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Abstract: Since about a decade some new trends in the study of interacting
particle systems can be identified. New is meant here with respect to some standard
references and plays both in new mathematical challenges and in new models or
phenomena. Examples are collected in the present volume. I give them here a short
introduction.

1. Standard set-up

Recent years have seen the appearance of new types and models of
interacting particle systems (IPS). New IPS do not quite fit into the
mathematical framework of the standard theory or ask new types of
questions or want to model phenomena investigated in more recently
formulated theories. The papers included in the present volume will
better explain what I mean. Fortunately, the standard references, in-
cluding [4, 2], in the theory of IPS remain extremely useful and in fact,
they have been able to excite the search of new boundaries and leave
room for extensions and new explorations.

Even though IPS are a very natural application of Markov processes
to spatially extended systems, or, global Markov processes, much im-
petus was gained from the interpretation in terms of multicomponent
random systems. Statistical mechanics was and still is a major source
of inspiration. One of the motivations for studying the stochastic Ising
model was to learn more about the equilibrium statistical mechanics of
magnetic systems. Other sciences like biology, economy and the social
sciences have also provided effective models and the ever increasing
power and speed of computers, hence simulations, have contributed
considerably in making IPS a popular and a valuable tool.
Quite generally one has in mind agents or particles located at the sites
of a lattice. The particles can be in different states and these are
updated dynamically and depending on the states of neighboring par-
ticles. The first questions concern the definition of these models on
infinite lattices and the existence of invariant or stationary measures.
Usually the main questions concern the nature of the stationary states,
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their basin of attraction and ergodic properties. Some of the standard
features of these IPS include

• fixed architecture: the cells, particle or spin configurations are
attached to the sites of usually regular lattices. That architec-
ture is not changing in time and has no dynamical role.

• global Markov property: the dynamics defines a Markov process
and the updating is specified directly via some transition rates
or probabilities. The standard formalism of linear operators is
applicable for deriving the general properties of the generator
and its semigroup. It implies (for compact spaces) the existence
of invariant measures.

• locality of the interaction: for the given architecture, the dy-
namics is finite range or sufficiently damped at infinity to allow
the thermodynamic limit. Mathematically that gets translated
in the Feller property of the dynamics: the semigroup or the
transition operator (in discrete time) leaves the set of continu-
ous functions invariant. In fact, the dynamics can be defined
directly in infinite volume.

• especially for applications in statistical mechanics there is a no-
tion of detailed balance and reversibility that connect stationary
measures with equilibrium Gibbs measures. The stochastic or
kinetic Ising model is the standard example. Away from equi-
librium or beyond statistical mechanics, no unique principle
guides the form of the transition rules.

• simplicity of the model in its ingredients and its updating rule
is seen as a quality and the ambition is often to see how a rich
and complex behavior can emerge from it.

The mathematical situation is then more or less as follows: Consider
a finite graph G with vertex set V . To each i ∈ V is assigned a variable
η(i) ∈ S where S is finite, and a finite family (Tα

i )α of transformations
on ΩV ≡ SV possibly depending (e.g. through α) on the edges of
the graph G. There are non-negative functions pi(α, ·) on ΩV , called
transition rates that define (what will be) the generator

Lf(η) =
∑
i∈V

∑
α

pi(α, η)[f(Tα
i η)− f(η)] (1.1)

of a Markov process on ΩV . That is quite general but standard in-
teracting particle systems will have the extra feature that Tα

i η differs
from η only in a neighborhood of i (as defined by the edge set) and
that the rates pi(α, η) are only very weakly depending on η(j) where
j is far away from i (in number of edges that separate i from j). For
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example, with only one α, Ti could simply change the value of η(i) and
pi(η) could only depend on η(i) and η(j) with j a nearest neighbor of
i.
It is then standard practice to define the model on infinite volume
mostly regular lattices to start the study of the corresponding Feller
process.

2. Nonlocal processes

Over the last 15 years new models have appeared that have gener-
ated a lot of interesting work where the action of the Tα

i is not local.
I am giving the example of the abelian sandpile process, to be defined
in the contribution of A. Jarai, see also the references there.
For short, see e.g. [3], in the case of sandpiles the transformations Tα

i

can be very nonlocal. In some way the range depends on the configu-
ration. For some configurations η, all of the degrees of freedom in the
finite volume can be involved.
That nonlocality represents the major problem in defining the thermo-
dynamic limit of the process. There are ways to deal with it but initial
progress has been slow. Recently there has been great developments in
obtaining the thermodynamic limit also for the sandpile process and
its stationary measure on the regular lattices; a review is in [5]. I refer
to the contribution of A. Jarai in the present volume for further details.

There are other processes that share similar nonlocal or long range
aspects with the sandpile process. They have names like the forest fire
process and the Bak-Sneppen evolution model The main open questions
remain the existence of thermodynamic limits and the proof of critical
properties as manifested in power law statistics for various observables,
cf. [1]. The contribution by R. Meester and C. Quant gives a ’critical’
discussion.

3. Variable or complex architecture

Recent interest is also going to interacting particle systems where the
set of sites, the space or architecture, is changing in the process of inter-
action. Here is an example due to A. Toom of such a one-dimensional
model, see [6].
At every site i of Z there is either a plus or a minus, η(i) = ±1. I sketch
the definition of the dynamics which is here in discrete time with par-
allel updating, like for probabilistic cellular automata. There are two
actions. The first one is standard: every minus turns into plus with
probability β independently of others. Secondly, there is annihilation.
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Informally, whenever a word (+1,−1) occurs in the infinite configu-
ration, it disappears with probability α independently of all the rest.
The disappearing must be taken literary: the pair of nearest neighbor
sites (with their occupation) is just removed. If one would define that
on a finite configuration, the length of the total configuration would
each time decrease by two. To define it mathematically for the infinite
one-dimensional lattice requires somewhat more effort but the idea is
clear. It can be done quite easily when starting the process from a
homogeneous (translation-invariant) initial measure. Toom considers
the all minus state as initial measure and considers the measure µt at
time t. He proves the following kind of phase transition:
(1) the fraction of pluses in µt does not exceed 300β/α2.
(2) if 2β > α, then µt converges to the all plus state as t ↑ +∞.
Moreover, the supremum s(α, β) of the density of pluses in µt over all
natural t, is not continuous as a function of β.
These results are quite new and unexpected. See for example how the
first operation favors pluses (minuses are turned into pluses) while the
annihilation as such looks neutral. The analogue of s(α, β) for the con-
tact process or for percolation is continuous; in Toom’s model we see
what is similar to a first order phase transition.

Similar process or processes where the architecture also has a dynam-
ics have been considered by V. Malyshev. Sometimes the motivation
is found in computer science problems but also in projects related to
deep questions at the frontier of physics. Of course, one can also en-
joy defining interacting particle systems on random lattices or graphs.
The difference is that here there is an interaction or feedback between
the architecture and the particle system itself. That can be taken into
scenario’s of some theories of gravity: the particle configuration spec-
ifies the graph and the graph governs the interaction between and the
behavior of the particles. It has even been suggested that such models
with direct nonlinear feedback between architecture and dynamics are
interesting toy-models in the study of quantum gravity.

The contribution of B. Derrida can partially be classified under ’spe-
cial architectures’ and under the next section of ’biologically inspired’
IPS. There one enters the field of genomics and human evolution. Ge-
nealogy in the era of genomics also encounters models of IPS. A typical
architecture is the family tree but there are random aspects to it.
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4. Biological models

Mathematicians and physicists (and almost every kind of species in
between) enjoy simplicity. The structures and rules must be simple
and short to formulate; beauty is in the simplicity of the model and
in the richness of possible behavior. The point is often emphasized
that it is important to recognize what are the major elements in the
dynamics that alone can already give rise to the required phenomena,
independent of further —microscopic— details.

That attitude is not often fully appreciated by biologists. True one
wants to see what is in principle possible but it does not necessarily
explain the phenomena. Taking into account of the biological reality
seems an important requirement and that reality is most of the time
extremely complex and painstakingly difficult to grasp in its totality.
Simple models are simply not realistic and standard practitioners of
IPS will be horrified by the length to which biologists want to go in
only defining the system. It is already a challenge to keep track of all
the rules and elements in the models.
It is interesting to see that one can reproduce certain biological pat-
terns by a cellular automaton or by an IPS; the pattern of a sea shell or
the stripes of a zebra are typical examples. It is however not automat-
ically true that an important insight is gained by these reproductions.
A new trend in biology-related IPS is to recognize that and to go to
meet the true questions of the biology community.

Biological IPS fall in the category of standard IPS except for the
unusual complexity of the models itself. Examples can be tasted in
the contribution of P. Hogeweg. One can ask similar questions as in
IPS, e.g. for the so called kinetic or hydrodynamic limits as we see
in the contribution of L. Triolo. Indeed, also biological systems have
various scales of description and also there, the various levels though
hierarchically connected, have a certain autonomy with possibly new
and unexpected behavior. The recent trend in biophysics reaches from
population dynamics and ecology to molecular and cellular biology. It
is however often far form obvious to recognize what are the essential
macroscopic variables and what are the relevant time-scales.
There have always been models in IPS that have been directly influ-
enced by biology or by biological issues but the wealth of new data and
new experimental techniques in biology certainly presents new inspira-
tion for perhaps more realistic IPS.
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5. Games and economies

The contribution of J. Miekisz gives us an introduction to spatially
extended games. Here IPS inspire the definition and the study of games
between multiple agents. That appears natural in the study of certain
economic markets. One speaks about socio-economic systems. Again
the definitions are mathematically entirely compatible with standard
IPS but new concepts and new questions appear. One notion that is
of particular importance is that of Nash equilibria and its stochastic
stability.

Agents have at their disposal certain strategies and their payoffs in
a game depend on strategies chosen both by them and by their oppo-
nents. The agents sit on the vertices of a graph and their opponents are
their nearest neighbors. A Nash equilibrium is an assignment of strate-
gies to players (thus, a configuration) such that no player, each time
for fixed strategies of his opponents, could win by changing his strat-
egy. Clearly, one feels the connection with the idea of ground states in
equilibrium statistical mechanics but there are important differences.
The notion of detailed balance can play a role but by the type of ques-
tions, new stochastic rules are selected with their own simplifications
and properties.
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