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Abstract 

Finding minimum circuits in graphs and di- 

graphs is discussed. An almost minimum circuit 

is a circuit which may have only one edge more 

than the minimum. An O(n 2) algorithm is pre- 

sented to find an almost minimum circuit. The 

straightforward algorithm for finding a minimum 

circuit has an O(ne) behavior. It is refined 

to yield an 0(n z) average time algorithm . An 

alternative method is to reduce the problem of 

finding a minimum circuit to that of finding a 

triangle in an auxiliary graph. Three methods 

for finding a triangle in a graph are presented. 

The first has an O(e 3/2) worst case bound 

(0(n) for planar graphs); the second takes 

0(n J3) time on the average; the third has an 

O(n l°g?) worst case behavlor. For digraphs, 

recent results of Blonlarz, Fisher and Meyer are 

used to obtain an algorithm with O(n21ogn) 

average behavior. 

i. Introduction 

In this paper we discuss finding short 

circuits in graphs and digraphs. We assume that 

the reader is familiar with the standard defin- 

itions of graph theory [Liu68]. Let G = (V~E) 

be a graph with n vertices and e edges. The 

length of a path (circuit) is the number of its 

edges. We assume that the vertices are numbered 

and will not distinguish between a vertex and its 

number. A minimum circuit is a circuit whose 

length is minimum. An almost minimum circuit is a 

circuit whose length is greater than that of a 

minimum circuit by at most one. We present an 

0(n2) algorithm for finding an almost minimum 

circuit. To find a minimum circuit an 0(n 2) 

average time algorithm is developed. We also 

show an 0(n 2) reduction from the problem of 

finding a minimum circuit to that of finding a 

triangle (a circuit of length 3). Three methods 

for finding a triangle are presented: 

(i) Using rooted trees. The algorithm takes 

O(e 3/2) time in the worst case and O(n) 
# 

for planar graphs. 

(li) Checking directly whether an edge is cont- 

ained in a triangle - 0(he) worst case and 

O(n 5/3) average time. 

(iii) By Boolean matrix multiplication, in O(n l°g?) 

time [Str691 (all logarithms are taken to 

base 2). 

Two methods are described for "finding 

directed circuits (dicircuits) in digraphs. The 

first requires 0(n8) worst case and O(n21ogn) 

on the average (we use the results of [BFM76]). 



The second uses |ogn Boolean matrix multiplic- 

ations (i.e. o(nl°g?logn) time). 

We use three representations of labelled 

graphs: 

(i) The adjacency lists: A(V) is the set of 

vertices adjacent to v. 

(ii) The upper adjacency vectors: UA(v) is a 

sorted vector which contains those vertices 

w>u adjacent to u. This representation 

depends on the labelling of the vertices. 

Each edge is represented in exactly one vect- 

or. The vectors may be obtained from the 

adjacency lists in 0(8) time (using bucket 

sort). 

(iii) The adjacency matrix: (M)uv = 1 if and only if 

u and u are connected by an edge. The ad- 

jacency matrix may he constructed from the 

adjacency lists in 0(e) time ([AHU74] p.71, 

Ex. 2.12). 

2. Findin~ and Almost Minimum Circuit 

Let G= (V,E) be an undirected labelled graph 

with n vertices and 8 edges which has neither 

parallel edges nor self loops. Let Imc denote 

the length of a minimum circuit (if G is circuit 

free then lmc=~). A circuit is an almost minim- 

um circuit if its length is less than or equal to 

Imc + 1. We present an O(n 2) algorithm for 

finding an almost minimum circuit. 

First the algorithm FRONT is presented. Given 

a vertex u ~ V this algorithm finds a lower bound 

on the length of the minimum circuit through v. 

The by-products of the algorithm are used in the 

sequel. FRONT conducts a partial breadth first 

search (BFS) from U level-by-level. If the con- 

nected component which contains v is circuit-free 

then the algorithm terminates with k(v) =oo. 

Otherwise, it stops when the first circuit is 

closed; this circuit does not necessarily pass 

through v; k(v) is defined to be the last level 

from which the search was conducted; 2k(v) + I is 

a lower bound on the length of the minimum circuit 

through v. 

The algorithm FRONT uses a first-in, first- 

out queue which is initially empty. The queue 

operations are enqueueCu) which inserts u at the 

rear of the queue, and dequeue which removes and 

takes the value of the first element of the queue. 

procedure FROYZ (v , k, l eve l ) ;  
begin for u£V d.._o l~oel(u):=nil; 

l~elCv) :=0; e~(v) ; 

while the queue is mot empty d__oo 

begin comment if the connected component of 
V contains a circuit then the queue is 
never empty at this point; 

u: =dequeue ; 

for WeA(U) do 

begin if level(w)=nil then 

begin leve I (w) : =level (u) +i; 

enqueue (w) end 

i. else if level(u)~level(w) then 

begi. k(v):=level(u); 

return end 

end 

end" 

comment the connected component of V is 
circuit free; 

2. kCv) :=® 

end 

FRONT builds a partial BFS tree. When a non- 

tree edge is encountered (line i) the algorithm 

terminates. Otherwise, k(v) = = (line 2). Each 

tree edge is scanned at most twice. Thus the 

algorithm takes O(n) time. The space requirements 

consist of the vector leusl of length n, and the 

queue, in which each vertex can appear at most 

once. Hence, the algorithm requires O(n) space in 

addition to the input. Observe that a minimum 

circuit through v could be found by scanning all 

the edges. In the worst case this requires 0(8) 
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time. In the next section we present a scanning 

method which takes O(n) time on the average. 

Let us apply FRONT to every vertex v ~ V, and 

let kmin be the minimum value of k(v). 

Le~na 1: Let x be a vertex for which k(x)=kmin < ~, 

then x is contained in an almost minimum circuit. 

Proof: Let v be a vertex which belongs to a min- 

imum circuit C. If Imo is even, FRONT(v) stops 

when encountering a vertex w as in Figure l(a); 

k(v) = Imc/2-1. If Zme is odd the algorithm stops 

as in Figure l(b) or Figure l(c); k(v)= (lmc-l)/2. 

In either case we have 

2k(v) + 1 ~ Zinc ~ 2k(v) + 2. 

Since k(v) ~kmin , 

2kmin + 1 ~ Ime. 

The circuit found when applying FRONT to x is not 

longer than 2kmin + 2. Therefore, it is not longer 

than Z~c + 1 and is an almost minimum circuit. This 

circuit contains x, since otherwise its length 

would have been at most 2(~nin-l) + 2=2k:nin < lmo, 

a contradiction. Q.E.D. 

Note that if Z~nc is even then for a vertex x 

on a minimum circuit the algorithm stops as in 

Figure l(a) and finds a minimum circuit. In part- 

icular, in bipartite graphs the length of all 

circuits is even and the algorithm finds a minimum 

circuit. 
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Since FRONT is applied n times, at most O(n 2) 

time is required to find an almost minimum circuit. 

If the algorithm is applied to the full bipartite 

graph to which we add zero or more edges the alg- 

orithm might find only circuits of length four, 

even though the graph may contain triangles. In 

this case the algorithm requires O(n 2) time, hence 

the bound is tight for the algorithm. 

The space is bounded by O(n) provided that we 

record only the minimum value of k and a vertex x 

for which it was obtained. Then an almost minimum 

circuit may be found in O(n)time by applying a 

procedure similar to FRONT to x. 

3. Findin~ a Minimum Circuit 

We have shown how to find a minimum circuit 

for the special case in which its length is known 

a priori to be even. In this section by-products 

of FRONT are used to develop an 0(n 2) average time 

algorithm to find a minimum circuit for the 

general case. 

Assume that FRONT has been applied to a vertex 

v for which k is minimum. If the connected 

component of v is circuit-free then'the entire 

graph is circuit-free. Otherwise, a circuit is 

detected. Using the notation of FRONT, this 

circuit passes through u and w. If level(u) 

= leuel(w) then the circuit is odd and thus minimum. 



Otherwise, the circuit is even and may not be min- 

imum. It remains to check for the existence of an 

edge (x,y) such that leve~(x)=level(y)=level(u). 

The vertex x must be either a vertex still in the 

queue or u itself. Thus, when FRONT(V) termin- 

ates, define 

F(v) = {u} u {xlx E V , x is in the queue, 

level (x) = level (u) }. 

In O(n) time we may sort F(v) (bucket sort) 

and prepare a bit vector representing F(v) and a 

linked list of its non-zero elements. The pro- 

cedure EDGE below, when applied to F(v) searches 

for an edge (x,y) such that both m and y belong 

to F(v). 

Let S be an ordered list of distinct vertices 

with the additional property that membership can be 

determined in constant ti~. (Observe that F(v) 

satisfies these requirements.) The edge (m,y) is 

an S-edge if x,y ~ S. EDGE(S) searches for 

vertices u < w such that (u,w) is an S-edge. 

First it searches (lines 1-4) for (u,w) such that 

u is not among the last n I/3 vertices of S. 

If unsuccessful, it searches exhaustively for an 

edge, the endpoints of which belong to the last 

n I/3 portion of S (lines 5-6). If both searches 

fail then there exists no S-edge. 

EDGE uses UA in a destructive mode. Since 

it is needed later, it can either be copied before 

use or reconstructed using a stack to undo all the 

destructive operations. The latter solutiOn is 

preferred since it enables a sublinear algorithm. 

However, the details are omitted. 

procedure EDGE(S); 

i. begin for i:=I step l until _ _  I s l - n  113 d__~o 
besin u:=S(i); 

while UA(u) is not empty d_~o 
2. begin choose at random a vertex w in UA(u); 

3. if wES them return ((u,w))$ 

delete w from UA(u) 

end 

4. end; 

5. for  i : ~ = = ( 1 ,  IS [ -n l /3+ l )  step 1 until lSl do 
begin u:=S(i); 

for j:=/+l step 1 until I SI d_~o 

begin W :=S(j); 

if (u,w)EE then return((u,w)) 

end 

end ; 

6. return(nil) 

end 

EDGE may require O(n 2) time. However, its 

average behavior is better. 

Let m/ be the upper degree vector (ud(v) = 

IUA(V) I) and Gudbe the class of all labelled 

graphs with a given~dvector. Observe that the 

class of all labelled graphs is a disjoint union 

of all the Gud classes. 

Let P be a probability measure on labelled 

graphs, such that any two graphs in Gu~ are equi- 

probable. . The following probability measures 

satisfy this requirement [ES74]: 

(i) The existence of each edge is an independent 

random variable with equal probabilities. 

(ii) All graphs with a given number of edges are 

equiprobable. 

For S~V, let E S be a subset of S× (V-S) and 

e S the cardinality of E S. 

Lsmm~ 2: Let GE= {C-=(V,E)IE~ES}. Then the 

average behavior of EDGE on GES is bounded by 

O(e S + n2/3). 

Proof: If (u,w) belongs to E S then the test w £ S 

(line 3) necessarily fails. EDGE might waste at 



most O(e S) time on such edges. Therefore, it suf- 

fices to prove that the other edges require 

O(n 2/3) time on the average. 

Using the linked list representation of S and 

the adjacency matrix, lines 5-6 require at most 

OCn 2/3) time. Thus, it remains to show that lines 

1-4 require O(n 2/3) average time. 

Under P, all graphs in GEsn Gud are equi- 

probable. We now wish to estimate the probability 

that an edge (u,w) chosen at random in line 2 is 

an S-edge. By assumption, (u,W) does not belong to 

E S. Let there be 11 edges in UA(~) n E S. Denote 

by 12 the number of edges in UA(u)-E S checked 

before (ujw). The vertex w may be any one of the 

n-u-(11 + 12) remaining vertices, with equal probab- 

ilities. Since w> u, if w e S then it may be 

any one of the vertices of Sn {u+l,...,n}. The 

probability that we S is therefore: 

Jsn {u+l ..... n}J ~ n I/3 = n-2/~ 
n-u-(l I + 12) n 

By decreasing the probability of success, the aver- 

age number of trials until the first success in- 

creases. Hence, the average execution time of 

lines i-4 is bounded by: 

O( E i(l-n-2/3)i-2n-2/3 ) = 0(n2/3). Q.E.D. 

i=I 

The followlng procedure MIN CIRCUIT finds a 

minimum circuit of length lmc. If /rnc is finite 

the circuit passes through v. If lmc is odd 

then the circuit also passes through the edge a. 

procedure MIN_CIRCUIT ( Imc, v, a); 

I. begin for V£V d__oo FRONT(V); 

2. flnd kmin; 

if kmin=~ then 

begin lmc : • 

return end ; 

3. for vEV and k(v)=kmin do 

4. begin find F(v); 

prepare a representation of F(v) as a 
sorted linked list; 

prepare a bit vector representation of F(v); 

a :=EDGE(F(v) ); 

if a~nil then 

begin /mc :=2 .~in+l ; 

return end 

7. end ; 

/mc : = 2 • km/n+2 ; 

v :=any vertex for which k is minimum 

end 
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6. 

Theorem 1: The average execution time of 

MIN_CIRCUIT is bounded by 0(n2). 

Proof: Line 1 requires at most 0(n 2) time; line 2 

0(n) time. In each iteration, lines 4-5 require 

O(n) time. In line 6 EDGE is called with S=F(v) 

and ES is the set of edges incident with S which 

were scanned by FRONT(v). Hence, e S~ n and each 

iteration of llne 6 costs O(es+n2/3) = O(n) time 

on the average. Since the loop (lines 4-7) may be 

executed at most n times, the average execution 

time of MIN__CIRCUIT is bounded by O(n2). Q.E.D. 

The minimum circuit itself may easily be found 

in additional 0(n) time by applying FRONT to v. 

If Imc is odd the edge a is used to close the 

circuit. 

4. A Reduction to Finding Triangles 

Now we show a reduction of the problem of 

finding a minimum circuit to that of finding a 

triangle in an auxiliary graph. A disadvantage of 

this method is that the number of edges might grow 

considerably. However, the number of vertices may 
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only be doubled. Thereby, an upper bound for the Imc=2~nin+l, k(v)=kmin and v'e V'. Let C be 

complexity of the problem is obtained. a minimum circuit through v. There are exactly 

To this end we construct the graph 

G'= (V'u ~E'uE). Y' consists of a copy of those 

two vertices x,y in C whose distance from v is 

kmin = [lmc/2J. Thus, x,y ~ F(V) and (x,y) E E'. 

vertices of G for which k is minimum. Let V ' den- Therefore, (v',x,y) is a triangle in G'. Q.E.D. 

ote the vertex corresponding to v. E' contains 

all the edges between each new vertex v' and the 

vertices in F(v). Figure 2 contains an example of 

an auxiliary graph G'. The original graph G 

appears in boldface. 

Lemma 3: G' contains a triangle through V' if and 

only if v is contained in a minimum circuit of G 

and Imo is odd (i.e. lmo= 2kmin+ i). 

Corollary: If a triangle in G' passes through a 

vertex x e V then x is contained in a minimum 

circuit of G. 

Proof: If the triangle consists solely of vertices 

of V then the triangle is contained in G and is a 

minimum circuit (because parallel edges and self 

loops have been excluded). If the triangle con- 

tains a vertex of V' then this follows from the 

Proof: Let G' contain a triangle (v',x,y). By proof of Lemma 3. Q.E.D. 

the construction, v r is connected only to vertices Finding a triangle in G'-provides an edge 

of F(v). Therefore, x,y EF(v) cV. The vertices 

x and y are at distance kmin from v. FRONT 

(x,y) E E which is contained in a minimum circuit 

of G. The circuit itself may be found in O(n) 

traces minimum length paths v- x, v- y. The length time by an algorithm similar to FRONT. 

of these paths is kmin and they are vertex dis- 

joint (i.e. they intersect only at v), because an 

additional intersection world entail a shorter 

circuit. (v',x,y) is a triangle in G' and x, ye V. 

Thus, (x,y) belongs to E. This edge and the two 

paths form a circuit of length 2kmin+ i. Since 

Imc ~ 2kmin + 1 the circuit is minimum. 

In the other direction, assume Imc is odd and 

a minimum circuit passes through V. Therefore, 

5. Al~orithms for Findin~ Triangles 

(i) Search by rooted spanning trees. 

Let T be a rooted spanning tree of a connected 

graph. ~Using the following lemma we may 

construct an algorithm to check whether the 

graph contains a triangle. 

Lemma 4: There exists a triangle which contains 

a tree edge iff there exists a non-tree edge (x,y) 



for which (father(x),y) ~ E. (Every edge is checked 

in both directions.) 

Proof: If (father(x), y) c E then obviously 

(x,y, (father(~)) is a triangle. 

In the other direction, assume that (x,y,z) 

is a triangle and (x,z) is a tree edge (without 

loss of generality x=father(z)). Two cases arise: 

If (z,y) % T then the condition is met for thiS edge 

since (father(z),y)= (x,y)E E. Otherwise, (z,y)ET. 

In this case z =father(y) (each vertex has at most 

one father). The condition is met for the non-tree 

e <- 3n-6 and we delete n-i edges; n-1 >- e/3. At 

subsequent iterations a third of the edges of each 

connected component are deleted. Therefore, a 

third of the remaining edges are deleted. Conseq- 

uently, the number of edges at the i-th iteration 

is at most (2/3)i-le. The work in the i-th stage 

is proportional to the number of the remaining 

edges. Therefore, the total work is proportional to 
co 

e(2/3) i-I = 3e = O(n). Q.E.D. 

i=i 

Theorem 3: For any graph TRIANGLE requires at 

most O(e 3/2) time. 

edge (y,x) since (father(y),x)= (z,x) eE. Q.E.D. 

For each non-tree edge (x,y) we can check 

whether (fdther(x),y) E E in constant time using the 

adjacency matrix. Consequently, 0(8) time is 

required to check whether any tree edge belongs to 

a triangle. 

Henceforth, a connected component is trivial 

if it consists of a single isolated vertex. We may 

now describe the procedure TREE : 

procedure TREE; 

I. Find a rooted spanning tree for each non- 

trivial connected component of G; 

2. If any tree edge is contained in a triangle 

then stop (a triangle has been found); 

3. Delete the tree edges from G. 

Each application of TREE requires at most 

O(e) time 

procedure TRIANGLE; 

Repeat TREE until all edges of G are deleted 

or a triangle is found. 

Proof: Let c denote the number of connected 

components. In the course of the execution of 

TRIANGLE the value of c increases. Initially c = i. 

At first we estimate the time required by TRIANGLE 

while c ~ n-e I/2. Then we estimate the time while 

c > n-el~2: 

(a) c ~ n-e I/2. 

At each application of TREE n-c~n-(n-e I/2) 

= e I/2 edges are deleted. Since there are e 

edges there may be at most e/e I/2 = e I/2 such 

iterations. 

(b) c > n-e I/2. 

The degree of each vertex is at most 

n-c < n-(n-e I/2) = e I/2. Since each iteration of 

TREE decreases the degree of each non-isolated 

vertex, there may be at most e I/2 such iterations. 

Therefore, we have at most 2e I/2 iterations 

in the entire process. Each iteration takes O(e) 

time. Thus, TRIANGLE takes O(el/2)O(e) = O(e 3/2) 

Theorem 2: For planar graphs TRIANGLE requires at 

most O(n) time. 

Proof: T~IANGLE deletes edges from the graph. We 

first show that each iteration of TREE deletes at ~ 

least a third of the remaining edges. At first, 

time. Q.E.D. 

For K (the full bipartite graph with 2n 
nn 

vertices) the algorithm may take O(e 3/2) time 

while c ~ n-e I/2. For the graph obtained by adding 

3m 2 vertices all connected to a single vertex of 

Kn~ , O(e 3/2) time is required while c > n-e I/2. 



(il) Search by vertices. 

G contains a triangle if there exists a vertex 

v and an edge a between two vertices u and w 

(u < w) of UA(V). 

procedure VERTEX~ 

for VeV do 

begin a : =EDGE(UA (v) ) ; 

if a~il then return (V) 

end 

EDGE requires that UA(v) be represented by an 

ordered linked list; moreover, membership in UA(v) 

can be determined in constant time using the 

adjacency matrix. 

Theorem 4: VERTEX finds a triangle in at most 

O(n 5/3) time on the average. 

Proof: The proof is based on Lemma 2. When calling 

EDGE(UA(v)), E S is empty. Therefore, EDGE(UA(v)) 

requires at most 0(n 2/3) time on the average. The 

result follows since EDGE is called at most n times. 

Q.E.D. 

Note ,  t h a t  i f  t h e  upper  a d j a c e n c y  v e c t o r s  o r  

t h e  a d j a c e n c y  m a t r i x  has  ro  be  p r e p a r e d  t h e n  t h e  

a l g o r i t h m  r e q u i r e s  a d d i t i o n a l  0 (e )  t i m e .  

( i i i )  M a t r i x  m u l t i p l i c a t i o n  

Le t  M be  t h e  a d j a c e n c y  m a t r i x  ( i . e .  ( M ) u v = l  

i f  and o n l y  i f  ( u , v )  ~ E ) .  Le t  M 2 be  t h e  

Boo lean  m u l t i p l i c a t i o n  of  M w i t h  i t s e l f .  

( M 2 ) u v = l  i f  and o n l y  i f  t h e r e  e x i s t s  a v e r t e x  

w such  t h a t  (M) W= (M)WV=I ( i . e .  (u,w),Cw, v)£ 

E). If also (M)uv=l, then (u,v,w) forms a 

triangle. Let B=M 2 and M (and denotes elem- 

ent-by-element logical and). (B)uv = 1 if and 

only if a t.rlangle passes through the edge 

(u,v). Using Strassen's algorithm [Sir69] we 

may multiply Boolean matrices in O(n l°gT) time, 

thus obtaining an O(n l°g?) algorithm. 

Combining this algorithm with the reduction 

of Section 4 yields an O(n l°gT) algorithm for 

finding a minimum circuit.. 

6. Finding a Minimum DiclrCult 

In the sequel digraphs, diclrcults and dlpaths 

denote directed graphs, circuits and paths respect- 

ively. Given a digraph G= (V,E) with no self loops, 

we wish to find a minimum dicirctti£ in it. The 

techniques for (undirected) graphs described in the 

previous sections are not applicable. However, a 

minimum dicircuit may be found by n applications 

of the procedure DICIRCUIT described below. The 

worst case behavior of this method is O(ne) but on 

the average it requires 0(n21ogn) time. An 

alternative method is also presented. It uses 

Boolean matrix multiplication and requires 

o(nl°g71ogn) t ime.  

( i )  The procedure DICIRCUIT 

DICIRCUIT(v,k) finds a shortest dlclrcult 

among those which pass through v. The procedure 

conducts a directed BFS from v. Whenever 

a new vertex w is encountered, DICIRCUIT 

checks whether (wjv) £ E. If so, a shortest 

diclrcult through v has been discovered and 

the process terminates. Otherwise, w is 

enqueued. Consequently there exists no edge 

from a vertex in the queue to v. The queue has 

the same role as in FRONT; level(u) denotes the 

length of the shortest dlpath from v to u if 

one has been found and nll otherwise; scan 

denotes the number of scanned vertices. 

procedure DICIRCUIT(v , k) 

besin for ueV d__oo level(u):=nil; 

level(v) :ffi0; k(v) :ffinll ; 

enqueue (v) ; scan : •l ; 

while scan<n do 

i. begin i_~f queue is empty then return; 

u: =dequeue ; 

for WeA(u) and leve l (w )fnil do 

begin if (W,V)EE then 

begin k(v) :=level(u)+2 ; 

2. return end ; 

leve I (w) : =leve I (u) +1 ; 
enqueue (w ) ; 
scan:fscan+l end 

eld 

3 .  end 



The procedure may terminate at three points in 

the program: 

(a) Line i: The queue has become empty, In this 

case there exists no dicircuit through v. 

hence, kCv) = ~il. 

(b) Line 2: Since (u,w),(w,v) ~ E, a shortest 

diclrcult through V has been closed. Its 

length is k(v). 

(c) Line 3: All the vertices have been reached. 

No edge enters v. Thus, v is not contained 

in any dicircuit and k(v) = nil. 

Even though DICIRCUIT may require O(e) time, 

the average performance is somewhat better. 

Theorem 5: Suppose P is a probability measure on 

labelled digraphs with n vertices such that di- 

graphs with the same outdegree are equiprobable. 

Then DICIRCUIT takes O(nlogn) time on the average. 

Proof: It suffices to bound the average time 

needed to reach all the vertices. 

Procedure R of [BFM76] also scans a digraph 

until all vertices are reached. The main differ- 

ence is that R uses a stack while DICIRCUIT uses 

a queue. However, R does not take advantage of 

any property of the stack not shared by a queue. 

R is proven to take O(nlogn) time on the average. 

Thus, DICIRCUIT has the same behavior. Q.E.D. 

DICIRCUIT can easily be modified to also 

find the shortest dicircuit through v itself. 

By applying DICIRCUIT to all vertices of 

the digraph a minimum dicircuit may be found in 

O(n21ogn) time on the average. 

(ii) Binary search using matrix multiplication. 

Let Zmdc be the length o{ a minimum dicircuit 

in G; M-the adjacency matrix; D.-the 
J 

matrix of dipaths of length less than or equal 

to j. (Dj)u~ = 1 if and only if there exists 

a dipath of length l~lsj from u to v. The 

matrix D. has a non-zero diagonal if and 
$ 

only if Im~ ~ j. (I.e. Zmdc is the smallest 

j for which D. contains a non-zero element 
$ 

on its diagonal.) Moreover, the diagonal of 

D is zero if and only if G is acyclic. 

We computeD, by the following method: 

DI:=M 

D21:=D ~ o__[rM 

(o__rr is an element-by-element logical or). 

(D~)uv = 1 if and only if there exists a dipath of 

length 2 ~ m s 21. The o__[r operation adds the 

dipaths of length I. 

Thus, for 4:=1,2,... 

the diagonal is non-zero. 

we compute D . until 
2 z 

(If for i> [logn] the 

diagonal of D . is still zero, then G is acycllc. 
2 z 

Therefore, we may terminate if i becomes equal to 

[logn] + I.) If G contains a dicircuit a non-zero 

diagonal is found when i = [logZ~n~]. The value 

of Z~ndc is found by a binary search on j in the 

region 2 i-I < j ~ 2i: First we compute 

D 
= D2i_2+2i_ 2 = D2i_2D2i_2 or M. If (2~-I+2i)/2 

the diagonal is zero t~e search is continued in 

the region 2i-I + ~i-2 < j ~ 2 i. Otherwise, we 

continue in 2 i-l<j ~2 i-2+2 i-2. 

The process requires 21ogZ~ndc matrix 

multiplications. Therefore, 

o(nl°g?logZ~dc) = o(nl°g?logn) time. 

The space requirements are O(n21ogDnc~) = 

= O(n21ogn) since loglmdd matrices have to be 

stored. 

The minimum dicircuit itself may be found in 

additional O(e) time by a directed BFS from a 

vertex v for which (D~ndc)vv = I. 



7. Conclusions 

Using FRONT we have an 0(n 2) reduction from 

the problem of finding a minimum circuit to that of 

finding a triangle. We have shown a method to find 

a triangle in Oln 5/3) average time. However, this 

by itself does not yield an O(n 2) average time 

algorithm to find a minimum circuit, since the 

graphs obtained by the reduction might have a 

special structure. They do not necessarily satisfy 

the probabilistic assumptions which led to the 

O(n 5/3) average time bound. Fortunately, we can 

solve the problem directly in O(n 2) time on the 

average. However, any algorithm which finds a 

triangle in time greater than or equal to O(n 2) 

entails an algorithm to find a minimum circuit 

within the same time bound. Consequently, finding 

triangles by Boolean matrix multiplication leads 

to an O(n l°g?) worst case algorithm to find 

a minimum circuit. 

We have seen several algorithms for finding 

a triangle. TRIANGLE is efficient for sparse 

graphs (especially for planar graphs). VERTEX 

appears better on the average but has an 0(n 3) 

worst case behavior. Better worst case perfor- 

mance can be achieved by using Boolean matrix 

multiplication. 
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