Algorithmica (1997) 17: 209-223

Algorithmica

© 1997 Springer-Verlag New York Inc.

Finding and Counting Given Length Cycles
N. Alon,2 R. Yuster? and U. Zwick

Abstract. We present an assortment of methods for finding and counting simple cycles of a given length
in directed and undirected graphs. Most of the bounds obtained depend solely on the number of edges in the
graph in question, and not on the number of vertices. The bounds obtained improve upon various previously
known results.

Key Words. Graph algorithms, Cycles.

1. Introduction. The problem of deciding whether a given graph= (V, E) contains

a simple cycle of lengtk is among the most natural and easily stated algorithmic graph
problems. If the cycle lengtk is part of the input, then the problem is clearly NP-
complete as it includes in particular the Hamiltonian cycle problem. For every Kixed
however, the problem can be solved in eitli&¢VE) time [11] or O(V®logV) [2],
wherew < 2.376 is the exponent of matrix multiplication.

The main contribution of this paper is a collection of new bounds on the complexity
of finding simple cycles of length exactky wherek > 3 is a fixed integer, in a directed
or an undirected grapB = (V, E). These bounds are of the fol@(E*) or of the form
O(Ef«.d(G)"), whered(G) is thedegeneracyf the graph (see below). The bounds
improve upon previously known bounds when the graph in question is relatively sparse
or relatively degenerate.

We let Cy stand for a simple cycle of length When considering directed graphs,

a Cy is assumed to be directed. We show th&l.ain a directed or undirected graph
G = (V, E), if one exists, can be found i®(EZ %K) time, if k is even, and in
O(EZ%&+D)y time, if k is odd. For finding trianglesds’s), we get the slightly bet-
ter bound of O(E2”/(@+D) = O(E'*), wherew < 2.376 is the exponent of matrix
multiplication.

Even cycles in undirected graphs can be found even fast€s 4 in an undirected
graphG = (V, E), if one exists, can be found i@ (E?~1/201+1/) time. A Cy, if one
exists, can be found i@ (E2~(/k-1/+D)y time. In particular, we can find an undirected
C. in O(E*3) time and an undirecte@g in O(E¥®) time.

Thedegeneracy (G) of an undirected grap® = (V, E) is the smallest numbet
for which there exists an acyclic orientation @fin which all the out-degrees are at
mostd. The degeneracy(G) of a graphG is linearly related to tharboricity a(G) of
the graph, i.e.a(G) = ©(d(G)), wherea(G) is the minimal number of forests needed

1 This work was supported in part by The Basic Research Foundation administrated by The Israel Academy
of Sciences and Humanities.

2 School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv Uni-
versity, Tel Aviv 69978, Israelnoga,raphy,zwick@math.tau.ac.il.

Received October 18, 1994, revised May 5, 1995. Communicated by N. Megiddo.

210 N. Alon, R. Yuster, and U. Zwick

Table 1.Finding small cycles in directed graphs—some of the new results.

Cycle Complexity Cycle Complexity

C3 E1'41, Ed(G) Cy El‘75, E3/2-d(G)
Ca ELS, E.d(G) Cs EL75, E¥2.d(G)
C5 E1'67, Ed(G)2 Cg El,8 , E3/2-d(G)3/2
Cs E1A67’ E3/2~d(G)1/2 Cio ElAB , E5/3-d(G)2/3

to cover all the edges @. The degeneracy of a directed graph= (V, E) is defined

to be the degeneracy of the undirected versioGoflhe degeneracy of a graph is an
important parameter of the graph that appears in many combinatorial results. It is easy
to see that for any grap® = (V, E) we haved(G) < 2EY2. For graphs with relatively

low degeneracy we can improve upon the previously stated resulig /& a directed

or undirected grapls = (V, E) that contains one can be found @(E>V%.d(G))

time. A C4.1, if one exists, can be found @ (E2Y%.d(G)*/¥) time. Similar results

are obtained for findin@4_>'s andCg_1's. In particular,Cs's andCy’s can be found

in O(E-d(G)) time andCs’s in O(E-d(G)?) time. Some of the results mentioned are
summarized in Tables 1 and 2.

As any planar graph has a vertex whose degree is at most 5, the degeneracy of any
planar graph is at most 5. As a consequence of the above bounds we get, in particular,
thatCj's, C4’s, andCs’s in planar graphs can be found@(V) time. This in fact holds
not only for planar graphs but for any nontriviainor-closedfamily of graphs.

Another contribution of this paper is an(V®) algorithm forcountingthe number
of Cy¢’s, fork < 7, inagraphG = (V, E).

A preliminary version of this work appeared in [1].

2. Comparison with Previous Works. Monien [11] obtained, for any fixeld > 3,
an O(VE) algorithm for findingCy’s in a directed or undirected gragh = (V, E).
In a previous work [2] we showed, using thelor-codingmethod, that &y, for any
fixedk > 3, if one exists, can also be found@(V“) expected time or i®(V® logV)
worst-case time, where < 2.376 is the exponent of matrix multiplication.

Our newO(E2-%k) algorithm is better than both th@(VE) and theO(V®) algo-
rithms when the input grap8 = (V, E) is sufficiently sparse. It is interesting to note
that, fork < 6, Monien’sO(VE) bound is superseded by either B¢V) algorithm,
when the graph is dense, or by t@&E21/T%/21) algorithm, when the graph is sparse.

Table 2.Finding small cycles in undirected graphs—
some of the new results.

Cycle Complexity Cycle Complexity

C4 E1.34 CB El‘7
Cs E1.63 Cio E1.78

Finding and Counting Given Length Cycles 211

For everyk > 7, each one of the four bounds (including the bound that involves the
degeneracy) beats the others on an appropriate family of graphs.

In a previous work [16] we have also shown that cycles ahzemiength inundirected
graphs can be found even faster. Namely, for any &vemt, if an undirected grapt =
(V, E) contains &, then such & can be found ifD (V?2) time. QurO (E2-&/20+1/k))
bound forCy_, andO (E2~1/k=1/@+D)) hound forC, are again better when the graph
is sparse enough.

Itai and Rodeh [8] showed that@angle (aCs) in a graphG = (V, E) that contains
one can be found i@ (V®) or O(E¥?) time. We improve their second result and show
that the same can be done, in directed or undirected grapBgEAR”/ V) = O(E'4!)
time.

Chiba and Nishizeki [6] showed that trianglgSsts) and quadrilateralsGy’s) in
graphs that contain them can be founddiiE -d(G)) time. Asd(G) = O(EY/?) for
any graphG, this extends the result of Itai and Rodeh. We extend the result of Chiba
and Nishizeki and show th&_1's andCg’s can be found irD(EZ-Yk.d(G)) time.

We also show tha€..1’s can be found inO(E2-YX.d(G)/¥) time. This gives, in
particular, anO(E -d(G)?) algorithm for finding pentagon<g’s). Our results apply to
both directed and undirected graphs.

Itai and Rodeh [8] and also Papadimitriou and Yannakakis [13] showeCtgin
planar graphs can be found @(V) time. Chiba and Nishizeki [6] showed th@t's as
well asCy’s in planar graphs can be found@ V) time. Richards [14] showed th@t’s
andCg’s in planar graphs can be found@yV log V) time. We improve upon the result
of Richards and show th@%'’s in planar graphs can be found®@(V) time. In a previous
work [2] we showed, using color-coding, that, for aay 3, aCy in a planar graph, if
one exists, can be found in eith@rV) expectedime or O(V log V) worst-case time.

The fact that the number of triangles in a graph can be count&i(\ff’) time is
trivial. In [2] we showed, using color-coding, that, for aky 3, aC, if one exists, can
be found in eithelO(V®) expectedime or in O(V®logV) worst-case time. Here we
show that for ank < 7 the number oy’s in a graph can be counted @(V®) time.

The counting method used here yields, in particular, a way of finGjgfor k < 7, in
O(V®) worst-case time.

Sundaram and Skiena [15] have recently presented some more fixed-subgraph iso-
morphism algorithms. The results presented here, and in [2] and [16], improve some of
their results.

Eppstein [7] has recently shown that the fixed-subgraph isomorphism problem for
planar graphs, i.e., given a fixed grapH and a planar graple = (V, E), find a
subgraph of5 isomorphic toH, can be solved, for every fixdd, in O(V) time.

3. Finding Cycles in Sparse Graphs. Monien [11] obtained hi®© (VE) algorithm by
the use ofepresentative collectionSuch collections are also used by our algorithms.
In what follows, ap-set is a set of size.

DEFINITION 3.1 [11]. LetF be a collection ofp-sets. A subcollectiotf € F is g-
representative far if, for everyg-setB, there exists a sék € 7 such thatAn B = ¢
if and only if there exists a s&& € F with this property.

212 N. Alon, R. Yuster, and U. Zwick

It follows from a combinatorial lemma of Boll@s [3] that any collectiofF of p-sets,
no matter how large, hascprepresentative subcollection of size at m@?glq) Monien
[11] describes arO(pq-Ziq=0 p' - |F|)-time algorithm for finding ag-representative
subcollection ofF whose size is at moiiq:O p'. Relying on Monien’s result we obtain
the following lemma:

LEMMA 3.2. LetF be acollection of p-sets and Igtbe a collection of g-set€onsider
p and q to be fixedn O(|F| + |G|) time we can either find two sets AF and Be G
such that A0 B = @ or decide that no two such sets exist

PrROOF We use Monien’s algorithm to find @-representative subcollectigh of F
whose size is at mo{f‘zo p' and ap-representative subcollectighof G whose size
is at mostzip=0 g'. This takes onlyO(|F| + |G|) time (asp andq are constants).

It is easy to see that if there exist € F andB € G such thatAN B = ¢, then
there also exist\' € F andB’ € G such thatA’ N B’ = . To see this note that if
AN B = ¢, then, by the definition of-representatives, there must exist a Aet F
such thatA’ N B = ¢ and then there must exist a ®&te G such thatA' N B’ = @ as
required.

After finding the representative collectiofisandg it is therefore enough to check
whether they contain two disjoint sets. This can be easily done in constant tinpe (as
andq are constants). O

We also need the following lemma that follows immediately from the work of
Monien [11].

LEMMA 3.3[11]. Let G = (V, E) be a directed or undirected graplet v € V, and
let k > 3. A Cy that passes through, if one existscan be found in QE) time

We are finally able to present our improved algorithm.

THEOREM 3.4. Deciding whether a directed or undirected graph=£5(V, E) contains
simple cycles of length exac®k — 1 and of length exactlgk, and finding such cycles
if it does can be done in QEZ-Y/K) time

PrROOF We describe a® (E2~)-time algorithm for finding &y in a directed graph

G = (V, E). The details of all the other cases are similar. het= E¥¥. A vertex

in G whose degree is at leaat is said to be ohigh degree The graphG = (V, E)
contains at mostR/A = O(E'~Y¥) high-degree vertices. We check, using Monien’s
algorithm (Lemma 3.3), whether any of these high-degree vertices lies on a simple
cycle of length R. For each vertex this cost9(E) operations and the total cost is
O(E?/A) = O(EZV¥). If one of these vertices does lie on a cycle of lendtw2 are
done. Otherwise, we remove all the high-degree vertices and all the edges adjacentto them
from G and obtain a subgragh’ that contains & if and only if G does. The maximum
degree ofG’ is at mostA = E¥K and there are therefore at mast AK—1 = E2-1/K
simple directed paths of lengktin G’. We can find all these simple paths@{E2-%/k)

Finding and Counting Given Length Cycles 213

time. We divide these paths into groups according to their endpoints. This can be done
using radix sort inO(E2~Y¥) time and space. We get a list of all the pairs of vertices
connected by simple directed paths of length exdctlyor each such pair, v, we get

a collection#, , of (k — 1)-sets. Eachk — 1)-set in F,, corresponds to thk — 1
intermediate vertices that appear on simple directed paths of l&rfgtm u to v. For

each paiu, v that appears on the list, we check whether there exist two directed paths
of lengthk, one fromu to v and the other froms to u, that meet only at their endpoints.
Such two paths exist if there exigt € F,, andB € F,, such thatAn B = ¢. This

can be checked, as shown in Lemma 3.20i\F, ,| + |Fy.u]) time. As the sum of the
sizes of all these collections@(E>~/¥), the total complexity is agai® (E?~/). This
completes the proof. O

In the case of triangles we can get a better result by using fast matrix multiplication.

THEOREM3.5. Deciding whether a directed or an undirected graph=V, E) con-
tains a triangle and finding one if it dogxcan be done is QE2*/@+D) = Q(E4Y)
time

PROOF Let A = E@D/(@+D A vertex is said to be ohigh degredf its degree is
more thanA and oflow degreeotherwise. Consider all directed paths of length Zin
whose intermediate vertex is of low degree. There are at Bastsuch paths and they

can be found inO(E - A) time. For each such path, check whether its endpoints are
connected by an edge in the appropriate direction. If no triangle is found in this way,
then any triangle irG must be composed of three high-degree vertices. As there are
at most /A high-degree vertices, we can check whether there exists such a triangle
using matrix multiplication inO((E/A)®) time. The total complexity of the algorithm

is therefore
E\“
0 (E-A + (K) > = O(E>/(*D),

This completes the proof. O

We have not been able to utilize matrix multiplication to improve upon the result of
Theorem 3.4 fok > 4. This constitutes an interesting open problem.

4. Finding Cycles in Graphs with Low Degeneracy. An undirected graptG =

(V, E) is d-degeneratésee p. 222 of [4]) if there exists an acyclic orientation of it in
whichdy(v) < dforeveryv € V. The smallestl for which G is d-degenerate is called
thedegeneracyr themax-min degreef G and is denoted bgt(G). It can be easily seen
(see again [4]) thatl(G) is the maximum of the minimum degrees taken over all the
subgraphs 06. The degeneracg(G) of a graphG is linearly related to tharboricity
a(G) of the graph, i.,ea(G) = ®(d(G)), wherea(G) is the minimal number of forests
needed to cover all the edges ®f The degeneracy of a directed gra@h= (V, E)

is defined to be the degeneracy of the undirected versida.df is easy to see that
the degeneracy of any planar graph is at most 5. Clearl§, i d-degenerate, then

214 N. Alon, R. Yuster, and U. Zwick

|E| < d-]V]. The following simple lemma, whose proof is omitted, is part of the folklore
(see, e.g., [10]).

LEMMA 4.1. LetG = (V, E) be aconnected undirected graph-&(V, E). Anacyclic
orientation of G such that for eveny € V we have g(v) < d(G) can be found in
O(E) time

The main result of this section is the following theorem:

THEOREM4.2. Let G= (V, E) be a directed or an undirected graph

(i) Deciding whether G contains a simple cycle of length exatitly- 2, and finding
such a cycle if it doesan be done in QE2~YK.d(G)1~ k) time
(i) Deciding whether G contains simple cycles of length exaéths 1 and of length
exactly4k, and finding such cycles if it dogsan be done in QE?~Yk.d(G)) time,
(iif) Deciding whether G contains a simple cycle of length exalitly- 1, and finding
such a cycle if it doesan be done in QE2~VX.d(G)*Y/K) time

PrOOF We show how to find &1 in a directed graplc = (V, E), if one ex-
ists, INO(E2"VX. d(G)*+/k) time. The proofs of the other claims are easied(&) >
EY@+D we canuse the algorithm of Theorem 3.4 whose complex@y B2/ (2k+D)y <
O(EZVk.d(G) /Ky, Assume therefore thal(G) < EY/Z+D,

Let A = EYK/d(G)HVX, Asd(G) < EV@+D we have thatl(G) < A. A vertex
is said to be ohigh degredf its degree is more than. and oflow degreeotherwise.
As in the proof of Theorem 3.4, we can check@{E?/A) time whether any of the
high-degree vertices lies oG 1. If none of them lies on &4 1, we can remove all
the high-degree vertices along with the edges adjacent to thenGrama obtain a graph
whose maximal degree is at mast The degeneracy of a graph can only decrease when
vertices and edges are deleted dii@) is therefore an upper bound on the degeneracy
of the graph obtained.

Suppose therefore th& is a graph with maximal degret and degeneracg(G).
To find aCg,1 In G, it is enough to find all directed simple paths of lengthdhd
2k + 1 in G and then check, using the algorithm described in the proof of Lemma 3.2,
whether there exist a path of lengtk @nd a path of lengthli2+ 1 that meet only at their
endpoints.

In O(E) time we can get an acyclically oriented versi@hof G in which the out-
degree of each vertex is at maliG). The orientations of the edges @ andG’ may
be completely different.

The number of paths, not necessarily directed, of length 2 in G, is at most

k
2.25.2 <2|k> A'd(G)* = O(EAX(G)Y).
i=0

To see this, consider the orientations,Gh of the edges on &k + 1)-path inG. In
at least one direction, at mdstof the edges are counterdirected. The number of paths
of length X + 1 in which exactlyi among the lastiR edges are counterdirected is at

Finding and Counting Given Length Cycles 215

most ZE - (%) A'd(G)*~'. The binomial coefficienf?) stands for the possible choices
for the position of the counterdirected edges in the path. Similarly, the number of paths
of length X in G is O(EAXd(G)k1).

We can lower the number of paths of length2 1 and X we have to consider by
utilizing the fact that aCs 1 can be broken into two paths of lengtk 2 1 and Xk
in many different ways. In particular, 1€ be a directedC4.1 in G and consider the
orientations of its edges @". As 4+ 1 is odd and a&’ is acyclic,C must contain three
consecutive edgessy, ex.1, andex 2, the first two of which have the same orientation
while the third one has an opposite orientation. It is therefore enough to consider all
(2k + 1)-paths that start with at least two backward oriented edges and-piaths
that start with at least one backward oriented edge. The orientations referred to here
are inG'’.

The number of paths of lengtk2-1 in G whose first two edges are backward oriented
in G’ is O(EAX1d(G)**+1). To see this, note that any such path is composed of a directed
path{ex, ex.1} of length 2, attached to an arbitrarily oriented pé&th ..., ex_1} of
length X — 1. The number of paths of lengttk2- 1 is, as shown earlier, at most
O(EAK-1d(G)¥1) and the number of directed path of length 2 with a specified starting
point is at most(G)2. Similarly, there are at mo$(E AK-1d(G)¥) 2k-paths that start
with a backward oriented edge.

It should be clear from the above discussion that all the req@ed1)- and X-paths,
whose total number i©(E AK1d(G)¥t1), can be found iMD(EAK-1d(G)k*t1) time.
Paths which are not properly directedGnare thrown away. Properly directed paths are
sorted, using radix sort, according to their endpoints. Using Lemma 3.2 we then check
whether there exist a directégk + 1)-path and a directed@path that close a directed
simple cycle. All these operations can again be performe(iBA*1d(G)*+1) time.

Recalling thatA = EY¥/d(G)*Y*, we get that the overall complexity of the
algorithm is

2
o) (EX + E~Ak_1d(G)k+l) — O(Ez_l/kd(G)l+l/k),
This completes the proof of the theorem. O

As an immediate corollary we get:

COROLLARY 4.3. If a directed or undirected planar graph G= (V, E) contains a
pentagorn(a Cs), then such a pentagon can be found it\Q worst-case time

By combining the ideas of this section, tig E2*/@+D) algorithm of Theorem 3.5,
and the color-coding method [2] we can also obtain the following result.

THEOREM4.4. Let G = (V, E) be a directed or undirected graphA Cg in G, if one
exists can be found in either QE-d(G))%*/@*+D) = O((E-d(G))'*!) expected time
or O((E-d(G))%/@*D.logV) = O((E-d(G))**!log V) worst-case time

PrROOFE We show how to find & in an undirected grapB = (V, E), if one exists,

216 N. Alon, R. Yuster, and U. Zwick

940,0.9,9.9,

Fig. 1. The possible orientations &fs in G'.

in O((E-d(G))%/@+D) expected time, 0O ((E-d(G))%*/“*V log V) worst-case time.
The proof of the directed case is similar.

In O(E) time we can get an acyclically oriented versiéh= (V, E’) of G in which
the out-degree of each vertex is at mdé6G). Suppose tha6 contains &Cg. The six
possible nonisomorphic orientations of thisin G’ are shown in Figure 1. We refer to
these orientations a&, ..., Ag. Our algorithm checks, for eachdi < 6, whethelG’
contains and; and if so finds one.

We show how to find ai\; in G/, if one exists. The other cases are similar, and in fact
easier. As in [2], we color the vertices Gf randomly using six colors (i.e., every vertex
receives a number between 1 and 6, all numbers equally likelyg(Lgtienote the color
of vertexv. Let A be a specific copy of al; in G’. We say thatA is well-coloredif
its vertices are consecutively colored by 1 through 6, and the color 1 is assigned to one
of the three vertices having only outgoing edge®\in(By “consecutively colored” we
mean that each € A with c(v) < 6 has a neighban € A with c(u) = c(v) + 1). The
probability thatA is well-colored is 66°. We now show how to detect a well-colored
copy of anA; deterministically, if one exists.

Create a new undirected gra@i = (V*, E*) defined as follows:

V* = (v e V: cv) € {2, 4, 6}}

E* = {(u,v): cu)=6,cv) =2, AQweV) (cw) =1, (w,u), (w,v) € E)}
U {(uv):cu)=2 cv)=4 QweV) (c(w) =3, (w,u), (w,v) € E)}
U {(u,v):cu)y=4, cv) =6, Qw e V) (c(w) =5, (w,u), (w,v) € EN}L

Clearly, V* < V. To createG*, we examine each edda, u) € E’ with c(w) odd.
Supposec(w) = 1 andc(u) = 6. We create edges iB* betweenu and all vertices
v such that(w, v) € E’ andc(v) = 2. There are at most(G) — 1 such vertices. We
therefore havee* < E-d(G) andG* can be constructed i®(E-d(G)) time fromG'.
Clearly, there exists an undirected trianglé&Ghiff there exists a well-colored; in G'.
We can detect such a triangle @ in O((E*)%/@+D) = O((Ed(G))%/@*D) time
using the algorithm of Theorem 3.5. If such a triangle is not found, we repeat the whole
process using a new random coloringdf contains anA;, then such arA; will be
found after an expected number 6f& 7776 attempts.

We have thus shown how to detect&nin G/, if one exists, ifD ((Ed(G)) 2/ (@+Dy =
O((E-d(G))%®/@*+Dy expected time. As shown in [2], such a coloring scheme can be
derandomized at the price of &xlog V) factor. O

Finding and Counting Given Length Cycles 217

5. Finding Cycles in Sparse Undirected Graphs. To obtain the results of this section
we rely on the following combinatorial lemma of Bondy and Simonovits [5].

LEMMA 5.1[5]. Let G = (V, E) be an undirected grapHf |E| > 100k- |V |* Yk,
then G contains a & for every integel € [k, n'/X].

By combining the algorithm described in the proof of Theorem 4.2 with an algorithm
given in [16] we obtain the following theorem.

THEOREMb5.2. Let G= (V, E) be an undirected graph

(i) A Cy_oin G, if one existscan be found in QE>~/20A+1/K) time
(i) A Cy in G, if one existscan be found in QE?~1/k-1/Z+1)) time

PrROOE We prove the second claim. The proof of the first claim is similar.d_et
200k- EY@+D |f d(G) > d, then, by the definition of degeneracy, there is a subgraph
G’ = (V/, E') of G in which the minimal degree is at leat Such a subgraph can be
easily found inO(E) time (see, e.g., [10]). Clearlfg’ > dV’/2 > 100k-V’. E'Y/@+D
and thereforee’ > (100k-V/)1*Y/2% > 10k (V)% By Lemma 5.1 we get thad’
contains aC4 and such &4 can be found inO(V'?) = O(EZ%@+D) time using
the algorithm given in [16]. If, on the other handi(G) < d, then aC4 in G, if one
exists, can be found IO (EZY*.d) = O(E> Wk-1/@+D)) time using the algorithm
of Theorem 4.2. It is easy to check that-%/@+D < E2-A/k-1/+1) with equality
holding only ifk = 1. In both cases the complexity is theref@g¢E?~(/k-1/(k+1)y g5
required. O

COROLLARY 5.3. Let G = (V, E) be an undirected graph

(i) A quadrilateral(C,) in G, if one existscan be found in QE*3) time
(i) A hexagor(Cs) in G, if one existscan be found in QE¥8) time

6. Counting Small Cycles. Let G = (V, E) be a simple undirected graph and let
A = Ag be the adjacency matrix @&. Assume for simplicity thaV = {1,...,n}.
Denote byal() = (AY);; the elements of thith power of A. The trace ttA¥) of Ak
which is the sum of the entries along the diagonahbf gives us the number of closed
walks of lengthk in G. If we could also compute the numberradnsimpleclosed walks
of lengthk in G we would easily obtain the number siimpleclosed paths of lengtk
in G. This number is just2times the number oE’s in G.

Before describing a way of counting the number of nonsimple closed walks of length
wherek < 7, in a graphG in O(V®) time, we need the following definitions:

DEFINITION 6.1. LetG; = (Vi, E;) and G, = (V,, E2) be two simple graphs. A
mapping f: V; U E; — V, U E, is ahomomorphismif for every v € V; we have
f(v) € V, and for everye = (u, v) € E; we havef(e) = (f(u), f(v)) € Ex. If fis
ontoV, U E,, we say that, is ahomomorphic imagef G;.

218 N. Alon, R. Yuster, and U. Zwick

*—e *—o—o
Hy Hy

Fig. 2. The 4-cyclic graphs.

DEFINITION 6.2. A graphH = (Vy, Ep) is said to bek-cyclic for k > 3, ifitis a
homomorphic image of the cyce. The number of different homomorphisms fr@n
to H is denoted by, (H). Clearly, H is k-cyclic if and only ifcc(H) > O.

It is easy to check, for example, th@s is k-cyclic for everyk > 3 exceptk = 4. It
is also not difficult to check thaz(C3) = 6 (and more generallg (Cx) = 2k for every
k > 3) and thats(C3) = 30. The only 3-cyclic graph i€; itself. Thek-cyclic graphs,
for4 <k < 7, are given in Figures 2-5.

Letng(H) denote the number of subgraphs®fsomorphic toH. Clearly, the total
number of closed walks of lengtin G is

tr(A") =) " c(H)na(H).
H

If cx(H) > 0, thenH is connected and has at méstdges. AlsoH cannot be a tree on

k + 1 vertices as each edge leading to a leaf must be the image of at least two edges in
Ck. Hence V4| < kand in fact,|Vy| < k unlessH = Cy. We therefore obtain, for an
undirected grapls = (V, E):

1
€N Ne(Cy) = ﬁ[tr(Ak)— > ck<H>nG<H)]

[V <k

A very similar formula can be obtained for directed graphs. We show how to compute
ng(H), for all k-cyclic graphsH with 3 < k < 7, in O(V®) time. Hence, we obtain the
following theorem.

THEOREMG6.3. The number of €s, for 3 < k < 7in an undirectedor directed graph
G = (V, E), can be found in QV®) time

PrOOF We consider the undirected case. The directed case is similar and, in fact,
slightly simpler (as there are lekscyclic graphs). Clearly, the traceg &%), for 3 <

k < 7, can be computed i® (V) time using fast matrix multiplication. It remains to
show how to findng (H) for all k-cyclic graphsH, where 3< k < 7, excluding the

cyclesCs, ..., C; themselves, iD(V®) time.
Thek-cyclic graphs shown in Figures 2-5, which are not simple cycles, are denoted
by Hy, ..., His (they are ordered according to the number of edges they contain).

A B (T

Fig. 3. The 5-cyclic graphs.

Finding and Counting Given Length Cycles 219

[— —o 9 A —eo 9o o
H,y H, Hs Hy
Hg Hg: Hy <:>

Fig. 4. The 6-cyclic graphs.

The following list shows how to obtaing (H;), for 1 < 1 < 15, andng(Cy), for

3 < k < 7. In all cases the formulae reference at mosv?2) values ofa,(p) for some

1 < p < k and can hence be computed@(V®) time. We letd, = afz) denote the
degree of vertexk.

1.
NG (Ca) = §-tr(A°).
2.
Ng(Hy) = |E| = Z ai(jl)~
1<i<j<n
3.
n dI
ng(Hy) = ; (2)
4.
NG (Cs) = 3-[tr(A%) — 4ng(Hz) — 2ng(Hy)].
5.

Ne(Ha) = Y (di — 1)(d; — 1) — 3na(Cy).
(i,j)eE

A D N LY
HAHQ%@

H12

(e O

H1’3

Fig. 5. The 7-cyclic graphs.

220 N. Alon, R. Yuster, and U. Zwick

Ng(Hs) = Z (2)

i=1

n
Ne(Hs) = 3- [Z a(d — 2)] :
i=1
Note thata” is twice the number of triangles that pass through veirtex

NG (Cs) = 2&-[tr(A°) — 10ng (Hs) — 30ng(C3)].

ai('Z)
ne(He) = > <é)

(i,j)eE

Note thata,-(jz) is the number of common neighborsioind j, which is also the
number of paths of length 2 betweeandj.

10.
n 4 —2
nG<H7>=%-[§ %@(,)}

i=1

11.

Ne(He) = > &P (d —2)(d; — 2) — 2nG(He).
(i.)eE

Note that we must subtrachg (He) to avoid the case in which the two degree-one
vertices ofHg are, actually, the same vertex.
@
&j
5)

12.
2)
Note thath i (%;')) is exactly the number of quadrilaterals in whicparticipates.
13.

Ne(Hg) =Y (d —2)> (
i=1

JA

n
ne(Hio) = Y (3a) (Z aﬁ?) — 6n6(Cs) — 2ng (Hs) — 4ng (H).
i=1 j#i
Note that(%ai(f’))(zj?éi ai(jz)) is simply the number of triangles throughimes the
number of paths of length 2 that begin withHowever, we must only count such

a triangle and such a path if they are disjoint, so we must subtract appropriate
occurrences o€3, Hs, andHg.

Finding and Counting Given Length Cycles 221

14.

n 131(3)
Ne(Hi) = (2 2') — 2ng(He).
i=1

15. Since we have already shown how to comp€H) for all the 6-cyclic graphs,
excludingCsg, we can use (1) to compute; (Cg).

ne(H) = Y a?-a’¥ — 9ne(Cs) — 2na(Hs) — 4nc(He).
(i,j)eE

Here we count the number of triangles throughj) and multiply each triangle by
the number of walks of length 3 betweemand j. Since these walks need not be
simple, or may intersect the triangle, we may actually be cour@isig, Hs's, or
Hg's. Therefore, we subtract the appropriate values.

a1(2)
Ng(Hi3) = Z (é)

(i.))eE
18.

Ne(Hwa) =) (0 —2) - B — 2ng(Hiy),

whereB; is the number o€5’s passing through. The expression foB; is
B = [~10a\Y —4a\¥(di —2) -

D Al -2-2) Gay' - 25]

(i.j)eE (i.))eE

19.
@

Nng(His) = 21:(23”3)) (; <a'2' >> — 6ng(Hg) — 2ng(H12) — 6ng(Hiz). O

Using slightly more effort, it can be shown that, @(V“) time, we can also count
the number o€y’s, for 3 < k < 7, that pass through each vertex®fWe have, in fact,
done this in the preceding proof fer= 3, 4, 5. If the graphG contains &Cy, for some
3 < k < 7, we can therefore find, i©(V®) time, a vertex through which suchG
passes. We can then locat€gin the graph in additionaD(E) time using Monien’s
method (Lemma 3.3).

Similar formulae can be obtained, of course, for the number of octagiy's énd
even larger cycles. To compute the number of octagons, however, we have to compute
first the number oK ,’s in the graph, since K, is 8-cyclic. We do not know how to do
this isO(V®) time.

222 N. Alon, R. Yuster, and U. Zwick

It is easy to count the number &f,'s in a graph inO(V®*?!) time: for each vertex,
count the number of triangles among its neighbors, sum these numbers, and divide by 4.
Counting the number d&,’s in a graph, or, in fact, deciding whether a graph contains
aKy, ino(V“*l) time, is an interesting open problem.

For counting the number of larger cycles using our method, we would have to count
the number of larger cliques in the graph.9del and Poljak [12] give arO(V¢/31)-
time algorithm for deciding whether a grah = (V, E) contains aK. It is easy to
check that their method can also be used to count the number of such cliques contained
in the graph. By combining the method of $&&il and Poljak [12] with the ideas used
in Section 4, we get the following result.

THEOREMG6.4. The number of Ks in an undirected graph G= (V, E) can be counted
in either O(V - (d(G))*l“=D/31y or O(E-(d(G))*I¢=2/31) time

Using an idea similar to the one used in Theorem 3.5, Khdlal. [9] have recently
obtained arO(E@*Y/2) = O(E'%°) time algorithm for counting the number &f;'s
contained in a grap® = (V, E). They also obtain improved results for finding larger
cligues and other induced subgraphs.

References

[1] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cyd®eceedings of thénd
European Symposium on Algorithyhtirecht, Lecture Notes in Computer Science, Vol. 855, pages 354—
364. Springer-Verlag, 1994.

[2] N. Alon, R. Yuster, and U. Zwick. Color-codindournal of the ACM42:844-856, 1995.

[3] B. Bollobas. On generalized graph&cta Mathematica Academiae Scientarium Hungarjdde447—
452, 1965.

[4] B. Bollobas.Extremal Graph TheoryAcademic Press, New York, 1978.

[5] J. A. Bondy and M. Simonovits. Cycles of even length in graglesirnal of Combinatorial Theory
Series B16:97-105, 1974.

[6] N. Chiba and L. Nishizeki. Arboricity and subgraph listing algorithi@5AM Journal on Computing
14:210-223, 1985.

[7] D. Eppstein. Subgraph isomorphism in planar graphs and related probRmreedings of the
6th Annual ACM-SIAM Symposium on Discrete Algorithi®an Francisco, CA, pages 632-640,
1995.

[8] A.Itai and M. Rodeh. Finding a minimum circuit in a grafBlAM Journal on Computing’:413-423,
1978.

[9] T.Kloks, D.Kratsch, and H. Miler. Finding and counting small induced subgraphs efficieRtlyceed-
ings of the21st International Workshop on Graph-Theoretic Concepts in Computer Scidacaen,
Lecture Notes in Computer Science, Vol. 1017, pages 14-23. Springer-Verlag, 1995.

[10] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph coloring algorithms.
Journal of the ACM30:417-427, 1983.

[11] B. Monien. How to find long paths efficientbannals of Discrete Mathematic25:239—-254, 1985.

[12] J. Nesetil and S. Poljak. On the complexity of the subgraph probl@wmmmentationes Mathematicae
Universitatis Carolinag26(2):415-419, 1985.

[13] C. H. Papadimitriou and M. Yannakakis. The clique problem for planar gramfiasmation Processing
Letters 13:131-133, 1981.

Finding and Counting Given Length Cycles 223

[14] D. Richards. Finding short cycles in a planar graph using separatensal of Algorithms7:382-394,
1986.

[15] G. Sundaram and S. S. Skiena. Recognizing small subgriighsorks 25:183-191, 1995.

[16] R. Yuster and U. Zwick. Finding even cycles even fadteaceedings of th@1st International Col-
loquium on Automata.anguages and Programminderusalem, Lecture Notes in Computer Science,
Vol. 820, pages 532-543. Springer-Verlag, Berlin, 1994. Journal version to apggaihJournal on
Discrete Mathematics

