mention work on other variation s of Bulgarian Solitaire, most notably
one called Montreal Solitaire.

Let us now define the games formally, present some examples and
calculations, and describe the plan of the paper. For a positive integer n,

Ž .we say l s l , l , . . . is a partition of n, and we write l & n, provided1 2
the nonnegative integers l G l G ??? add up to n. If l ) l s 0, we1 2 s sq1

Ž .say l has s parts, and we often drop the zeroes, writing l s l , l , . . . , l .1 2 s
Ž .The shift operation BB on l is the partition of n, denoted BB l , obtained

by decreasing each part l by one, inserting a part s, and discarding anyi
Ž i.Ž .zero parts. So BB l denotes the partition obtained by successively

applying the shift operation BB to l a total of i times. Starting with a
partition l, we describe Bulgarian Solitaire by repeatedly applying the
shift operation to obtain the sequence of partitions

l, BB l , BBŽ2. l , . . . .Ž . Ž .
Ž .For a couple of simple examples, we note that l s 2, 1, 1, 1, 1 & 6 gives

Ž . Ž . Ž . Ž . Ž . Ž .the sequence 2, 1, 1, 1, 1 , 5, 1 , 4, 2 , 3, 2, 1 , 3, 2, 1 , . . . , while l s 6, 1
Ž . Ž . Ž . Ž . Ž . Ž . Ž .& 7 yields 6, 1 , 5, 2 , 4, 2, 1 , 3, 3, 1 , 3, 2, 2 , 3, 2, 1, 1 , 4, 2, 1 , . . . . The

Ž .first example is fixed at the partition 3, 2, 1 after three steps, while the
second example reaches a cycle after two steps.
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Ž i.Ž .We say a partition m & n is BB-cyclic if BB m s m for some i ) 0.
w xBrandt 3 characterized all BB-cyclic partitions for Bulgarian Solitaire. In

particular, when n is a triangular number, 1 q 2 q ??? qk, he proved that
Ž .k, k y 1, . . . , 2, 1 is the unique BB-cyclic partition of n, one that we end
up with, no matter where we start. Note that if n is not triangular, there is
no fixed partition under BB.

To measure how long it takes for Bulgarian Solitaire to cycle, for l & n
Ž . Ž i.Ž .we let d l denote the smallest integer i G 0 such that BB l isBB

Ž . � Ž . 4 Ž .BB-cyclic. Let D n [ max d l : l & n , so that for any l & n, D nBB BB BB

Ž . Ž . Ž .steps reach a cycle. Trivially, D 1 s D 2 s 0 and D 3 s 2. TheBB BB BB

Ž .values of D n , 4 F n F 36, are displayed in Fig. 1, which we worked outBB

by computer. The data are arranged using the representation n s 1 q 2
Ž .q ??? q k y 1 q r, 1 F r F k.

w x Ž . 2Brandt 3 conjectured that D n s k y k for triangular n, n s 1 q 2BB

w xq ??? qk. Hobby and Knuth 7 confirmed this for k F 10 by computer. It
w x w xwas first proven by Igusa 8 and Etienne 5 , apparently independently at

about the same time, although Etienne’s proof was published much later.
Ž .Note that Etienne’s paper is noted as having been received in 1984. In

w x1987 Bentz 2 also gave a different proof. In Section 2 we present our
proof of Brandt’s result characterizing all BB-cyclic partitions. This leads to

Ž .our simple, new proof of the value of D n for triangular numbers n,BB

given in Section 3.
Ž . 2Igusa and Etienne went on to obtain the upper bound D n F k y kBB

Ž .for general n, represented as 1 q 2 q ??? q k y 1 q r, 1 F r F k. It is by
Ž . w xno means sharp for every n see Fig. 1 . Igusa 8 mentioned that this

bound follows easily from Brandt’s conjecture using a comparison theorem
w Ž .xby Akin and Davis 1, Theorem 3 c . We will describe this comparison

theorem and show the implication in Section 4. We then prove a better
Ž . Ž . 2general bound Theorem 4.4 , which is D n F k y 2k y 1, when 1 F rBB

Ž .- k and k G 4. Cases n s 2, 5 violate the bound. We also present a

Ž .FIG. 1. D n for n s 4, 5, . . . , 36.BB
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Ž .lower bound for D n that we suspect is the correct value in general,BB

although a proof of this claim has eluded us.
In Section 5 we consider Carolina Solitaire, the ordered version of

Ž . Ž .Bulgarian Solitaire. Analogously with d l and D n for BulgarianBB BB

Ž . Ž .Solitaire, we introduce d l and D n for Carolina Solitaire. We showCC CC

Ž . 2that, for triangular n s 1 q 2 q ??? qk, D n s k y 1. For other n ofCC

Ž . Ž .the form n s 1 q 2 q ??? q k y 1 q r, 1 F r - k, we prove D n FCC

k 2 y k y 2, provided that k G 4. We also present a lower bound for
Ž .D n that we conjecture is the correct value in general.CC

Other variations of Bulgarian Solitaire have been introduced: Yeh and
w xServedio 9, 10 studied a variation on circular compositions; Cannings and

w xHaigh 4 investigated ‘‘Montreal Solitaire,’’ in which game the rule from l
Ž . Ž .to BB l is changed when an exhausted pile size 0 in l occurs. Akin and
w xDavis 1 also introduced ‘‘Austrian Solitaire.’’ In this game, a special pile

called the bank is reserved. Each move consists of taking a card from each
pile into the bank, and then generating some new piles from the bank by a
certain rule.

2. CHARACTERIZING CYCLIC PARTITIONS

We begin by describing BB-cyclic partitions of n, a result discovered by
w x w x w xBrandt 3 . Etienne 5 as well as Akin and Davis 1 also gave proofs.

Although Etienne proved the result for triangular n only, the idea in his
proof is simple and can be applied to general n. The approach presented
here is similar to Etienne’s and we include it for the reader’s benefit.

w x Ž .THEOREM 2.1 3 . Let n s 1 q 2 q ??? q k y 1 q r, 1 F r F k. Then
l & n is BB-cyclic if and only if l has the form

k y 1 q d , k y 2 q d , . . . , 2 q d , 1 q d , d ,Ž .ky1 ky2 2 1 0

where each d is 0 or 1 and Ýky1 d s r.i is0 i

Ž .COROLLARY 2.2. If n s 1 q 2 q ??? qk, then k, k y 1, . . . , 2, 1 is the
unique BB-cyclic partition of n.

In order to prove the theorem, we introduce a natural array representa-
tion of a partition l. We are particularly interested in how repeatedly
shifting l affects the position of the ones in the array.

Ž . Ž .For a partition l s l , l , . . . , l & n, we associate a 0, 1 -array1 2 s

1, if j F s and i F l ,` jw xM s m , where m sl i j i ji , js1 ½ 0, otherwise.

The columns of M correspond to the parts of l.l
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We notice that M can be obtained directly from M by a shiftingBBŽl. l

Ž .process on a 0, 1 -array. In later sections, such a shifting process can help
Ž .us evaluate d l easily for some particular partitions l. We describe thisBB

Ž .shifting process as follows: For a 0, 1 -array M, we say that the wth
diagonal of M consists of entries m , where i q j y 1 s w. Assumei j

Ž .l s l , l , . . . , l & n and its associated array M is given.1 2 s l

Step 1: Diagonally circular shifting. For each diagonal of M , sayl

Ž .¨ , ¨ , . . . , and ¨ are the entries listed from left to right in this diagonal,1 2 w
we replace them by ¨ , ¨ , ¨ , . . . , and ¨ , respectively. Then we obtainw 1 2 wy1
a new array; denote it M X. Note that the numbers of ones in columns ofl

M X are s, l y 1, l y 1, . . . , l y 1, 0, 0, 0, . . . . If s G l y 1 then M X isl 1 2 s 1 l

the array M . If s - l y 1 then we need an extra step to obtain M .BBŽl. 1 BBŽl.

Step 2: Left shifting. We remove all zero entries in the first column of
X Ž .M and shift each entry at the i, j -position, i G s q 1, j G 2, to thel

Ž .i, j y 1 -position. The new array is M .BBŽl.

Figure 2 shows two examples of the shifting process described above.

Ž .Proof of Theorem 2.1. ¥ Assume that l has the stated form. The
array M has all ones on the first k y 1 diagonals and all zeroes beyondl

Žk .Ž .diagonal k. Each shift just shifts entries on diagonal k. Thus, BB l s l,
and l is BB-cyclic.

Ž .« In the shifting process, we notice that Step 1 keeps every entry
on the same diagonal, while Step 2 always brings the entry 1 at the
Ž .s q 1, 2 -position to a diagonal with smaller index. Thus, for any BB-cyclic
partition m, the shifting process from M to M should involve Step 1m BBŽ m .
only.

FIG. 2. A shifting process on the arrays.
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Now assume that l is BB-cyclic and l cannot be expressed in the stated
form. Then for some w, there is a 0 in the wth diagonal and a 1 in the
Ž .w q 1 th diagonal. Since the series of shifting processes from M tol

Ž .Ž2.M to M , and so on involves Step 1 diagonally circular shiftingBBŽl. BB Žl.
only, and since the integers w and w q 1 are relatively prime, we will

Ž 2 . Ž .reach in at most w y w y 1 steps an array M which has 0 as 1, w -en-m

Ž . Žtry and 1 as w q 1, 1 -entry. Figure 3 shows an example for such a series
.of shifting processes. Then the shifting process from M to Mm BBŽ m .

involves Step 2, a contradiction.

It is easy to see from Theorem 2.1 that for a given n with r s k, k y 1,
or 1, starting from any partition of n and repeatedly applying the shift
operation BB always reaches a unique cycle of partition of n.

Ž .FIG. 3. A series of shifting processes on the associated array of l s 2, 2, 1, 1 .
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w xFor general n, Brandt 3 also showed that the number of cycles for
Bulgarian Solitaire is

1 krd
f d ,Ž .Ý ž /rrdk < Ž .d gcd k , r

Ž .where f d is the Euler f-function. The derivation of this formula was
w xexplained in detail later by Akin and Davis 1 .

Ž .3. EVALUATING D n FOR TRIANGULAR NUMBERS nBB

Ž . Ž . 2The partition l s 2, 2, 1, 1 in Fig. 3 gives D 3 G 3 y 3. In general,BB

we have

w x Ž . 2THEOREM 3.1 1, 2, 5 . If n s 1 q 2 q ??? qk, then D n G k y k.BB

Ž . 2Proof. It suffices to present l & n such that d l s k y k. LetBB

Ž .l s l , l , . . . , l , where l s k y 1, l s k y i q 1 for i s1 2 kq1 1 i
2, 3, . . . , k, and l s 1. By repeatedly applying the shifting processkq1
Ž .described in the previous section to the arrays M , M , . . . , it is easyl BBŽl.
to see that

BBŽk . l s l , l , . . . , l , l q 1 ,Ž . Ž .1 2 ky1 k

BBŽ2 k . l s l , l , . . . , l q 1, l ,Ž . Ž .1 2 ky1 k
...

BBŽŽky2.k . l s l , l , l q 1, l , l , . . . , l ,Ž . Ž .1 2 3 4 5 k

BBŽŽky1.ky1. l s l q 2, l , l , . . . , l ,Ž . Ž .1 2 3 ky1

BBŽŽky1.k . l s k , k y 1, k y 2, . . . , 2, 1 .Ž . Ž .
2Ž .Therefore d l s k y k.BB

Before we prove in Theorem 3.7 that, for triangular n, the lower bound
2 Ž .k y k is the actual value of D n , we need some notation and lemmas.BB

Let us start with the example for n s 15: The 176 partitions of 15 can be
Ž w x.arranged in a tree illustrated in Fig. 4 from 3 so that the vertices

correspond to the partitions and going down corresponds to applying BB.
Ž Ž . .Thus, the root of the tree is the partition 5, 4, 3, 2, 1 . In this figure, each
vertex is labeled with the number of parts for its corresponding partition.

Ž . ² :For a partition l & n, we associate a sequence seq l s c , c , . . . ,BB 1 2
Ž iy1.Ž .where c is the number of parts in BB l . For instance, the top lefti

Ž Ž . .vertex in Fig. 4 corresponding to the partition l s 4, 4, 3, 2, 1, 1 & 15
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FIG. 4. A tree for the partitions of 15.

Ž . ²has the associated sequence seq l s 6, 5, 5, 5, 4, 5, 6, 5, 5, 4, 5, 5, 6, 5,BB

:4, 5, 5, 5, 6, 4, 5, 5, 5, 5, 5, . . . .
In Fig. 4, we observe that the pattern ‘‘x y 1, x , x , . . . , x , x q 1’’ appears

quite often in most associated sequences. It will play a pivotal role in our
Ž .process for evaluating D n . To study this pattern, we associate eachBB

Ž .partition with a diagram: Given a partition l s l , l , . . . , l & n, let1 2 s
Ž . ² : Ž .seq l s c , c , . . . be its associated sequence. Then diagram l isBB 1 2 BB

Ždefined to be the diagram shown in Fig. 5, where each l -column resp.,i
. Ž .c -column has l resp., c ones on the top and has infinitely many zeroesi i i

Ž . Ž .on all other entries. For example, if l s 4, 2, 2, 2 then diagram l isBB

Ž .shown in Fig. 6 a .
We notice that there are c ones in the row corresponding to c .i i

Ž .Furthermore, diagram l can be regarded as bookkeeping for the shiftBB
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Ž .FIG. 5. diagram l .BB

Ž i.Ž . Ž .operation BB on l, since we can easily obtain BB l from diagram lBB

Ž Ž ..for any integer i. For example, the rectangle below c see Fig. 6 b gives3
Ž3.Ž . Ž . Ž6.Ž . Ž .BB l s 4, 3, 2, 1 and the rectangle below c gives BB l s 4, 3, 2, 1 .6

Ž . ² :PROPOSITION 3.2. Assume n G 1, l & n, and seq l s c , c , . . . .BB 1 2
Then

Ž .1 c F c q 1 for i G 1;iq1 i

Ž . Ž .2 for n s 1 q 2 q ??? q k y 1 q r, where 1 F r F k, the sum of
Ž .any k consecutï e terms in the sequence is at most k k y 1 q r ;

Ž . Ž . Ž . Ž .FIG. 6. a diagram l for l s 4, 2, 2, 2 . b The rectangle below c .BB 3
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Ž . Ž .3 the sandwich property if i - j and c - x - c , then there existi j
Ž .integers p and q such that i F p - q F j, q G p q 2, and c , c , . . . , cp pq1 q

Ž .s x y 1, x, x, . . . , x, x q 1 .

Ž .Proof. 1 follows from the definition of the shift operation BB. To
Ž . Ž .prove 2 , we see for i ) 0 in diagram l that c q c q ??? qc isBB iq1 iq2 iqk

the number of 1s in the k rows labelled by c , c , . . . . These comeiq1 iq2
Ž i.Ž . Ž .from BB l in the rectangle below c , or from the staircase consisting ofi

j y 1 squares to the right of c , 1 F j F k. Thus, c q ??? qc F n qiq j iq1 iqk
Ž . Ž .1 q 2 q ??? q k y 1 s k k y 1 q r.

Ž .For 3 , choose p as large as possible such that i F p - j and c F x y 1.p

We next require a series of lemmas that rely on Proposition 3.2 and
Ž .diagram l .BB

Ž . ² :LEMMA 3.3. Let l & n s 1 q 2 q ??? qk and seq l s c , c , . . . .BB 1 2
Then

Ž . Ž . ² : ² :1 d l s t, where c , c , . . . s k y 1, k, k, . . . ;BB t tq1

Ž . Ž .2 if d l s t G k q 1 then at least one of the following holds:BB

Ž . Ž . Ž .i c , c , . . . , c s k y 1, k, k, . . . , k, k q 1 for some p, qp pq1 q
with t y k F p - q F t y 1 and q G p q 2;

Ž . Ž . Ž .ii c , c , . . . , c s k y 2, k y 1, k y 1, . . . , k y 1, k forp pq1 q
some p, q with t y k q 1 F p - q F t q 1 and q G p q 2.

Ž . Ž . Ž .Proof. 1 By Theorem 2.1, we have d l s t where seq l sBB BB

² :c , . . . , c , k, k, k, . . . and c / k. Then Proposition 3.2 forces c s k y 1.1 t t t

Ž .2 For i ) j, e denote the entry in the c -row and the c -columni, j i j
Ž .of diagram l . Then e s 1. Since c s k y 1, we have e s 0 forBB t, ty1 t t, i

some i, t y k F i F t y 2. We choose such i as large as possible.
Then e s 1, and, since c s k s c q 1, comparing rows for c andt, iq1 tq1 t t

Ž .c in diagram l , we have e s 1 as well. The column below ctq1 BB tq1, iq1 iq1
Ž .then has ones down at least as far as the row for c . Proposition 3.2 1tq1

gives c G c y 1, which forces all entries in the c -column above the 0 ati iq1 i
e to be ones. Therefore, c s t y i y 1 and c s t y i.t, i i iq1

Ž .If i G t y k q 1, then c F k y 2, and ii holds by the sandwich prop-i
erty. Else, we have i s t y k, c s k y 1, and c s k. If c F k y 2tyk tykq1 j

Ž .for some j, t y k q 2 F j F t y 1, ii holds by the sandwich property,
Ž .while if c G k q 1 for some such j, i holds. Else, suppose for contradic-j

tion that k y 1 F c F k, for j s t y k q 2, t y k q 3, . . . , t y 1: Sincej
Ž .i s t y k, the row for c in diagram l consists of k y 1 ones followedt BB

by all zeroes. The row for c is then k ones followed by all zeroes. Theretq1
are k ones at the tops of columns c , c , . . . . Hence, in the rectangletq1 tq2
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below c , we have just k y 1 ones in the first row, followed by k y j q 1ty1
ones in row j, 2 F j F k. Rows below that are all zero. In total, we have
n y 1 ones in the rectangle, which is a contradiction since this rectangle
represents, after reordering the columns if necessary, a partition of n.

Ž . Ž .LEMMA 3.4. Let l s l , l , . . . , l & n G 1 and seq l s1 2 s BB

² :c , c , . . . . If , for some p, k,1 2

c , . . . , c s k y 2, k y 1, k y 1, . . . , k y 1, k ,Ž . Ž .p pqk

then p q k F n q 1.

Ž .Proof. Let e resp., f denote the entry in the c -row and thei, j i, j i
Ž . Ž .c -column resp., l -column of diagram l . Then we have e s 1j j BB pqky2, p

and e s 0, since c s k y 2. By the given condition, in the c -rowpqky1, p p pqk
we also have e s 1 for j s p q 1, p q 2, . . . , p q k y 1. Note that inpqk , j
addition to these k y 1 entries of 1, there is exactly one more 1 in the
c -row, since c s k.pqk pqk

If f s 1 for some j, 1 F j F s, then p q k F l F n. Else, e spqk , j j pqk , j
1 for some j, 1 F j F p y 1. In fact, j s 1, for, otherwise, we have
e s 0, and, since c s k s c q 1, comparing rows for cpqk , jy1 pqk pqky1 pqk

Ž .and c in diagram l , we also have e s 0. Similarly, sincepqky1 BB pqky1, jy1
c s c , e s 1, and e s 0, and comparing rowspqky1 pqky2 pqky2, p pqky1, p

Ž .for c and c in diagram l , we have e s 0. Thenpqky1 pqky2 BB pqky2, jy1
c ) c q 1, a contradiction. So j s 1, and then p q k y 1 F c F n.j jy1 1

Ž . ² :LEMMA 3.5. Let l & n G 1 and seq l s c , c , . . . . If for someBB 1 2
integers x, p, q, q G p q 3, and

c , c , . . . , c s x y 1, x , x , . . . , x , x q 1 ,Ž . Ž .p pq1 q

then either p F x or

c , c X , . . . , c s xX y 1, x9, xX , . . . , xX , xX q 1Ž . Ž .p9 p q1 q9

for some integers xX, pX, qX with xX F x, 2 F qX y pX - q y p, and p y x F pX

- qX F p q 1.

Proof. We assume p G x q 1 and prove the existence of xX, pX, and qX.
For i ) j, let e denote the entry in the c -row and the c -column ofi, j i j

Ž .diagram l . Then e s 1. Since c s x y 1, we have e s 0 forBB p, py1 p p, p9

some p9, p y x F p9 F p y 2. We choose such p9 as large as possible.
Then e s 1 for j s pX q 1, pX q 2, . . . , p y 1, and, since c s x s cp, j pq1 p

Ž .q 1, comparing rows for c and c in diagram l , we also havepq1 p BB

e s 1 for j s pX q 1, pX q 2, . . . , p. The column below c then haspq1, j p9q1
Ž .ones down at least as far as the row at c . Proposition 3.2 1 givespq1

c G c y 1, which forces all entries above the zero at e to be ones.p9 p9q1 p, p9

Therefore c s p y p9 y 1, c s p y p9, and e s 0.p9 p9q1 pq2, p9q1
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Since c s x s c , comparing rows for c and c inpq2 pq1 pq2 pq1
Ž .diagram l , we have e s 1 for j s p9 q 2, p9 q 3, . . . , p q 1. IfBB pq2, j

e s 1 then c s p y p9 q 1, and we are finished. So we maypq3, p9q2 p9q2
assume e s 0 and c s p y p9.pq3, p9q2 p9q2

Since c s x s c , comparing rows for c and c inpq3 pq2 pq3 pq2
Ž .diagram l , we have e s 1 for j s p9 q 3, p9 q 4, . . . , p q 2. IfBB pq3, j

e s 1 then c s p y p9 q 1, and we are finished. So we maypq4, p9q3 p9q3
assume e s 0 and c s p y p9. Continue this process.pq4, p9q3 p9q3

So we may assume e s 0, c s p y p9, and eqy1, p9qqypy2 p9qqypy2 qy1, j
s 1 for j s p9 q q y p y 1, p9 q q y p, . . . , q y 2. Since c s x q 1 sq

Ž .c q 1, comparing rows for c and c in diagram l , we haveqy1 q qy1 BB

e s 1, and hence c s p y p9 q 1. This completes theq, p9qqypy1 p9qqypy1
proof.

Ž . ² :LEMMA 3.6. Let l & n G 1 and seq l s c , c , . . . . IfBB 1 2

c , c , c s x y 1, x , x q 1 ,Ž . Ž .p pq1 pq2

then p F x.

Proof. For i ) j, let e denote the entry in the c -row and thei, j i
Ž .c -column of diagram l . Then e s 1. Assume the contrary, i.e.,j BB p, py1

p ) x. Then c s x y 1 - p y 1 implies e s 0 for some i, 1 F i F p y 2.p p, i
Choose such i as large as possible. Then e s 1. Since c s x sp, iq1 pq1
c q 1 and c s x q 1 s c q 1, comparing rows for c , c , andp pq2 pq1 p pq1

Ž .c in diagram l , we also have e s e s 1. Thus c )pq2 BB pq2, iq1 pq1, iq1 iq1
c q 1, a contradiction.i

We are now in a position to prove

w xTHEOREM 3.7 5, 8 . If n s 1 q 2 q ??? qk, then

D n s k 2 y k .Ž .BB

Ž . 2Proof. Note that from Theorem 3.1 we have D n G k y k. Now weBB

Ž . 2 Ž . 2prove D n F k y k. Let l & n. It suffices to show d l F k y k.BB BB

Ž . 2We may assume k G 3, since it is easy to verify that d l F k y k forBB

Ž . Ž Ž .k s 1, 2. Further, we may also assume d l G k q 1. Otherwise, d lBB BB
2 . Ž . ² :F k - k y k, since k G 3. Let seq l s c , c , . . . , whereBB 1 2

² : ² : Ž .c , c , . . . s k y 1, k, k, k, . . . . Then d l s t and at least one oft tq1 BB

Ž . Ž .i , ii of Lemma 3.3 holds.
Ž .If ii holds with q s p q k, we have p s t y k q 1 and q s t q 1. Note

Ž .that Lemma 3.4 gives p q k F n q 1. Then d l s t s p q k y 1 F nBB

F k 2 y k, since k G 3.
Ž . Ž .Else, i or ii holds and q F p q k y 1. By Lemmas 3.5 and 3.6,

Ž . 2 Ž .seq l has at most k y 2k y 1 terms before the c -term. Then d lBB p BB
2 2Ž . Ž .s t F p y 1 q k q 1 F k y 2k y 1 q k q 1 F k y k.
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Ž . Ž . ŽWe observe that, for k s 2 resp., k s 3 , l s 1, 1, 1 resp., l s
Ž .. Ž .2, 2, 1, 1 is the only partition of n s 1 q 2 q ??? qk achieving d l sBB

k 2 y k. For k G 4, we have

Ž .THEOREM 3.8. Let k G 4 and n s 1 q 2 q ??? qk. If l & n with d lBB
2 w x`s k y k, then the associated array M s m satisfies the followingl i j i, js1

Ž .conditions illustrated in Fig. 7 :

Ž .1 m s 1 for j F k q 3 y 2 i;i j

Ž .2 m s 0 for j G 2k q 1 y 2 i;i j

Ž . <�Ž . 4 <3 i, j : j s k q 4 y 2 i, m s 0 F 2.i j

Ž . 2Proof. If k G 4 and d l s k y k, the proof of Theorem 3.7 impliesBB

Ž . Ž .i of Lemma 3.3 holds and q s p q k y 1. Further, we have seq l sBB

² : Ž . Ž . Žc , c , . . . , where c , c , c s k y 1, k, k q 1 and c , c ,1 2 k kq1 kq2 2 k 2 kq1
. Ž .c , c s k y 1, k, k, k q 1 .2 kq2 2 kq3

For i ) j, let e denote the entry in the c -row and the c -column ofi, j i j
Ž .diagram l . Then e s 1 and e s 1. We also have e s 1BB kq2, kq1 kq2, k kq2, i

Žfor i s 1, 2, . . . , k y 1. Otherwise, we choose i as large as possible such
that 1 F i F k y 1 and e s 0. By comparing rows for c , c , andkq2, i kq2 kq1

Ž .c in diagram l , we have e s e s 0, and hence c ) c q 1, ak BB k , i kq1, i iq1 i
.contradiction. Therefore, c G k q 2 y i for i s 1, 2, . . . , k q 2, and hencei

Ž .condition 1 holds.

?Ž . @FIG. 7. Conditions for Theorem 3.8. Among the k q 3 r2 entries marked by an
asterisk, at most two are zeroes.
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ŽWe also have e s 1 for i s k q 1, k q 2, . . . , 2k y 1. Otherwise, we2 k , i
choose i as large as possible such that k q 3 F i F 2k y 2 and e s 0.2 k , i
Then e s 1. We note that e s 1 and e s 0, since2 k , iq1 2 kq1, kq1 2 kq2, kq1

Ž .c s k. By comparing rows for c , c , and c in diagram l , wekq1 2 k 2 kq1 2 kq2 BB

.have e s e s 1, and hence c ) c q 1, a contradiction.2 kq2, iq1 2 kq1, iq1 iq1 i
Ž .Therefore, e s 0 for i s 1, 2, . . . , k, and condition 2 holds.2 k , i

Since e s 1, by comparing rows for c , c , c , and c in2 k , kq3 2 k 2 kq1 2 kq2 2 kq3
Ž .diagram l , we have e s e s e s 1, and henceBB 2 kq3, kq3 2 kq2, kq3 2 kq1, kq3

kq2 Ž .c G k. So we have Ý e G k, and hence condition 3 holds.kq3 js1 kq3, j

We have checked by computer that the converse of this theorem is true
Ž Ž .for k s 4, 5, 6, 7. In particular, the converse with condition 3 removed is

.also true for k s 4, 5, 6. When k s 8, there are 1276 partitions satisfying
all three conditions in Theorem 3.8, but 9 partitions among them have

Ž . 2d l s 20 / k y k. So the three conditions given in Theorem 3.8 areBB

necessary, but not sufficient, for the associated array of extremal parti-
tions.

Ž .4. EVALUATING BOUNDS ON D n FORBB

NONTRIANGULAR NUMBERS n

Ž .For any nontriangular n, we can write n s 1 q 2 q ??? q k y 1 q r,
Ž . 2where 1 F r - k. In this section we first prove D n F k y k based onBB

w xTheorem 3.7 and a comparison theorem from 1 . Then we improve this
bound to k 2 y 2k y 1 for k G 4. We also present a lower bound that is
likely the actual value.

Let L s D` L , where L denotes the set containing all partitions ofis1 i i
Ž . Ž .i. For l s l , l , . . . and m s m , m , . . . in L, we define a partial1 2 1 2

Ž .ordering i.e., a reflexive, antisymmetric and transitive relation by
l F m m l F m for i s 1, 2, . . . .i i

Then we have the following theorem due to Akin and Davis:

w Ž .x Ž .THEOREM 4.1 1, Thm. 3 c . If l, m g L and l F m, then BB l F
Ž .BB m .

ŽProof. Let x , x , . . . and y , y , . . . not necessarily in nonincreasing1 2 1 2
.order be the parts of two partitions x and y, respectively. We observe that

Žif x F y for i G 1, then x F y. To verify this, we may assume further,i i
without loss of generality, that the x ’s are already in nonincreasing order.i
If y - y , we interchange y and y ; then x F y for i G 1 still holds. If1 2 1 2 i i
y - y , we interchange y and y ; then x F y for i G 1 still holds.2 3 2 3 i i
Continuing this process, eventually we can arrange all y ’s in nonincreasingi

.order and x F y for i G 1 still holds. Therefore x F y.i i
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Ž .Now we assume l, m g L and l F m. Let l s l , l , . . . and m s1 2
Ž .m , m , . . . , where l G ??? G l ) l s 0, m G ??? G m ) m s1 2 1 s sq1 1 t tq1

Ž .0, and l F m for i G 1. Then the parts of BB l are x s s, x s l y 1,i i 1 2 1
x s l y 1, . . . , x s l y 1, x s 0, x s 0, . . . . Similarly, the3 2 sq1 s sq2 sq3

Ž .parts of BB m are y s t, y s m y 1, y s m y 1, . . . , y s m y 1,1 2 1 3 2 tq1 t
Ž . Ž .y s 0, y s 0, . . . . Since x F y for i G 1, we have BB l F BB m bytq2 tq3 i i

the observation above.

Combining this theorem with Theorem 3.7, we can show

w x Ž .THEOREM 4.2 5, 8 . Let n s 1 q 2 q ??? q k y 1 q r, 1 F r - k. Then

D n F k 2 y k .Ž .BB

Ž . 2Proof. Let l & n. It suffices to show d l F k y k. We choose m, nBB

Ž Ž .. Ž .such that m & 1 q 2 q ??? q k y 1 , n & 1 q 2 q ??? qk , and m F l
Žk 2yk .Ž . Žk 2yk .Ž .F n . By Theorem 4.1, we have that BB m F BB l F

Žk 2yk .Ž . Žk 2yk .Ž . ŽBB n . Note that Theorem 3.7 gives BB m s k y 1, k y
. Žk 2yk .Ž . Ž . Žk 2yk .Ž .2, . . . , 2, 1 and BB n s k, k y 1, . . . , 2, 1 . Thus BB l has the

2Ž .form stated in Theorem 2.1 and d l F k y k.BB

We prove an analogue of Lemma 3.3 for nontriangular n. Applying it
along with Lemmas 3.4, 3.5, and 3.6 leads to an improved upper bound on

Ž .D n for nontriangular n.BB

Ž .LEMMA 4.3. Let l & n s 1 q 2 q ??? qk q r, 1 F r - k, and seq lBB

² :s c , c , . . . .1 2

Ž . Ž . Ž .1 If c , . . . , c s c , . . . , c s ??? , i.e., c s ct tqky1 tqk tq2 ky1 tqi tqiqk
Ž . Ž Ž .for i G 0, then d l F t y 1. Thus we can find d l by choosing such tBB BB

.as small as possible.
Ž .2 If c s k y 1, c s k, c s c for i G 0, andt tq 1 tq i tq iq k

Ž . Ž . Ž . Ž .c , . . . , c / c , . . . , c , then at least one of i , ii of Lemma 3.3tyk ty1 t tqky1
holds.

Ž .Proof. 1 If c s c for i G 0, then each c is the number oftq i tqiqk tqi
parts for some BB-cyclic partition, and hence Theorem 2.1 gives k y 1 F
c F k for i G 0. In particular, we note that the rows fortq i

Ž .c , c , . . . , c in diagram l each consists of k y 1 or k ones. Thent tq1 tqky1 BB
Ž ty1.Ž .BB l has the stated form of Theorem 2.1, since it is represented by

the rectangle below c , after reordering the columns if necessary. There-ty1
Ž ty1.Ž . Ž .fore, BB l is BB-cyclic, and hence d l F t y 1.BB

Ž . Ž .2 The proof is similar to that of Lemma 3.3 2 . In the last case, we
suppose for contradiction that c s k y 1, c s k, and k y 1 F ctyk tykq1 j

Ž .F k, for j s t y k q 2, t y k q 3, . . . , t y 1. Similar to the proof of 1 ,
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Ž . Ž tyky1.Ž .then the rectangle below c in diagram l gives that BB l istyky1 BB
Ž tyky1qi.Ž . Ž ty1qi.Ž .BB-cyclic. Thus, by Theorem 2.1, BB l s BB l for i G 0.

Ž .Counting the number of parts in each partition, we have c , . . . , c styk ty1
Ž .c , . . . , c , a contradiction.t tqky1

THEOREM 4.4. Let n be nontriangular,

n s 1 q 2 q ??? q k y 1 q r , 1 F r - k .Ž .

Then

Ž . Ž . 21 D n F k y 2k y 1 for k G 4;BB

Ž .2 furthermore, equality holds when k G 4 and r s k y 1.

Ž . Ž .Proof. 1 We may assume k G 5, since we have D n F 7 for k s 4BB

Ž . 2from Fig. 1. Let l & n. It suffices to show d l F k y 2k y 1. LetBB

Ž . ² : Ž ty1.Ž .seq l s c , c , . . . . Let BB l be BB-cyclic for some t G 1. ThenBB 1 2
Theorem 2.1 gives c s c and k y 1 F c F k for i G 0. Further,tq i tqiqk tqi
we may assume c s k y 1 and c s k, since r / k. We choose such t ast tq1

Ž . 2small as possible. If t F k, then d l F t y 1 F k y 1 - k y 2k y 1,BB

Ž .since k G 5. So we may assume t G k q 1 and c , . . . , c /tyk ty1
Ž . Ž . Ž .c , . . . , c . Then, by Lemma 4.3, at least one of i , ii of Lemma 3.3t tqky1
holds.

Ž . Ž . Ž .If ii holds with q s p q k, we have p, q s t y k q 1, t q 1 . Note
Ž .that Lemma 3.4 gives p q k F n q 1. Then d l F t y 1 s p q k y 2BB

F n y 1 - k 2 y 2k y 1, since k G 5.
Ž . Ž .Else, if i or ii holds and q F p q k y 2, by Lemmas 3.5 and 3.6,

Ž . 2 Ž .seq l has at most k y 3k y 1 terms before the c -term. Then d lBB p BB

Ž . Ž 2 . 2F t y 1 F p y 1 q k F k y 3k y 1 q k s k y 2k y 1.
Ž . Ž .Else, suppose for contradiction that i or ii holds with q s p q k y 1:

Ž . Ž . Ž .if i holds with q s p q k y 1, we have p, q s t y k, t y 1 and c sty1
Ž .k q 1, which is a contradiction, since, by Proposition 3.2 2 , we have

Ž . Ž . Žc F k; else, ii holds with q s p q k y 1, we have p, q s t y k qty1
.2, t q 1 and c s k y 2, which is also a contradiction, since, bytykq2

Ž .comparing rows for c and c in diagram l , we have c / k y 2.tq1 t BB tykq2

Ž . Ž .2 Assume k G 4 and r s k y 1. By 1 , it suffices to present l & n
Ž . 2 Ž .such that d l s k y 2k y 1. Let l s l , l , . . . , l , where l s kBB 1 2 kq1 1

y 1, l s k y 2, l s k y i q 1 for i s 3, 4, . . . , k, and l s 1. Imitat-2 i kq1
2Ž .ing the proof of Theorem 3.1, we can show that d l s k y 2k y 1.BB

Ž .So far we have obtained an upper bound for D n in Theorem 4.4.BB

Ž .Next we will find a lower bound for D n and conjecture this lowerBB

Ž .bound is the actual value of D n .BB
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Ž .LOWER BOUND THEOREM 4.5. For n s 1 q 2 q ??? q k y 1 q r, G 3,
1 F r F k,

k y 1¡
k y 3 y r k q r q 2, for 1 F r - ,Ž .

2
k y 1 k q 1~D n GŽ . n y k q 1, for r s or ,BB 2 2

k q 1
r y 2 k q r , for - r F k .Ž .¢ 2

Ž .Proof. It suffices to present l & n such that d l is the stated lowerBB

Ž . Žbound on D n . We consider three cases associated arrays for extremalBB

Ž . Ž . .partitions in Cases 1 and 3 are illustrated in Fig. 8 :

Ž . ?Ž . @ Ž .Case 1 . 1 F r - k y 1 r2 . Let l s l , l , . . . , l , where l s1 2 k 1
k y 2, l s k y i for i s 2, 3, . . . , k y r y 1, and l s k y i q 1 for i si i
k y r, k y r q 1, . . . , k. Imitating the proof of Theorem 3.1, we can show

Ž . Ž .that d l s k y 3 y r k q r q 2.BB

Ž . ?Ž . @ ?Ž . @ Ž .Case 2 . r s k y 1 r2 or k q 1 r2 . Let l s 1, 1, . . . , 1 with
n parts of 1. By applying induction on i, we can show that

Ž1q1q2q3q? ? ?qi.Ž . Ž Ž . .BB l s n y 1 q 2 q ??? qi , i, i y 1, i y 2, . . . , 2, 1 for i
Ž . Ž . Ž .s 1, 2, . . . , k y 2. Thus d l s 1 q 1 q 2 q 3 q ??? q k y 2 q r y 1BB

s n y k q 1.

FIG. 8. Associated arrays for two extremal partitions in Theorem 4.5.
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Ž . ?Ž . @ Ž .Case 3 . k q 1 r2 - r F k. Let l s l , l , . . . , l , where l1 2 kq1 i
s k y i for i s 1, 2, . . . , k y r q 1, l s k y i q 1 for i s k y r q 2,i
k y r q 3, . . . , k, and l s 1. Imitating the proof of Theorem 3.1, wekq1

Ž . Ž .can show that d l s r y 2 k q r.BB

w xCONJECTURE 4.6 5 . Assume n G 3.

Ž .1 If

K y 2
n g 1 q 2 q ??? q K y 1 , 1 q 2 q ??? q K y 1 q ,Ž . Ž .

2

Ž . Ž .2 Ž . uŽ 2 . vthen D n strictly decreases from K y 1 y K y 1 to K y 2 K r2 .BB

Ž .2 If

K y 2
n g 1 q 2 q ??? q K y 1 q , 1 q 2 q ??? q K y 1 q K ,Ž . Ž .

2

Ž . uŽ 2 . v 2then D n strictly increases from K y 2 K r2 to K y K.BB

2 Ž .2 Ž . Ž .Actually Etienne gave K y K instead of K y 1 y K y 1 in 1 and
Ž .2 Ž . 2 Ž .gave K q 1 y K q 1 instead of K y K in 2 . Both of these seem to

be mistakes.
w xAccording to 5 , this conjecture was confirmed for n s 3, 4, 5, . . . , 55.

Here we suggest a stronger conjecture that is confirmed for n s
Ž .3, 4, 5, . . . , 36 see Fig. 1 , and also for r s k y 1, k.

Ž .CONJECTURE 4.7. In Theorem 4.5 ‘‘D n G ’’ can be replaced withBB

Ž .‘‘D n s .’’BB

5. CAROLINA SOLITAIRE: A VARIATION OF
BULGARIAN SOLITAIRE

Let us now define Carolina Solitaire formally, and then derive analogues
of some of the results for Bulgarian Solitaire. For a positive integer n, we

Ž .say l s l , l , . . . is a composition of n, and we write l * n, provided1 2
Žthat the positive integers l , l , . . . , l not necessarily in nonincreasing1 2 s

.order add up to n and l s 0 for i G s q 1. We say such l has si
Ž . Ž .positive parts, and we often drop the zeroes, writing l s l , l , . . . , l .1 2 s

Ž .The shift operation CC on l is the composition of n, denoted CC l ,
obtained by decreasing each part l by one, inserting a part s s as the firsti

Ž i.Ž .part, and discarding any zero parts. So CC l denotes the composition
obtained by successively applying the shift operation CC to l a total of i
times. Starting with a composition l, we describe Carolina Solitaire by
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repeatedly applying the shift operation CC to obtain the sequence of
compositions

l, CC l , CC Ž2. l , . . . .Ž . Ž .

Ž .For a couple of simple examples, we note that l s 2, 1, 1, 1, 1 * 6 gives
Ž . Ž . Ž . Ž . Ž . Ž . Ž .the sequence 2, 1, 1, 1, 1 , 5, 1 , 2, 4 , 2, 1, 3 , 3, 1, 2 , 3, 2, 1 , 3, 2, 1 , . . . ,

Ž . Ž . Ž . Ž . Ž . Ž . Ž .while l s 6, 1 * 7 yields 6, 1 , 2, 5 , 2, 1, 4 , 3, 1, 3 , 3, 2, 2 , 3, 2, 1, 1 ,
Ž . Ž . Ž . Ž . Ž .4, 2, 1 , 3, 3, 1 , 3, 2, 2 , 3, 2, 1, 1 , 4, 2, 1 , . . . . The first example is fixed

Ž .at the composition 3, 2, 1 after five steps, while the second example
reaches a cycle after four steps.

Ž .We say a composition m s m , m , . . . , m * n is a permutation of a1 2 s
Ž .composition l s l , l , . . . , l * n if the parts m of m are a permuta-1 2 s i

tion of the parts l of l. We notice the connection between Bulgariani
Solitaire and Carolina Solitaire: If m * n is a permutation of l & n then,

Ž i.Ž . Ž i.Ž .for i ) 0, CC m * n is a permutation of BB l & n.
Ž . Ž .Similar to BB-cyclic partition, d l , and D n in Bulgarian Solitaire,BB BB

Ž . Ž . Ž .we can define resp. CC-cyclic composition, d l , and D n in CarolinaCC CC
Ž i.Ž .Solitaire: We say a composition m * n is CC-cyclic if CC m s m for some

i ) 0. We will prove in Theorem 5.1 that l * n is CC-cyclic if and only if
l & n is BB-cyclic. To measure how long it takes for Carolina Solitaire to

Ž .cycle, for l * n we let d l denote the smallest integer i G 0 such thatCC
Ž i.Ž . Ž . � Ž . 4CC l is CC-cyclic. Let D n [ max d l : l * n , so that for anyCC CC

Ž . Ž . Ž . Ž .l * n, D n steps reach a cycle. Trivially, D 1 s D 2 s 0 and D 3CC CC CC CC

Ž .s 3. The values of D n , 4 F n F 36, are displayed in Fig. 9, which weCC

worked out by computer. The data are arranged using the representation
Ž .n s 1 q 2 q ??? q k y 1 q r, 1 F r F k.

Ž . 2We will show in Theorem 5.5 that D n s k y 1 whenever n s 1 q 2CC

q ??? qk. When n is a nontriangular number, we will prove in Theorem
Ž . 25.8 that D n F k y k y 2 for k G 4. We also present in Theorem 5.9 aCC

Ž .lower bound for D n that we conjecture is the correct value in general.CC

Ž .FIG. 9. D n for n s 4, 5, . . . , 36.CC
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Now we start with the characterization of CC-cyclic compositions. Simi-
Ž .larly to the associated 0, 1 -array for a partition, we can define the

Ž . Ž .associated 0, 1 -array for a composition l s l , l , . . . , l * n:1 2 s

1, if j F s and i F l ,` jw xM s m , where m sl i j i ji , js1 ½ 0, otherwise.

The columns of M correspond to the parts of l.l

We notice that M can be obtained directly from M by a shiftingCC Žl. l

Ž . Ž .process on a 0, 1 -array: Assume l s l , l , . . . , l * n and its associ-1 2 s
ated array M is given.l

Step 1: Diagonally circular shifting. This is the same as Step 1 for
Bulgarian Solitaire described in Section 2. After Step 1, we obtain a new
array; denote it M X. Note that the numbers of ones in columns of M X arel l

s, l y 1, l y 1, . . . , l y 1, 0, 0, 0, . . . . If l y 1 s 0 and l y 1 ) 01 2 s i iq1
for some i, then we need an extra step to obtain M . Otherwise, M X isCC Žl. l

the array M .CC Žl.

Step 2: Left shifting. Whenever there is some integer j such that the
X Ž . Xjth column of M is an all-zero column and the j q 1 th column of M isl l

not an all-zero column, we remove the jth column and shift each column
with larger index one column to the left. We repeat this shifting until there
does not exist such an integer j.

Using the shifting process described above and imitating the proof of
Theorem 2.1, we can show

Ž .THEOREM 5.1. Let n s 1 q 2 q ??? q k y 1 q r, 1 F r F k. Then l *
n is CC-cyclic if and only if l has the form

k y 1 q d , k y 2 q d , . . . , 2 q d , 1 q d , d ,Ž .ky1 ky2 2 1 0

where each d is 0 or 1 and Ýky1 d s r.i is0 i

Ž .COROLLARY 5.2. If n s 1 q 2 q ??? qk, then k, k y 1, . . . , 2, 1 is the
unique CC-cyclic composition of n.

By Theorems 2.1 and 5.1, l * n is CC-cyclic if and only if l & n is
BB-cyclic. So the number of cycles for Carolina Solitaire is the same as that
for Bulgarian Solitaire.

Ž . 2Next we shall prove D n s k y 1 for triangular n.CC

PROPOSITION 5.3. Let n s 1 q 2 q ??? qk and l * n. Then l is a
Ž . Ž .permutation of k, k y 1, . . . , 2, 1 if and only if d l F k y 1.CC
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Ž .Proof. If l is a permutation of k, k y 1, . . . , 1 , it is easy to see that
Žky1.Ž . Ž . Ž .CC l s k, k y 1, . . . , 1 and d l F k y 1. If l is not a permuta-CC

Ž . Ž i.Ž .tion of k, k y 1, . . . , 1 , then there exists m s CC l , i G 0, such that m
Ž . Ž .is not a permutation of k, k y 1, . . . , 1 and CC m is a permutation of

Ž . Žk, k y 1, . . . , 1 . We note that m must be a permutation of k q 1, k y
. Žky1.Ž . Ž .1, k y 2, k y 3, . . . , 2 , and hence CC m s k, k y 1, . . . , 3, 1, 2 is not

Ž . Ž .CC-cyclic. Therefore, d m G k and d l G k.CC CC

Combining Proposition 5.3 with Theorem 2.1, we have the following
corollary that describes the relation between Carolina Solitaire and Bul-
garian Solitaire when n is a triangular number.

COROLLARY 5.4. Let n s 1 q 2 q ??? qk and let l * n be a permuta-
tion of l9 & n.

Ž . Ž . Ž .1 d l F k y 1 if and only if d l9 s 0.CC BB

Ž . Ž . Ž . Ž .2 If d l G k then d l y d l9 s k y 1.CC CC BB

Combining Corollary 5.4 with Theorem 3.7, we can prove:

THEOREM 5.5. If n s 1 q 2 q ??? qk, then

D n s k 2 y 1.Ž .CC

Ž .Now we turn our attention to the value of D n for nontriangular n.CC

Ž .PROPOSITION 5.6. Let l * n s 1 q 2 q ??? q k y 1 q r, 1 F r - k.

Ž .1 If l is a permutation of some CC-cyclic composition of n, then
Ž .d l F k y 1.CC

Ž .2 If l is not a permutation of any CC-cyclic composition of n, then
Ž .d l G k y 1.CC

Ž .Proof. 1 Assume l is a permutation of m * n, where m has the
Žky1.Ž .stated form of Theorem 2.1. Then we note that CC l also has the

Žky1.Ž . Ž .stated form of Theorem 2.1. Thus CC l is CC-cyclic and d l F k y 1.CC

Ž .2 It is easy to verify the statement for k F 3. So we may assume
k G 4. If l is not a permutation of any CC-cyclic composition of n, then

Ž i.Ž .there exists m s CC l , i G 0, such that m is not a permutation of any
Ž .CC-cyclic composition and CC m is a permutation of some CC-cyclic compo-

sition. By Theorem 2.1, we note that m must be a permutation of
Ž .k q d , k y 2 q d , k y 3 q d , . . . , 3 q d , 2 q d , d q d ,ky1 ky3 ky4 2 1 0 ky2

Ž . Ž .where each d is 0 or 1, d F d , and d , d / 0, 1 . Theni 0 ky2 ky1 ky2
Žky2.Ž . Ž .CC m does not have the stated form of Theorem 2.1. So d m G k yCC

Ž .1, and hence d l G k y 1.CC
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Ž .We note that from the condition ‘‘d l s k y 1’’ we cannot determineCC

whether l is a permutation of some CC-cyclic composition of n. For
Ž . Ž .example, when k s 4, l s 3, 2, 4 * 9 with d l s 3 is a permutation ofCC

Ž . Ž . Ž .the CC-cyclic composition 4, 3, 2 ; however, l s 5, 4 * 9 with d l s 3CC

is not a permutation of any CC-cyclic composition.
Similarly to Corollary 5.4 for triangular n, we have the following

corollary that describes the relation between Carolina Solitaire and Bul-
garian Solitaire when n is not a triangular number:

Ž .COROLLARY 5.7. Let n s 1 q 2 q ??? q k y 1 q r, 1 F r - k, and let
l * n be a permutation of l9 & n.

Ž . Ž . Ž .1 If d l F k y 2 then d l9 s 0.CC BB

Ž . Ž . Ž . Ž .2 If d l G k y 1 then d l y d l9 s k y 2 or k y 1.CC CC BB

Ž . Ž .Proof. 1 follows immediately from Proposition 5.6 2 and we can
Ž . Ž . Žprove 2 by applying induction on d l . For the induction basis, we noteCC

Ž . Ž . .that if d l s k y 1, then d l9 s 0 or 1 by Proposition 5.6.CC BB

We are now in a position to prove

Ž .THEOREM 5.8. Let n be nontriangular, n s 1 q 2 q ??? q k y 1 q r,
1 F r - k. Then

Ž . Ž . 21 D n F k y k y 2 for k G 4;CC

Ž .2 furthermore, equality holds when k G 4 and r s k y 1.

Ž . Ž .Proof. 1 follows from Theorem 4.4 and Proposition 5.7. To prove 2 ,
Ž . 2it suffices to present l * n such that d l s k y k y 2. Let l sCC

Ž .l , l , . . . , l , where l s k y 1, l s k y 2, l s k y i q 1, for i s1 2 kq1 1 2 i
3, 4, . . . , k, and l s 1. Imitating the proof of Theorem 3.1, we can showkq1

2Ž .that d l s k y k y 2.CC

Ž .Using the results for D n and considering the relations betweenBB

Ž . Ž . Ž .d l and d l , we have proven Theorems 5.5 and 5.8 for D n . WeCC BB CC

can also prove these two theorems in another way: Note that we have
Lemmas 3.3, 3.4, 3.5, 3.6, and 4.3 for Bulgarian Solitaire. If we consider
analogous lemmas for Carolina Solitaire, then we can prove Theorems 5.5
and 5.8 directly.

Ž .Similarly to Theorem 4.5 for D n , we have the following ‘‘lower boundBB

Ž .theorem’’ for D n :CC
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Ž .LOWER BOUND THEOREM 5.9. For n s 1 q 2 q ??? q k y 1 q r G 3,
1 F r F k,

k y 1¡
k y 2 y r k q r , for 1 F r - ,Ž .

2
k y 1 k q 1

n y 1, for F r F and r s 1,
2 2~D n GŽ .CC k y 1 k q 1

n , for F r F and r G 2,
2 2

k q 1
r y 1 k q r y 1, for - r F k .Ž .¢ 2

Proof. Similarly to the proof of Theorem 4.5, we consider three cases:
?Ž . @ ?Ž . @ ?Ž . @ ?Ž . @1 F r - k y 1 r2 , k y 1 r2 F r F k q 1 r2 , and k q 1 r2 - r

Ž .F k. For each case, we take the same extremal partition composition as
that in the proof of Theorem 4.5.

We conclude this paper by giving the following conjecture that is
Ž .confirmed for n s 3, 4, . . . , 36 see Fig. 9 , and also for r s k y 1, k.

Ž .CONJECTURE 5.10. In Theorem 5.9 ‘‘D n G ’’ can be replaced withCC

Ž .‘‘D n s .’’CC
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