
Phase transitions and power laws

1 Phase transitions

Consider the percolation model:

��������� �	�
��� �
�������
Is there a path across the lattice from one side to the other? Clearly if � is very low there is not. If it’s
high there is. Somewhere in between a path appears.

Let ����� ��� be the probability that a path exists across a system of ����� sites when a fraction � of the
sites are filled in. Here’s what ����� ��� looks like:
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As � becomes large, the change from no-path to path becomes sharper and sharper. When ���  , it
is a step—an instantaneous transition. This is an example of a phase transition.

Another common example of a phase transition is the change from liquid water to steam or water
vapor:
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In fact there are two different transitions taking place here:

1. When liquid water changes to water vapor at constant temperature, we have a first order phase
transition, which is characterized by a coexistence region in which water and vapor are seen
simultaneously, and by a latent heat—a finite amount of work needs to be done in order to
drive the system through the transition.

2. As temperature increases the size of the coexistence region diminishes and finally vanishes. The
point at which it vanishes is a continuous phase transition, like the transition in percolation.

These appear as the line !#" (first order transition) and the point $ (continuous transition) in the
figure.

Other continous phase transitions include:% Curie point & � of a magnet.% The superconducting transition (either high- or low- & � superconductors).% The epidemic transition of a disease ��' �)( .% The error catastrophe of population genetics.% The formation of a giant component in a random graph (the “small-world” transition).% The solvability transition in computation complexity theory (e.g., in satisfiability).% Maybe the frozen/chaotic transition in cellular automata (but probably not: the Game of Life,
which is capable of universal computation, has a large but not infinite correlation length).% Maybe the frozen/chaotic transition in Kauffman’s !�*+$ model of coevolution.

And many more, in all different subjects.
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2 Scaling theory

All phase transitions have an order parameter, which is a quantity which is zero on one side of the
transition and non-zero on the other:

system independent variable order parameter
percolation site occupation probability fractional size of spanning cluster
magnet temperature magnetization
superconductor temperature fraction of electrons in Bose condensate
disease reproductive ratio fraction of population affected by average outbreak
evolution mutation rate fraction of population at fitness optimum
random graph mean degree fractional size of giant component
satisfiability ratio of variables to clauses fraction of problems satisfiable

A continuous transition in one in which the order parameter varies continuously as we go through the
transition point. Example, percolation:
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It can have infinite gradient at the transition, and often does, but it cannot be discontinuous.

At finite system sizes the transition is not instantaneous.
Only in the limit of large system size do we get a sharp step
at the transition.

If one calculates the average cluster size, this must diverge at the transition. This divergence is a
classic example of a critical phenomenon:
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We define ,.-/� ��� to be the density of clusters of size 0 at occupation fraction � , excluding the spanning
clusters. It must have the scaling form ,.- �21 �3054763098 �;: �30 �<� (1)

Important stuff: Consider the following scaling argument. If we change the scale on which we
measure areas on our lattice by a factor of = , then all clusters change size according to 0
� =<0 . Of
course, the physics of the system hasn’t changed, only how we measure it, so this change of variables
cannot change the distribution ,>- , except by a numerical factor to keep the normalization correct.

The argument of 1 �@? � doesn’t change anyway, because 0 and 6A058 both change by the same factor = .
But the argument of : �B? � does change. Thus : �B? � must satisfy: �C=D? �E�2F �G= �H: �@? �<I (2)

where F �C= � is the numerical factor, which can depend on = but not ? . Let us choose the normalization
of : so that : � (5�J�K( . Then, setting ? �)( above we have: �G= �E�LF �G= � (3)

for all = and hence F �B? � and : �B? � are the same function. Thus: �B?�M �J��: �@? �;: �CM �<� (4)

To solve this equation, we take the derivative with respect to M :NN M : �B?�M �J� ? :PO �@?�M �E�Q: �B? �;:PO �CM �<I (5)

then set M �R( to get ? :PO �@? �S�Q: �B? �;:PO � (5�TI (6)
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whose solution is UWVYX : �@? �E�Z:PO � (5� UWV[X ?]\_^ I (7)

where ^ is an integration constant. Given : � (5�J�)( , we must have ^ ��� , and hence: �@? �E� ?.`Pa I (8)

where b �Rcd: O � (e� . This functional form is called a power law. The quantity b is a critical exponent.

The distribution of cluster sizes becomes a power law exactly
at the critical point. Indeed, the same arguments imply that
all distributions will become power laws at the critical point.
This is one of the characteristic features of phase transitions.

One of the nice things about power laws is that if : �B? �gf ? `Pa , then
UWV[X : �B? �gfhc b UiV[X ?j\ constant,

so power laws give straight lines on log–log graphs:
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3 Renormalization group

Calculating the properties of systems at or near the critical point was one of the abiding problems of
twentieth century physics, until it was solved beautifully by Ken Wilson and Michael Fisher in the
1970s with their invention of the renormalization group (RG). Here’s how you would use the RG to
calculate the position of the phase transition in percolation.

3.1 RG for percolation

Here is a simple example of the (real-space) renormalization group for our percolation problem.% Close to the critical point, the cluster size distribution becomes power-law, and averages over
the distribution are dominated by the large- 0 contributions, i.e., by large clusters.% The large clusters are invariant when we rescale the system.

Simple rescaling transformation:
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On a large system:

As we can see, the transformation preserves most of the large-scale structure of the configuration,
although a lot of the small detail is lost.

What is the occupation probability of the new state? The probabilities of the kl�mk blocks which map
to an occupied site sum to��O7�Ln<��o � (pcq���ro \�k ��s � (pcq��� \ �7tu�2n<��ovc#�7t5� (9)

If we are precisely at the transition point, then the distribution of cluster sizes doesn’t change—it is a
power law before and a power law after we rescale. This means that �w� is the point at which � O ��� , or�7t� c�n<��o� \ ���J�L��I (10)

which has solutions � and ( (not likely), or

���x� cy( \{z |n �L����}�(e~����/� (11)

The result from numerical simulations is ���E����� | �[������� , so we’re within a few percent. This is typical
of RG methods—the answers are pretty good with little effort, but the errors are rather uncontrolled.

4 Power laws

As we saw, a power law is a function of the form1 �B? �v�L1 � (5� ?.`Pa I (12)

where b is a constant. Power laws occur at critical points, but as we will see they occur elsewhere
also. A straight-line form on logarithmic scales indicates a power law.

The power law is, in some respects, a rather surprising functional form. We expect to see exponential
distributions, as arise from the maximization of the Gibbs entropy. Exponentials also arise in many
other contexts, particularly in the probabilities of things happening many times and in solutions of
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first order differential equations. We also expect to see the Gaussian distribution, or its close relatives
the binomial and Poisson distributions, which arise naturally through additive random processes and
the central limit theorem.

But power laws are a considerably rarer phenomenon in the real world. There are however quite a
number of situations where they do crop up, and this leads to speculation about what their cause might
be. Many physicists have suggested that critical phenomena may be an explanation for power laws in
real-world data. In recent years the investigation of power-law forms in various systems has been one
of the principal preoccupations of the complex systems community.

Rank/frequency plots: Suppose a certain quantity ? has a power-law distribution, as in Eq. (12)
above. Then the integral under the distribution from ? to  is

�l�B? �v��1 � (5���l�� M�`Pav�7M � 1 � (5�(pc b ?.`PaT�w� � (13)

This quantity is called the rank. If 1 �B? � is a histogram of ? , then �l�B? � is the number of measurements
which had a value greater than or equal to ? . To put it another way, if we number , measurements
from 1 (greatest) to , (smallest), then the number given to a measurement ? is �l�B? � . Above we see
that if 1 �B? � is a power law, then so is �l�B? � . Often one plots a so-called rank/frequency plot, which
is �l�B? � plotted against ? . On log-log scales this should be a straight line with slope c b
\ ( . This
is better than making a histogram, because it doesn’t require us to bin the data—each data point gets
counted separately.

Here is a rank/frequency plot for our cluster size data:
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Note that the thing that rank is plotted against is not necessarily a frequency. In the first such plots, the
measured data were frequencies, and the name has stuck, but in most cases the independent variable
is something other than frequency, such as here, where it is cluster size. Rank/frequency plots are also
sometimes called cumulative distribution functions or cumulative histograms.
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4.1 Examples of power laws

Here are some examples of data from various situations that show power laws. Some are normal
histograms, some are rank/frequency plots, depending on how the original data were published.
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Top left to bottom right, these show:

1. the populations of US cites with more than | �S�Y�[� inhabitants, from the US Census;

2. the number of species per genus of angiosperms (flowering plants), from Willis (1922);

3. number of links in pages on the world-wide web, from Broder et al. (1999);
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4. frequency of occurrence of words in the English language, from Moby Dick;

5. peak intensity of solar flares, from Lu and Hamilton (1991);

6. normalized intensities of wars 1495–1973, from Roberts and Turcotte (1998).

7. areas burned by forest fires in the Australian Capital Territory, 1926–1991, from Malamud et al.
(1998);

8. sizes of craters on the Moon, from Gehrels (1994);

9. magnitudes of earthquakes in the Southeastern United States, 1974–1983, from Johnston and
Nava (1985);

Many other examples exist, including sizes of avalanches, sizes of meteors, wealth and income distri-
butions, and fluctuations in economic indices.

So are all these power laws examples of critical phenomena? Some physicists would like to claim
that they are. The most cursory inspection, however, reveals that this is an idiotic claim. There are
many ways in which power laws can be produced, and only a few real power laws come from critical
phenomena. What’s interesting though is that the number of known ways of producing power laws is
not very large. If you find a power law, like the ones above, the number of mechanisms that could be
behind it is rather small, and so the mere existence of a power law gives you a lot of help in working
out the physical mechanism behind an observed phenomenon.

4.2 Mechanisms for creating power laws

Here are the main known mechanisms by which power laws are created.

4.2.1 Critical phenomena

We saw this one earlier. This is the classic power-law-producing mechanism of statistical physics, but
it has a big disadvantage as an explanation for natural phenomena: to see the power law you have to
be exactly at the critical point. If you are not at the critical point then, as we saw, you get some more
general form such as ,�- � 0 `Pa 1 �G05476A058 �<I (14)

which is usually not a power law. This makes ordinary critical phenomena a rather unlikely explana-
tion of an observed power law. (But see “self-organized criticality” below.)

4.2.2 Combination of exponentials

Suppose that some quantity M has an exponential distribution:� �CM �E��� `���� � (15)
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But suppose that the real quantity we are interested in is ? , which is given by

? �L��� � � (16)

Then the probability distribution of ? is

� �B? �v��� �CM � �7M��? � � `����� � � � � ? `��5� � `��� I (17)

which is a power law with exponent b �)( \��J4 � .

Example: (Prof. Moore already mentioned this one.) Suppose that the frequency with which words
are used in a language goes down exponentially with their length � (on average):1 �@� �E��� `���� � (18)

But the number of possible words of length � clearly goes up exponentially with length

,E�@� �E���<� � � (19)

So the number of words used with frequency 1 is

, ����� � �����T��� � c �>� �;� ` � �A� �21 `Pa I (20)

where b � � 4Y� . This is known as Zipf’s law of word frequency.

4.2.3 Reciprocals of things

Suppose we are interested in a quantity ? , which is proportional to the reciprocal of some other quan-
tity M : ? � ^�4�M . And suppose M can take both positive and negative values, having some distribution� �BM � which passes through zero (and is smooth there). Then the distribution of ? is

� �B? �v�
� �CM � �7M��?�� c ^M o � c�(^ (? o I (21)

where the approximate equality pertains close to the origin. In fact, if ? is any inverse power of M ,
then we get a power-law distribution in ? .

A particular example of this is measurements of relative changes in quantities. Suppose we are inter-
ested in the fractional change ? ��� MM I (22)

in the quantity M . If � M is distributed according to any smooth distribution, then the large values
of ? are dominated by cases where M is close to zero, and have the same power-law distribution� �@? �v� ? ` o .
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4.2.4 Random multiplicative processes

We know that random additive processes—ones in which a bunch of random numbers are added
together—give results which are distributed according to a normal distribution. What happens if we
multiply a bunch of random numbers? ? � � ¡£¢ ��¤ ¡ (23)

gives UWVYX ? ��¥ ¡ UWV[X ¤ ¡ I (24)

so
UWV[X ? is the sum of random numbers, and hence is normally distributed. In other words� � UWV[X ? �v� (z n9¦¨§ o �<����© �

UWV[X ? c«ª>� on�§ o ¬ � (25)

Thus the distribution of ? is� �B? �v��� � UWV[X ? � � UWV[X ?��? � (? z n9¦¨§ o �T����© �
UiV[X ? c«ª¨� on�§ o ¬ � (26)

This distribution is called the log-normal distribution.
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log normal with µ = 0.5, σ = 3.0

(Note that formally there is also a divergence in the distribution at the origin. Does this matter?)

If
UWV[X ? is close to its mean ª , then the exponential is roughly constant, and the variation in � �@? �

comes primarily from the leading factor of ( 49? . But the regime in which
UiV[X ? is close to its mean

can correspond to a very large range of ? . Suppose for example that we are multiplying together 100
numbers of typical logarithm 1. Then ª � (e�Y� , and § � (e� . This means that the exponential will be
roughly constant in the range �[�®­ UiV[X ? ­R([(e� , which corresponds to a range of ? from ( � (e� sH¯ to� � (�� t;s , which is more than four orders of magnitude. We would expect to see a good power-law
with slope cy( over this range.
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Example: A classic example of a multiplicative random process is wealth accumulation. Rich peo-
ple make their money by investing the money they already have, and we assume that the rate at which
they make money in this fashion is in proportion to their current wealth, with some fluctuations which
are related to the wisdom of their investment strategy and the current state of the economy. In other
words, in each investment period, one’s wealth is multiplied by some number which fluctuates ran-
domly with some distribution. So it is a multiplicative random process. If all the rich people start
off with roughly the same amount of money (“the first million”), then after some time, their wealths
should be distributed according to a power law. In fact, this is just what one sees. This explanation
was first proposed by Herb Simon in 1955.

Another example: It is proposed that web pages acquire links in proportion to the number they
already have, so that the distribution of numbers of links should be a power law. Indeed, it is found to
be a power law, but it doesn’t have slope cy( . Instead the slope is about c�n . Why is this?

Fragmentation: Suppose we break a stick of unit length into two parts at a position which is a
random fraction of the way along the stick’s length. Then we break the resulting pieces again, and
again, and so on. After many breaks, the length of one of the remaining pieces will be ° ¡ ? ¡ , where? ¡ is the position of the ± th break. Again this is a product of random numbers and the resulting
distribution of lengths will be a power law. This is thought to be the explanation for the power-law
distribution of the sizes of meteors (and also meteor craters).

4.2.5 Random extremal processes

Some processes show temporal randomness, i.e., events which happen at times which are distributed
according to a power law. One such example is the Omori law for earthquake aftershocks (time ²
between aftershocks is found to be distributed according to ² `�� ). One possible explanation is the
random extremal process, or record dynamics. Suppose we generate a stream of uncorrelated
random numbers ? ¡ , and keep a record of the largest one we have seen so far. What is the average
spacing between the record-breaking events?

Suppose it takes time ² � to get a certain record breaking event. Then on average it will take as long
again before we get another event of the same magnitude (or greater). So ² o �³n ² � , and repeating the
same argument, ²H´ �2n ²H´ `�� �2n ´ ²;' � (27)

Then the number µ5, of events in an interval µe² is on average

µ5, � µ5²·¶ ��²�7, � µ5²²;' n5´ UWVYX n � µe²² UWVYX n � (28)

So the distribution of times between records is a power-law with slope c�( , just like the Omori law.

Example: Suppose a population is evolving on a fitness landscape. Most of the time most of the
population is localized around a fitness peak (it forms a species). Occasionally however, an offshoot
population makes it to an adjacent peak, like this:
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If the new peak is higher than the old one, the whole population will move there and we get a “punctu-
ation.” How often will this happen? Well, if the landscape is very high-dimensional, and mutation is
random, then the heights of the peaks sampled will be independent random variables, and the dynam-
ics will obey the rules described above, with punctuations happening with a power-law distribution
of times separating them. Also the times between events, which are the lifetimes of species, will get
longer.

Interestingly, the lifetimes of species do get longer, and maybe they have a power-law distribution:
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4.2.6 Self-organized criticality

We said in Section 4.2.1 that criticality was not a good way of generating power laws, because it
required you to be exactly at the critical point, which is unlikely. However, there is way around this.
Some systems drive themselves to their own critical points and so produce power laws. This is called
self-organized criticality. Here’s a classic example: self-organized percolation, also called the forest
fire model.
“Trees” appear on a square grid at a rate of one per unit time. At a much lower rate, “fires” start at
random points on the grid. If there is a tree at the point where a fire starts, the fire destroys that tree
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and then spreads to any adjacent trees and destroys them, and so on until no trees are left for it to
spread to. In other words, the fire destroys the percolation cluster of trees at the point where it strikes.

If there is a spanning cluster, then there is a finite chance of hitting it and burning it all, which means
that within a finite time, it will be gone. So as soon as the system passes the percolation threshold, it
gets knocked down below it again. Thus it always stays right at the threshold. The result is a system
which always has a power-law distribution of fire sizes regardless of what state you start it off in.

The sandpile: Another famous example of a self-organized critical system is the sandpile:

Sand is dropped on the top of the pile. The slope of the edges thus builds up. Avalanches start to
happen, and they get bigger as the slope increases. At some point—the critical point—their size
diverges, and we get mass transport of sand down the pile. This reduces the slope again and so we
move back below the critical point. Overall therefore, we hover around criticality and get power-law
distributions in the sizes of avalanches.
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Both real avalanches and real forest fires are found to have power-law distributions. Perhaps this is
the explanation? Maybe, but here’s an alternative explanation.

4.2.7 Highly optimized tolerance

Suppose instead of allowing trees to grow at random in the forest, we place them specifically. How
should we place them to minimize the average amount of damage done by the fires? Another way of
looking at this is that we should place fire-breaks between forest stands and optimize the positions of
these breaks. If fires are started by sparks which land uniformly at random everywhere in the forest,
then the solution to this optimization problem is simple—cut the forest into equally sized chunks.
However, if there are more sparks in some areas than others, it turns out that the average damage done
by a fire is minimized by cutting the forest into chunks whose size varies in inverse proportion to the
rate at which sparks land in that area. You can show that if you take this result and use it to work out
what the distribution of the sizes of fires is, you get a distribution which follows a power law for a
wide variety of choices of the distribution of sparks. Thus a power law is generated by the actions of
an external agent (the forester) aiming the optimize the behavior of a system (the forest).

This theory has been applied to (amongst other things) real forest fires and the distribution of file sizes
on the world-wide web:
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Pretty impressive, huh? (Well, maybe, but the jury’s still out on this one.)
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