
Algorithmica (1997) 17: 209–223 Algorithmica
© 1997 Springer-Verlag New York Inc.

Finding and Counting Given Length Cycles1

N. Alon,2 R. Yuster,2 and U. Zwick2

Abstract. We present an assortment of methods for finding and counting simple cycles of a given length
in directed and undirected graphs. Most of the bounds obtained depend solely on the number of edges in the
graph in question, and not on the number of vertices. The bounds obtained improve upon various previously
known results.

Key Words. Graph algorithms, Cycles.

1. Introduction. The problem of deciding whether a given graphG = (V, E) contains
a simple cycle of lengthk is among the most natural and easily stated algorithmic graph
problems. If the cycle lengthk is part of the input, then the problem is clearly NP-
complete as it includes in particular the Hamiltonian cycle problem. For every fixedk,
however, the problem can be solved in eitherO(VE) time [11] or O(Vω logV) [2],
whereω < 2.376 is the exponent of matrix multiplication.

The main contribution of this paper is a collection of new bounds on the complexity
of finding simple cycles of length exactlyk, wherek ≥ 3 is a fixed integer, in a directed
or an undirected graphG = (V, E). These bounds are of the formO(Eαk) or of the form
O(Eβk ·d(G)γk), whered(G) is thedegeneracyof the graph (see below). The bounds
improve upon previously known bounds when the graph in question is relatively sparse
or relatively degenerate.

We let Ck stand for a simple cycle of lengthk. When considering directed graphs,
a Ck is assumed to be directed. We show that aCk in a directed or undirected graph
G = (V, E), if one exists, can be found inO(E2−2/k) time, if k is even, and in
O(E2−2/(k+1)) time, if k is odd. For finding triangles (C3’s), we get the slightly bet-
ter bound ofO(E2ω/(ω+1)) = O(E1.41), whereω < 2.376 is the exponent of matrix
multiplication.

Even cycles in undirected graphs can be found even faster. AC4k−2 in an undirected
graphG = (V, E), if one exists, can be found inO(E2−(1/2k)(1+1/k)) time. AC4k, if one
exists, can be found inO(E2−(1/k−1/(2k+1))) time. In particular, we can find an undirected
C4 in O(E4/3) time and an undirectedC6 in O(E13/8) time.

Thedegeneracy d(G) of an undirected graphG = (V, E) is the smallest numberd
for which there exists an acyclic orientation ofG in which all the out-degrees are at
mostd. The degeneracyd(G) of a graphG is linearly related to thearboricity a(G) of
the graph, i.e.,a(G) = 2(d(G)), wherea(G) is the minimal number of forests needed

1 This work was supported in part by The Basic Research Foundation administrated by The Israel Academy
of Sciences and Humanities.
2 School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv Uni-
versity, Tel Aviv 69978, Israel.{noga,raphy,zwick}@math.tau.ac.il.

Received October 18, 1994; revised May 5, 1995. Communicated by N. Megiddo.

210 N. Alon, R. Yuster, and U. Zwick

Table 1.Finding small cycles in directed graphs—some of the new results.

Cycle Complexity Cycle Complexity

C3 E1.41, E ·d(G) C7 E1.75, E3/2·d(G)
C4 E1.5 , E ·d(G) C8 E1.75, E3/2·d(G)
C5 E1.67, E ·d(G)2 C9 E1.8 , E3/2·d(G)3/2
C6 E1.67, E3/2·d(G)1/2 C10 E1.8 , E5/3·d(G)2/3

to cover all the edges ofG. The degeneracy of a directed graphG = (V, E) is defined
to be the degeneracy of the undirected version ofG. The degeneracy of a graph is an
important parameter of the graph that appears in many combinatorial results. It is easy
to see that for any graphG = (V, E) we haved(G) ≤ 2E1/2. For graphs with relatively
low degeneracy we can improve upon the previously stated results. AC4k in a directed
or undirected graphG = (V, E) that contains one can be found inO(E2−1/k ·d(G))
time. A C4k+1, if one exists, can be found inO(E2−1/k·d(G)1+1/k) time. Similar results
are obtained for findingC4k−2’s andC4k−1’s. In particular,C3’s andC4’s can be found
in O(E ·d(G)) time andC5’s in O(E ·d(G)2) time. Some of the results mentioned are
summarized in Tables 1 and 2.

As any planar graph has a vertex whose degree is at most 5, the degeneracy of any
planar graph is at most 5. As a consequence of the above bounds we get, in particular,
thatC3’s, C4’s, andC5’s in planar graphs can be found inO(V) time. This in fact holds
not only for planar graphs but for any nontrivialminor-closedfamily of graphs.

Another contribution of this paper is anO(Vω) algorithm forcountingthe number
of Ck’s, for k ≤ 7, in a graphG = (V, E).

A preliminary version of this work appeared in [1].

2. Comparison with Previous Works. Monien [11] obtained, for any fixedk ≥ 3,
an O(VE) algorithm for findingCk’s in a directed or undirected graphG = (V, E).
In a previous work [2] we showed, using thecolor-codingmethod, that aCk, for any
fixedk ≥ 3, if one exists, can also be found inO(Vω) expected time or inO(Vω logV)
worst-case time, whereω < 2.376 is the exponent of matrix multiplication.

Our newO(E2−2/k) algorithm is better than both theO(VE) and theO(Vω) algo-
rithms when the input graphG = (V, E) is sufficiently sparse. It is interesting to note
that, fork ≤ 6, Monien’sO(VE) bound is superseded by either theO(Vω) algorithm,
when the graph is dense, or by theO(E2−1/dk/2e) algorithm, when the graph is sparse.

Table 2.Finding small cycles in undirected graphs—
some of the new results.

Cycle Complexity Cycle Complexity

C4 E1.34 C8 E1.7

C6 E1.63 C10 E1.78

Finding and Counting Given Length Cycles 211

For everyk ≥ 7, each one of the four bounds (including the bound that involves the
degeneracy) beats the others on an appropriate family of graphs.

In a previous work [16] we have also shown that cycles of anevenlength inundirected
graphs can be found even faster. Namely, for any evenk ≥ 4, if an undirected graphG =
(V, E) contains aCk, then such aCk can be found inO(V2) time. OurO(E2−(1/2k)(1+1/k))

bound forC4k−2 andO(E2−(1/k−1/(2k+1))) bound forC4k are again better when the graph
is sparse enough.

Itai and Rodeh [8] showed that atriangle (aC3) in a graphG = (V, E) that contains
one can be found inO(Vω) or O(E3/2) time. We improve their second result and show
that the same can be done, in directed or undirected graphs, inO(E2ω/(ω+1)) = O(E1.41)

time.
Chiba and Nishizeki [6] showed that triangles (C3’s) and quadrilaterals (C4’s) in

graphs that contain them can be found inO(E ·d(G)) time. Asd(G) = O(E1/2) for
any graphG, this extends the result of Itai and Rodeh. We extend the result of Chiba
and Nishizeki and show thatC4k−1’s andC4k’s can be found inO(E2−1/k ·d(G)) time.
We also show thatC4k+1’s can be found inO(E2−1/k ·d(G)1+1/k) time. This gives, in
particular, anO(E ·d(G)2) algorithm for finding pentagons (C5’s). Our results apply to
both directed and undirected graphs.

Itai and Rodeh [8] and also Papadimitriou and Yannakakis [13] showed thatC3’s in
planar graphs can be found inO(V) time. Chiba and Nishizeki [6] showed thatC3’s as
well asC4’s in planar graphs can be found inO(V) time. Richards [14] showed thatC5’s
andC6’s in planar graphs can be found inO(V logV) time. We improve upon the result
of Richards and show thatC5’s in planar graphs can be found inO(V) time. In a previous
work [2] we showed, using color-coding, that, for anyk ≥ 3, aCk in a planar graph, if
one exists, can be found in eitherO(V) expectedtime or O(V logV) worst-case time.

The fact that the number of triangles in a graph can be counted inO(Vω) time is
trivial. In [2] we showed, using color-coding, that, for anyk ≥ 3, aCk, if one exists, can
be found in eitherO(Vω) expectedtime or in O(Vω logV) worst-case time. Here we
show that for anyk ≤ 7 the number ofCk’s in a graph can be counted inO(Vω) time.
The counting method used here yields, in particular, a way of findingCk’s for k ≤ 7, in
O(Vω) worst-case time.

Sundaram and Skiena [15] have recently presented some more fixed-subgraph iso-
morphism algorithms. The results presented here, and in [2] and [16], improve some of
their results.

Eppstein [7] has recently shown that the fixed-subgraph isomorphism problem for
planar graphs, i.e., given a fixed graphH and a planar graphG = (V, E), find a
subgraph ofG isomorphic toH , can be solved, for every fixedH , in O(V) time.

3. Finding Cycles in Sparse Graphs. Monien [11] obtained hisO(VE) algorithm by
the use ofrepresentative collections. Such collections are also used by our algorithms.
In what follows, ap-set is a set of sizep.

DEFINITION 3.1 [11]. LetF be a collection ofp-sets. A subcollectionF̂ ⊆ F is q-
representative forF if, for everyq-setB, there exists a setA ∈ F such thatA∩ B = ∅
if and only if there exists a setA ∈ F̂ with this property.

212 N. Alon, R. Yuster, and U. Zwick

It follows from a combinatorial lemma of Bollob´as [3] that any collectionF of p-sets,
no matter how large, has aq-representative subcollection of size at most

(p+q
p

)
. Monien

[11] describes anO(pq ·∑q
i=0 pi · |F |)-time algorithm for finding aq-representative

subcollection ofF whose size is at most
∑q

i=0 pi . Relying on Monien’s result we obtain
the following lemma:

LEMMA 3.2. LetF be a collection of p-sets and letG be a collection of q-sets. Consider
p and q to be fixed. In O(|F | + |G|) time, we can either find two sets A∈ F and B∈ G
such that A∩ B = ∅ or decide that no two such sets exist.

PROOF. We use Monien’s algorithm to find aq-representative subcollection̂F of F
whose size is at most

∑q
i=0 pi and ap-representative subcollection̂G of G whose size

is at most
∑p

i=0 qi . This takes onlyO(|F | + |G|) time (asp andq are constants).
It is easy to see that if there existA ∈ F and B ∈ G such thatA ∩ B = ∅, then

there also existA′ ∈ F̂ and B′ ∈ Ĝ such thatA′ ∩ B′ = ∅. To see this note that if
A ∩ B = ∅, then, by the definition ofq-representatives, there must exist a setA′ ∈ F̂
such thatA′ ∩ B = ∅ and then there must exist a setB′ ∈ Ĝ such thatA′ ∩ B′ = ∅ as
required.

After finding the representative collectionŝF andĜ it is therefore enough to check
whether they contain two disjoint sets. This can be easily done in constant time (asp
andq are constants).

We also need the following lemma that follows immediately from the work of
Monien [11].

LEMMA 3.3 [11]. Let G = (V, E) be a directed or undirected graph, let v ∈ V , and
let k≥ 3. A Ck that passes throughv, if one exists, can be found in O(E) time.

We are finally able to present our improved algorithm.

THEOREM3.4. Deciding whether a directed or undirected graph G= (V, E) contains
simple cycles of length exactly2k− 1 and of length exactly2k, and finding such cycles
if it does, can be done in O(E2−1/k) time.

PROOF. We describe anO(E2−1/k)-time algorithm for finding aC2k in a directed graph
G = (V, E). The details of all the other cases are similar. Let1 = E1/k. A vertex
in G whose degree is at least1 is said to be ofhigh degree. The graphG = (V, E)
contains at most 2E/1 = O(E1−1/k) high-degree vertices. We check, using Monien’s
algorithm (Lemma 3.3), whether any of these high-degree vertices lies on a simple
cycle of length 2k. For each vertex this costsO(E) operations and the total cost is
O(E2/1) = O(E2−1/k). If one of these vertices does lie on a cycle of length 2k we are
done. Otherwise, we remove all the high-degree vertices and all the edges adjacent to them
from G and obtain a subgraphG′ that contains aC2k if and only if G does. The maximum
degree ofG′ is at most1 = E1/k and there are therefore at mostE ·1k−1 = E2−1/k

simple directed paths of lengthk in G′. We can find all these simple paths inO(E2−1/k)

Finding and Counting Given Length Cycles 213

time. We divide these paths into groups according to their endpoints. This can be done
using radix sort inO(E2−1/k) time and space. We get a list of all the pairs of vertices
connected by simple directed paths of length exactlyk. For each such pairu, v, we get
a collectionFu,v of (k − 1)-sets. Each(k − 1)-set inFu,v corresponds to thek − 1
intermediate vertices that appear on simple directed paths of lengthk from u to v. For
each pairu, v that appears on the list, we check whether there exist two directed paths
of lengthk, one fromu to v and the other fromv to u, that meet only at their endpoints.
Such two paths exist if there existA ∈ Fu,v and B ∈ Fv,u such thatA ∩ B = ∅. This
can be checked, as shown in Lemma 3.2, inO(|Fu,v| + |Fv,u|) time. As the sum of the
sizes of all these collections isO(E2−1/k), the total complexity is againO(E2−1/k). This
completes the proof.

In the case of triangles we can get a better result by using fast matrix multiplication.

THEOREM3.5. Deciding whether a directed or an undirected graph G= (V, E) con-
tains a triangle, and finding one if it does, can be done is O(E2ω/(ω+1)) = O(E1.41)

time.

PROOF. Let 1 = E(ω−1)/(ω+1). A vertex is said to be ofhigh degreeif its degree is
more than1 and oflow degreeotherwise. Consider all directed paths of length 2 inG
whose intermediate vertex is of low degree. There are at mostE·1 such paths and they
can be found inO(E ·1) time. For each such path, check whether its endpoints are
connected by an edge in the appropriate direction. If no triangle is found in this way,
then any triangle inG must be composed of three high-degree vertices. As there are
at most 2E/1 high-degree vertices, we can check whether there exists such a triangle
using matrix multiplication inO((E/1)ω) time. The total complexity of the algorithm
is therefore

O

(
E ·1+

(
E

1

)ω)
= O(E2ω/(ω+1)).

This completes the proof.

We have not been able to utilize matrix multiplication to improve upon the result of
Theorem 3.4 fork ≥ 4. This constitutes an interesting open problem.

4. Finding Cycles in Graphs with Low Degeneracy. An undirected graphG =
(V, E) is d-degenerate(see p. 222 of [4]) if there exists an acyclic orientation of it in
whichdout(v) ≤ d for everyv ∈ V . The smallestd for whichG is d-degenerate is called
thedegeneracyor themax-min degreeof G and is denoted byd(G). It can be easily seen
(see again [4]) thatd(G) is the maximum of the minimum degrees taken over all the
subgraphs ofG. The degeneracyd(G) of a graphG is linearly related to thearboricity
a(G) of the graph, i.e.,a(G) = 2(d(G)), wherea(G) is the minimal number of forests
needed to cover all the edges ofG. The degeneracy of a directed graphG = (V, E)
is defined to be the degeneracy of the undirected version ofG. It is easy to see that
the degeneracy of any planar graph is at most 5. Clearly, ifG is d-degenerate, then

214 N. Alon, R. Yuster, and U. Zwick

|E| ≤ d·|V |. The following simple lemma, whose proof is omitted, is part of the folklore
(see, e.g., [10]).

LEMMA 4.1. Let G= (V, E) be a connected undirected graph G= (V, E). An acyclic
orientation of G such that for everyv ∈ V we have dout(v) ≤ d(G) can be found in
O(E) time.

The main result of this section is the following theorem:

THEOREM4.2. Let G= (V, E) be a directed or an undirected graph.

(i) Deciding whether G contains a simple cycle of length exactly4k − 2, and finding
such a cycle if it does, can be done in O(E2−1/k ·d(G)1−1/k) time.

(ii) Deciding whether G contains simple cycles of length exactly4k− 1 and of length
exactly4k, and finding such cycles if it does, can be done in O(E2−1/k·d(G)) time.

(iii) Deciding whether G contains a simple cycle of length exactly4k + 1, and finding
such a cycle if it does, can be done in O(E2−1/k ·d(G)1+1/k) time.

PROOF. We show how to find aC4k+1 in a directed graphG = (V, E), if one ex-
ists, inO(E2−1/k ·d(G)1+1/k) time. The proofs of the other claims are easier. Ifd(G) ≥
E1/(2k+1), we can use the algorithm of Theorem 3.4 whose complexity isO(E2−1/(2k+1)) ≤
O(E2−1/k ·d(G)1+1/k). Assume therefore thatd(G) ≤ E1/(2k+1).

Let1 = E1/k/d(G)1+1/k. As d(G) ≤ E1/(2k+1), we have thatd(G) ≤ 1. A vertex
is said to be ofhigh degreeif its degree is more than1 and of low degreeotherwise.
As in the proof of Theorem 3.4, we can check inO(E2/1) time whether any of the
high-degree vertices lies on aC4k+1. If none of them lies on aC4k+1, we can remove all
the high-degree vertices along with the edges adjacent to them fromG and obtain a graph
whose maximal degree is at most1. The degeneracy of a graph can only decrease when
vertices and edges are deleted andd(G) is therefore an upper bound on the degeneracy
of the graph obtained.

Suppose therefore thatG is a graph with maximal degree1 and degeneracyd(G).
To find aC4k+1 in G, it is enough to find all directed simple paths of length 2k and
2k + 1 in G and then check, using the algorithm described in the proof of Lemma 3.2,
whether there exist a path of length 2k and a path of length 2k+1 that meet only at their
endpoints.

In O(E) time we can get an acyclically oriented versionG′ of G in which the out-
degree of each vertex is at mostd(G). The orientations of the edges inG andG′ may
be completely different.

The number of paths, not necessarily directed, of length 2k+ 1 in G, is at most

2·2E ·
k∑

i=0

(
2k

i

)
1i d(G)2k−i = O(E1kd(G)k).

To see this, consider the orientations, inG′, of the edges on a(2k + 1)-path inG. In
at least one direction, at mostk of the edges are counterdirected. The number of paths
of length 2k + 1 in which exactlyi among the last 2k edges are counterdirected is at

Finding and Counting Given Length Cycles 215

most 2E ·(2k
i

)
1i d(G)2k−i . The binomial coefficient

(2k
i

)
stands for the possible choices

for the position of the counterdirected edges in the path. Similarly, the number of paths
of length 2k in G is O(E1kd(G)k−1).

We can lower the number of paths of length 2k + 1 and 2k we have to consider by
utilizing the fact that aC4k+1 can be broken into two paths of length 2k + 1 and 2k
in many different ways. In particular, letC be a directedC4k+1 in G and consider the
orientations of its edges inG′. As 4k+1 is odd and asG′ is acyclic,C must contain three
consecutive edgese2k, e2k+1, ande2k+2, the first two of which have the same orientation
while the third one has an opposite orientation. It is therefore enough to consider all
(2k + 1)-paths that start with at least two backward oriented edges and all 2k-paths
that start with at least one backward oriented edge. The orientations referred to here
are inG′.

The number of paths of length 2k+1 inG whose first two edges are backward oriented
in G′ is O(E1k−1d(G)k+1). To see this, note that any such path is composed of a directed
path{e2k, e2k+1} of length 2, attached to an arbitrarily oriented path{e1, . . . ,e2k−1} of
length 2k − 1. The number of paths of length 2k − 1 is, as shown earlier, at most
O(E1k−1d(G)k−1) and the number of directed path of length 2 with a specified starting
point is at mostd(G)2. Similarly, there are at mostO(E1k−1d(G)k) 2k-paths that start
with a backward oriented edge.

It should be clear from the above discussion that all the required(2k+1)- and 2k-paths,
whose total number isO(E1k−1d(G)k+1), can be found inO(E1k−1d(G)k+1) time.
Paths which are not properly directed, inG, are thrown away. Properly directed paths are
sorted, using radix sort, according to their endpoints. Using Lemma 3.2 we then check
whether there exist a directed(2k+ 1)-path and a directed 2k-path that close a directed
simple cycle. All these operations can again be performed inO(E1k−1d(G)k+1) time.

Recalling that1 = E1/k/d(G)1+1/k, we get that the overall complexity of the
algorithm is

O

(
E2

1
+ E ·1k−1d(G)k+1

)
= O(E2−1/kd(G)1+1/k).

This completes the proof of the theorem.

As an immediate corollary we get:

COROLLARY 4.3. If a directed or undirected planar graph G= (V, E) contains a
pentagon(a C5), then such a pentagon can be found in O(V) worst-case time.

By combining the ideas of this section, theO(E2ω/(ω+1)) algorithm of Theorem 3.5,
and the color-coding method [2] we can also obtain the following result.

THEOREM4.4. Let G = (V, E) be a directed or undirected graph. A C6 in G, if one
exists, can be found in either O((E ·d(G))2ω/(ω+1)) = O((E ·d(G))1.41) expected time
or O((E ·d(G))2ω/(ω+1) ·logV) = O((E ·d(G))1.41 logV) worst-case time.

PROOF. We show how to find aC6 in an undirected graphG = (V, E), if one exists,

216 N. Alon, R. Yuster, and U. Zwick

Fig. 1.The possible orientations ofC6 in G′.

in O((E·d(G))2ω/(ω+1)) expected time, orO((E·d(G))2ω/(ω+1) logV) worst-case time.
The proof of the directed case is similar.

In O(E) time we can get an acyclically oriented versionG′ = (V, E′) of G in which
the out-degree of each vertex is at mostd(G). Suppose thatG contains aC6. The six
possible nonisomorphic orientations of thisC6 in G′ are shown in Figure 1. We refer to
these orientations asA1, . . . , A6. Our algorithm checks, for each 1≤ i ≤ 6, whetherG′

contains anAi and if so finds one.
We show how to find anA1 in G′, if one exists. The other cases are similar, and in fact

easier. As in [2], we color the vertices ofG′ randomly using six colors (i.e., every vertex
receives a number between 1 and 6, all numbers equally likely). Letc(v) denote the color
of vertexv. Let A be a specific copy of anA1 in G′. We say thatA is well-coloredif
its vertices are consecutively colored by 1 through 6, and the color 1 is assigned to one
of the three vertices having only outgoing edges inA. (By “consecutively colored” we
mean that eachv ∈ A with c(v) < 6 has a neighboru ∈ A with c(u) = c(v)+ 1). The
probability thatA is well-colored is 6/66. We now show how to detect a well-colored
copy of anA1 deterministically, if one exists.

Create a new undirected graphG∗ = (V∗, E∗) defined as follows:

V∗ = {v ∈ V : c(v) ∈ {2, 4, 6}}

E∗ = {(u, v): c(u) = 6, c(v) = 2, (∃ w ∈ V) (c(w) = 1, (w,u), (w, v) ∈ E′)}
∪ {(u, v): c(u) = 2, c(v) = 4, (∃ w ∈ V) (c(w) = 3, (w,u), (w, v) ∈ E′)}
∪ {(u, v): c(u) = 4, c(v) = 6, (∃ w ∈ V) (c(w) = 5, (w,u), (w, v) ∈ E′)}.

Clearly, V∗ ≤ V . To createG∗, we examine each edge(w, u) ∈ E′ with c(w) odd.
Supposec(w) = 1 andc(u) = 6. We create edges inG∗ betweenu and all vertices
v such that(w, v) ∈ E′ andc(v) = 2. There are at mostd(G) − 1 such vertices. We
therefore haveE∗ < E ·d(G) andG∗ can be constructed inO(E ·d(G)) time fromG′.
Clearly, there exists an undirected triangle inG∗ iff there exists a well-coloredA1 in G′.
We can detect such a triangle inG∗ in O((E∗)2ω/(ω+1)) = O((Ed(G))2ω/(ω+1)) time
using the algorithm of Theorem 3.5. If such a triangle is not found, we repeat the whole
process using a new random coloring. IfG′ contains anA1, then such anA1 will be
found after an expected number of 65 = 7776 attempts.

We have thus shown how to detect anA1 in G′, if one exists, inO((E·d(G))2ω/(ω+1)) =
O((E ·d(G))2ω/(ω+1)) expected time. As shown in [2], such a coloring scheme can be
derandomized at the price of anO(logV) factor.

Finding and Counting Given Length Cycles 217

5. Finding Cycles in Sparse Undirected Graphs. To obtain the results of this section
we rely on the following combinatorial lemma of Bondy and Simonovits [5].

LEMMA 5.1 [5]. Let G = (V, E) be an undirected graph. If |E| ≥ 100k · |V |1+1/k,
then G contains a C2` for every integer̀ ∈ [k, n1/k].

By combining the algorithm described in the proof of Theorem 4.2 with an algorithm
given in [16] we obtain the following theorem.

THEOREM5.2. Let G= (V, E) be an undirected graph.

(i) A C4k−2 in G, if one exists, can be found in O(E2−(1/2k)(1+1/k)) time.
(ii) A C4k in G, if one exists, can be found in O(E2−(1/k−1/(2k+1))) time.

PROOF. We prove the second claim. The proof of the first claim is similar. Letd =
200k·E1/(2k+1). If d(G) ≥ d, then, by the definition of degeneracy, there is a subgraph
G′ = (V ′, E′) of G in which the minimal degree is at leastd. Such a subgraph can be
easily found inO(E) time (see, e.g., [10]). Clearly,E′ ≥ dV′/2 ≥ 100k·V ′ ·E′1/(2k+1)

and thereforeE′ ≥ (100k·V ′)1+1/2k ≥ 100k·(V ′)1+1/2k. By Lemma 5.1 we get thatG′

contains aC4k and such aC4k can be found inO(V ′2) = O(E2−2/(2k+1)) time using
the algorithm given in [16]. If, on the other hand,d(G) ≤ d, then aC4k in G, if one
exists, can be found inO(E2−1/k ·d) = O(E2−(1/k−1/(2k+1))) time using the algorithm
of Theorem 4.2. It is easy to check thatE2−2/(2k+1) ≤ E2−(1/k−1/(2k+1)) with equality
holding only ifk = 1. In both cases the complexity is thereforeO(E2−(1/k−1/(2k+1))) as
required.

COROLLARY 5.3. Let G= (V, E) be an undirected graph.

(i) A quadrilateral(C4) in G, if one exists, can be found in O(E4/3) time.
(ii) A hexagon(C6) in G, if one exists, can be found in O(E13/8) time.

6. Counting Small Cycles. Let G = (V, E) be a simple undirected graph and let
A = AG be the adjacency matrix ofG. Assume for simplicity thatV = {1, . . . ,n}.
Denote bya(k)i j = (Ak)i j the elements of thekth power ofA. The trace tr(Ak) of Ak,
which is the sum of the entries along the diagonal ofAk, gives us the number of closed
walks of lengthk in G. If we could also compute the number ofnonsimpleclosed walks
of lengthk in G we would easily obtain the number ofsimpleclosed paths of lengthk
in G. This number is just 2k times the number ofCk’s in G.

Before describing a way of counting the number of nonsimple closed walks of lengthk,
wherek ≤ 7, in a graphG in O(Vω) time, we need the following definitions:

DEFINITION 6.1. Let G1 = (V1, E1) and G2 = (V2, E2) be two simple graphs. A
mapping f : V1 ∪ E1 → V2 ∪ E2 is a homomorphismif for every v ∈ V1 we have
f (v) ∈ V2 and for everye = (u, v) ∈ E1 we have f (e) = (f (u), f (v)) ∈ E2. If f is
ontoV2 ∪ E2, we say thatG2 is ahomomorphic imageof G1.

218 N. Alon, R. Yuster, and U. Zwick

Fig. 2.The 4-cyclic graphs.

DEFINITION 6.2. A graphH = (VH , EH) is said to bek-cyclic, for k ≥ 3, if it is a
homomorphic image of the cycleCk. The number of different homomorphisms fromCk

to H is denoted byck(H). Clearly,H is k-cyclic if and only ifck(H) > 0.

It is easy to check, for example, thatC3 is k-cyclic for everyk ≥ 3 exceptk = 4. It
is also not difficult to check thatc3(C3) = 6 (and more generallyck(Ck) = 2k for every
k ≥ 3) and thatc5(C3) = 30. The only 3-cyclic graph isC3 itself. Thek-cyclic graphs,
for 4≤ k ≤ 7, are given in Figures 2–5.

Let nG(H) denote the number of subgraphs ofG isomorphic toH . Clearly, the total
number of closed walks of lengthk in G is

tr(Ak) =
∑

H

ck(H)nG(H).

If ck(H) > 0, thenH is connected and has at mostk edges. Also,H cannot be a tree on
k + 1 vertices as each edge leading to a leaf must be the image of at least two edges in
Ck. Hence,|VH | ≤ k and in fact,|VH | < k unlessH = Ck. We therefore obtain, for an
undirected graphG = (V, E):

nG(Ck) = 1

2k
·
[

tr(Ak)−
∑
|VH |<k

ck(H)nG(H)

]
.(1)

A very similar formula can be obtained for directed graphs. We show how to compute
nG(H), for all k-cyclic graphsH with 3≤ k ≤ 7, in O(Vω) time. Hence, we obtain the
following theorem.

THEOREM6.3. The number of Ck’s, for 3≤ k ≤ 7 in an undirected(or directed) graph
G = (V, E), can be found in O(Vω) time.

PROOF. We consider the undirected case. The directed case is similar and, in fact,
slightly simpler (as there are lessk-cyclic graphs). Clearly, the traces tr(Ak), for 3 ≤
k ≤ 7, can be computed inO(Vω) time using fast matrix multiplication. It remains to
show how to findnG(H) for all k-cyclic graphsH , where 3≤ k ≤ 7, excluding the
cyclesC3, . . . ,C7 themselves, inO(Vω) time.

Thek-cyclic graphs shown in Figures 2–5, which are not simple cycles, are denoted
by H1, . . . , H15 (they are ordered according to the number of edges they contain).

Fig. 3.The 5-cyclic graphs.

Finding and Counting Given Length Cycles 219

Fig. 4.The 6-cyclic graphs.

The following list shows how to obtainnG(Hi), for 1 ≤ 1 ≤ 15, andnG(Ck), for
3 ≤ k ≤ 7. In all cases the formulae reference at mostO(V2) values ofa(p)i j for some

1 ≤ p ≤ k and can hence be computed inO(Vω) time. We letdi = a(2)i i denote the
degree of vertexi .

1.

nG(C3) = 1
6 ·tr(A3).

2.

nG(H1) = |E| =
∑

1≤i< j≤n

a(1)i j .

3.

nG(H2) =
n∑

i=1

(
di

2

)
.

4.

nG(C4) = 1
8 ·[tr(A4)− 4nG(H2)− 2nG(H1)].

5.

nG(H3) =
∑
(i, j)∈E

(di − 1)(dj − 1)− 3nG(C3).

Fig. 5.The 7-cyclic graphs.

220 N. Alon, R. Yuster, and U. Zwick

6.

nG(H4) =
n∑

i=1

(
di

3

)
.

7.

nG(H5) = 1
2 ·
[

n∑
i=1

a(3)i i (di − 2)

]
.

Note thata(3)i i is twice the number of triangles that pass through vertexi .
8.

nG(C5) = 1
10 ·[tr(A5)− 10nG(H5)− 30nG(C3)].

9.

nG(H6) =
∑
(i, j)∈E

(
a(2)i j

2

)
.

Note thata(2)i j is the number of common neighbors ofi and j , which is also the
number of paths of length 2 betweeni and j .

10.

nG(H7) = 1
2 ·
[

n∑
i=1

a(3)i i

(
di − 2

2

)]
.

11.

nG(H8) =
∑
(i, j)∈E

a(2)i j (di − 2)(dj − 2)− 2nG(H6).

Note that we must subtract 2nG(H6) to avoid the case in which the two degree-one
vertices ofH8 are, actually, the same vertex.

12.

nG(H9) =
n∑

i=1

(di − 2)
∑
j 6=i

(
a(2)i j

2

)
.

Note that
∑

j 6=i

(a(2)i j

2

)
is exactly the number of quadrilaterals in whichi participates.

13.

nG(H10) =
n∑

i=1

(1
2a(3)i i)

(∑
j 6=i

a(2)i j

)
− 6nG(C3)− 2nG(H5)− 4nG(H6).

Note that(1
2a(3)i i)(

∑
j 6=i a(2)i j) is simply the number of triangles throughi times the

number of paths of length 2 that begin withi . However, we must only count such
a triangle and such a path if they are disjoint, so we must subtract appropriate
occurrences ofC3, H5, andH6.

Finding and Counting Given Length Cycles 221

14.

nG(H11) =
n∑

i=1

(1
2a(3)i i

2

)
− 2nG(H6).

15. Since we have already shown how to computenG(H) for all the 6-cyclic graphs,
excludingC6, we can use (1) to computenG(C6).

16.

nG(H12) =
∑
(i, j)∈E

a(2)i j · a(3)i j − 9nG(C3)− 2nG(H5)− 4nG(H6).

Here we count the number of triangles through(i, j) and multiply each triangle by
the number of walks of length 3 betweeni and j . Since these walks need not be
simple, or may intersect the triangle, we may actually be countingC3’s, H5’s, or
H6’s. Therefore, we subtract the appropriate values.

17.

nG(H13) =
∑
(i, j)∈E

(
a(2)i j

3

)
.

18.

nG(H14) =
n∑

i=1

(di − 2) · Bi − 2nG(H12),

whereBi is the number ofC5’s passing throughi . The expression forBi is

Bi = 1
2

[
a(5)i i − 10a(3)i i − 4a(3)i i (di − 2)− 2

·
∑
(i, j)∈E

a(2)i j (dj − 2)− 2·
∑
(i, j)∈E

(1
2a(3)j j − a(2)i j)

]
.

19.

nG(H15) =
n∑

i=1

(1
2a(3)i i)

(∑
j 6=i

(
a(2)i j

2

))
− 6nG(H6)− 2nG(H12)− 6nG(H13).

Using slightly more effort, it can be shown that, inO(Vω) time, we can also count
the number ofCk’s, for 3≤ k ≤ 7, that pass through each vertex ofG. We have, in fact,
done this in the preceding proof fork = 3, 4, 5. If the graphG contains aCk, for some
3 ≤ k ≤ 7, we can therefore find, inO(Vω) time, a vertex through which such aCk

passes. We can then locate aCk in the graph in additionalO(E) time using Monien’s
method (Lemma 3.3).

Similar formulae can be obtained, of course, for the number of octagons (C8’s) and
even larger cycles. To compute the number of octagons, however, we have to compute
first the number ofK4’s in the graph, since aK4 is 8-cyclic. We do not know how to do
this is O(Vω) time.

222 N. Alon, R. Yuster, and U. Zwick

It is easy to count the number ofK4’s in a graph inO(Vω+1) time: for each vertex,
count the number of triangles among its neighbors, sum these numbers, and divide by 4.
Counting the number ofK4’s in a graph, or, in fact, deciding whether a graph contains
a K4, in o(Vω+1) time, is an interesting open problem.

For counting the number of larger cycles using our method, we would have to count
the number of larger cliques in the graph. Neˇsětril and Poljak [12] give anO(Vωd`/3e)-
time algorithm for deciding whether a graphG = (V, E) contains aKl . It is easy to
check that their method can also be used to count the number of such cliques contained
in the graph. By combining the method of Neˇsětril and Poljak [12] with the ideas used
in Section 4, we get the following result.

THEOREM6.4. The number of Kl ’s in an undirected graph G= (V, E) can be counted
in either O(V ·(d(G))ωd(`−1)/3e) or O(E ·(d(G))ωd(`−2)/3e) time.

Using an idea similar to the one used in Theorem 3.5, Klokset al. [9] have recently
obtained anO(E(ω+1)/2) = O(E1.69) time algorithm for counting the number ofK4’s
contained in a graphG = (V, E). They also obtain improved results for finding larger
cliques and other induced subgraphs.

References

[1] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles.Proceedings of the2nd
European Symposium on Algorithms, Utrecht, Lecture Notes in Computer Science, Vol. 855, pages 354–
364. Springer-Verlag, 1994.

[2] N. Alon, R. Yuster, and U. Zwick. Color-coding.Journal of the ACM, 42:844–856, 1995.
[3] B. Bollobás. On generalized graphs.Acta Mathematica Academiae Scientarium Hungaricae, 16:447–

452, 1965.
[4] B. Bollobás.Extremal Graph Theory. Academic Press, New York, 1978.
[5] J. A. Bondy and M. Simonovits. Cycles of even length in graphs.Journal of Combinatorial Theory,

Series B, 16:97–105, 1974.
[6] N. Chiba and L. Nishizeki. Arboricity and subgraph listing algorithms.SIAM Journal on Computing,

14:210–223, 1985.
[7] D. Eppstein. Subgraph isomorphism in planar graphs and related problems.Proceedings of the

6th Annual ACM–SIAM Symposium on Discrete Algorithms, San Francisco, CA, pages 632–640,
1995.

[8] A. Itai and M. Rodeh. Finding a minimum circuit in a graph.SIAM Journal on Computing, 7:413–423,
1978.

[9] T. Kloks, D. Kratsch, and H. M¨uller. Finding and counting small induced subgraphs efficiently.Proceed-
ings of the21st International Workshop on Graph-Theoretic Concepts in Computer Science, Aachen,
Lecture Notes in Computer Science, Vol. 1017, pages 14–23. Springer-Verlag, 1995.

[10] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph coloring algorithms.
Journal of the ACM, 30:417–427, 1983.

[11] B. Monien. How to find long paths efficiently.Annals of Discrete Mathematics, 25:239–254, 1985.
[12] J. Nešetřil and S. Poljak. On the complexity of the subgraph problem.Commentationes Mathematicae

Universitatis Carolinae, 26(2):415–419, 1985.
[13] C. H. Papadimitriou and M. Yannakakis. The clique problem for planar graphs.Information Processing

Letters, 13:131–133, 1981.

Finding and Counting Given Length Cycles 223

[14] D. Richards. Finding short cycles in a planar graph using separators.Journal of Algorithms, 7:382–394,
1986.

[15] G. Sundaram and S. S. Skiena. Recognizing small subgraphs.Networks, 25:183–191, 1995.
[16] R. Yuster and U. Zwick. Finding even cycles even faster.Proceedings of the21st International Col-

loquium on Automata, Languages and Programming, Jerusalem, Lecture Notes in Computer Science,
Vol. 820, pages 532–543. Springer-Verlag, Berlin, 1994. Journal version to appear inSIAM Journal on
Discrete Mathematics.

