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Abstract

This paper presents a simple, efficient algorithm to compute thecovering graphof the lattice generated by a familyB of
subsets of a setX. The implementation of this algorithm has O((|X| + |B|) · |B|) time complexity per lattice element. This
improves previous algorithms of Bordat (1986), Ganter and Kuznetsov (1998) and Jard et al. (1994). This algorithm can be
used to compute the Galois (concept) lattice, the maximal antichains lattice or the Dedekind–MacNeille completion of a partial
order, without increasing time complexity. 1999 Elsevier Science B.V. All rights reserved.
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1. Preliminaries

Lattices are mathematical structures which are used
for many applications in computer science [1,4,8–11,
15,17]. For example, Wille’s group in Darmstadt [17,
18] has built a theory, and software, for knowledge
representation using the concept lattice (also known
as the Galois lattice). Concept lattices are also used for
data mining (i.e., discovering knowledge in databases)
[19].

Many authors have considered the construction
problem for the concept lattice, the Dedekind–Mac-
Neille completion and the maximal antichain lattice of
a partially ordered set [2,3,7,14,16].

In this paper, we will reformulate the problem of
building these lattices as a more general problem.
We propose an efficient algorithm which improves
algorithms in Ganter [7] for building the Dedekind–
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MacNeille completion and that of Jard et al. [14] for
the maximal antichains lattice. More generally, the
proposed algorithm can be used whenever we have a
closure operator.

To do this, we assume that the reader is familiar
with standard definitions for partially ordered sets. For
definitions and proofs not given here, we refer to [5].

Let X be a set. AbasisB is a set of subsets ofX.
We denote byFB the family generated by union from
the basisB, i.e.,

FB =
{⋃
B∈I

B | I ⊆ B
}
.

We also say thatB is a generator ofFB. The familyFB
is said to beclosed under union, and it is well known
that when ordered by inclusionFB is a sup-sublattice
of the powerset lattice 2X and thus a complete lattice.
WhenB is understood, we useF instead ofFB for
simplicity.

The family F = {{ }, {134}, {14}, {234}, {1234},
{25}, {12345}, {1245}, {2345}} generated by the ba-
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Fig. 1.

sis B = {a = {134}, b = {14}, c = {234}, d = {25}}
is shown in Fig. 1.

We consider the following problem:

Building Lattice Problem. Given a basisB, compute
the covering graphG = (F ,⊆) of the family FB
generated byB, when ordered by inclusion.

Remark 1. In practice, a basis is often given by a
bipartite graphG= (B,X,E) where[B,x] ∈ E, B ∈
B, x ∈X iff x ∈ B.

We present an algorithm with O((|X| + |B|) · |B| ·
|F |) time complexity to compute the covering graph of
(F ,⊆). Our implementation generalizes and improves
algorithms of Chein [3], Norris [16], Ganter and
Kuznetsov [7], Bordat [2], and Jard et al. [14]. For
more details on the improvement see Section 4.

Our algorithm uses a two-step approach:
(1) Generate the familyF represented in a lexico-

graphic tree.
(2) Compute the covering relations of elements ofF

using Theorem 2.
This paper is structured in four sections. Section 2

deals with the family generation and the lexicographic
tree. Section 3 gives the covering properties of lat-
tice elements. In Section 4 we discuss the connec-
tion between the familyF and the concept lattice
of a binary relation, maximal antichains lattice and
Dedekind–MacNeille completion of an ordered set.
We also give here the comparison of our algorithm
with related work.

Fig. 2. The nodes with circle correspond to elements ofF , where
the sequencea1a2..ak are elements ofB with

⋃k
i=1 ai is the set of

labels on the path to the root.

2. A naïve algorithm to generateFB from B

The following naïve algorithm computes the lexi-
cographic treeTF representing the familyF gener-
ated fromB. The lexicographic tree was described by
Habib and Nourine [13,12].

Let B be a basis andσ a total ordering ofX. Each
element ofFB is represented by a pair(F, γ (F ))
whereγ (F )= {B ∈ B | B ⊂ F }.

For the purposes of describing the algorithm it is
useful to view each setF ∈ 2X as a word on the
alphabetX, with the symbols in increasing order.
Clearly there is a bijectionF = {a1, a2, . . . , ak} →
a1a2 . . . ak with a1< a2< · · ·< ak . We can therefore,
abuse notation and speak of a seta1a2 . . . ak .

Fig. 2 shows the lexicographic tree corresponding
to the family in Fig. 1.

Let us now show how to build the lexicographic
tree fromB = {B1,B2, . . . ,Bm}. We denote byF i the
union-closed family generated byBi = {B1,B2, . . . ,

Bi}.
• The root corresponds to the empty set, i.e.,F0.
• At step i, we compute the union-closed familyF i

fromF i−1, by setting

F i =F i−1 ∪ {F ∪Bi | F ∈F i−1}.
ClearlyF =Fm.

Algorithm 1. Tree(B).

Data: A basisB.
Result: The lexicographic treeT of F .
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begin
LetF = {∅}; {the root ofT }

for eachB ∈ B do
for F ∈F do

1 F ′ = F ∪B;
2 if F ′ /∈F then

F =F ∪ F ;
3 γ (F ′)= γ (F )∪ {B};

end

Theorem 1. Algorithm1 computes the lexicographic
tree of the familyF generated byB in O((|X| + |B|) ·
|B| · |F |) steps, with space inO((|X| + |B|) · |F |).
Proof. Clearly lines 1 and 3 can be done in O(|X| +
|B|). Line 2 checks ifF ′ is already in the tree
and possibly insertsF ′. This can be implemented
in O(|X|), since the children of any node are sorted
according toσ . So the total complexity of the internal
for is O((|X| + |B|) · |F |).

Since the internalfor is repeated|B| times, we
obtain the announced result.2

Now let us show how this tree can be used to
compute the covering graph of the lattice(F ,⊆),
without increasing the time complexity.

3. Computing the covering graph

First let us state the covering theorem for(F ,⊆).
Let F and F ′ ∈ (F ,⊆) be such thatF ⊆ F ′. We
define∆(F ′,F )= γ (F ′) \ γ (F ). We denote by≺ the
covering relation.

Theorem 2. LetF andF ′ ∈F with F ⊂ F ′. Then

F ≺ F ′ iff for all B1,B2 ∈∆(F ′,F )
B1 \F = B2 \F.

Proof. Let F,F ′ ∈F with F ⊂ F ′. ThenF ′ could be
written as

F ′ = F ∪ {B | B ∈∆(F ′,F )}.
(1) Assume thatF is covered byF ′. Let us show

that for allB1 andB2 in ∆(F ′,F ) we haveB1 \ F =
B2 \ F .

SupposeB1 \ F 6⊆ B2 \ F . ThusF ′′ = F ∪ B1 ⊂
F ′ = F ∪ {B | B ∈ ∆(F ′,F )}. ThereforeF ⊂ F ′′ ⊂
F ′ is a contradiction withF is covered byF ′, thus
B1 \ F ⊆ B2 \ F . Similarly we show thatB1 \ F ⊇
B2 \F .

(2) Conversely, suppose that for allB1,B2 ∈∆(F ′,
F ), B1 \F = B2 \ F .

Let F ′′ ∈ F such thatF ⊂ F ′′ ⊂ F ′. Clearly
γ (F ) ⊂ γ (F ′′) ⊂ γ (F ′) and thereforeF ′′ = F ∪
{B | B ∈ γ (F ′′) \ γ (F )} = F ′ sinceγ (F ′′) \ γ (F ) ⊆
γ (F ′) \ γ (F )=∆(F ′,F ). 2

The following corollary is a direct consequence of
Theorem 2.

Corollary 1. LetF andF ′ ∈F with F ⊆ F ′. Then

F ≺ F ′ iff F ′ = F ∪B for all B ∈∆(F,F ′).

Let us now describe how to compute the covering
graph of(F ,⊆).

We consider the familyFB generated by a basis
B using Algorithm 1. The strategy of our algorithm
is to compute the set of covering elements, denoted
by ImSucc(F ) of eachF in the family FB. Clearly
F ′ ∈ FB is a candidate ifF ⊂ F ′ and F ′ can be
computed asF ∪ B for someB in B \ γ (F ). Let us
denote byS = {F ∪B | B ∈ B \γ (F )} the multi-set of
candidates for coveringF (S can have redundant sets).

The algorithm explores the setS and decides that
F ′ ∈ S is a covering ofF if and only if F ′ is found
|∆(F ′,F )| times inS. To do so, we compute the set
S and maintain the number of occurrences of each
elementF ′ in S in a counterCOUNT(F ′).

Then, for each elementF ′ ∈ S we check if the
cardinal of∆(F ′,F ) is equal toCOUNT(F ′); if so
thenF ′ coversF , by Corollary 1.

Now, given a lexicographic tree of a familyFB the
following algorithm will build the covering graph of
(FB,⊆).

Algorithm 2. Covering-Graph(FB).

Data: The lexicographic tree ofFB , andγ (F ) for
eachF ∈FB .

Result: The Adjacency listsImSuccof the cover-
ing graph of the lattice(FB,⊆)
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begin
Initialize COUNT(F ) to 0 for anyF ∈FB;
for eachF ∈FB do

for eachB ∈ B \ γ (F ) do
1 F ′ = F ∪B;

COUNT(F ′)++;
2 if |γ (F ′)| = COUNT(F ′)+ |γ (F )|

then
ImSucc(F )= ImSucc(F )∪ {F ′}

ResetCOUNT.

end

Algorithm 3. UCS(B).

Data: A basisB of sizen.
Result: The Adjacency listsImSuccof the cover-

ing graph of the lattice(FB,⊆)
begin
FB = Tree(B);
Covering-Graph(FB);

end

Theorem 3. Algorithm2 computes the adjacency lists
of the covering graph for the lattice(FB,⊆) in
O((|X| + |B|) · |B| · |FB|) steps.

Proof. Clearly Algorithm 2 computes the covering
graph of the lattice(FB,⊆) by Corollary 1.

In line 2, we need to compute|γ (F ′)| and|γ (F )|,
which can be done in time O(|X|+|B|), using a search
in the tree. So the total complexity of the internalfor
is O((|X| + |B|) · |B|).

ResettingCOUNT to all elements computed by
line 1; this can be done in O(|B|) by keeping them
in a linked list.

It is clear now that the total complexity of our
algorithm is O((|X| + |B|) · |B| · |FB|). 2

4. Applications

We will show in this section the use of our algorithm
for computing the covering graph for several lattices.
To do so, we define, for an ordered setP = (X,6),
Au = {x ∈ X | a 6 x, a ∈ A}, Al = {x ∈ X | a > x,
a ∈A} and↓x = {y ∈X | y 6 x}.

4.1. Lattice of ideals of a poset

Let P = (X,6) be a poset. LetI be a subset ofX,
I is an ideal ofP if y ∈ I andx 6 y implies x ∈ I .
We denote byI (P ) the set of ideals ofP . The set of
ideals of a poset when ordered by inclusion forms a
distributive lattice (lattice of ideals ofP ) denoted by
I (P )= (I (P ),6).

Corollary 2. LetP = (X,<) be a poset andB = {↓x,
x ∈X} a basis. ThenI (P ) is isomorphic to(FB,⊆).

Proposition 1. Algorithm 3 computes the adjacency
lists of the covering graph for the lattice of ideals
I (P )= (FB,⊆) ofP = (X,6) in timeO(|X|2 · |FB|).

Proof. Clearly |B| = |X|. 2
The algorithm in [12] has linear time complexity in

the size of the latticeI (P ). This is due to regularities
of the tree and the lattice of ideals which is distributive.

4.2. Dedekind–MacNeille completion

Let P = (X,6) be a poset. Acut of P is a pair
(A,B) with A,B ⊆X with Au = B andA= Bl . It is
well known that the cuts, ordered by

(A1,B1)6 (A2,B2) :⇔A1⊆A2 or (B1⊇ B2)

form a complete lattice, the Dedekind–MacNeille
completion ofP , denoted byDM(P ) [5]. It is the
smallest complete lattice containingP as a suborder.

Corollary 3. Let P = (X,<) be a poset andB =
{X \ ↓x | x ∈X} a basis. Then DM(P ) is isomorphic
to (FB,⊇).

Proposition 2. Algorithm 3 computes the adjacency
lists of the covering graph for the Dedekind–MacNeille
completion DM(P ) = (FB,⊇) of P = (X,6) in
O(|X|2 · |FB|).

Proof. Clearly |B| = |X|. 2
The algorithm in [7] has time complexity O(|X|3 ·
|FB|).
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4.3. Lattice of maximal antichains

Let P = (X,6) be a poset. We denote byAM(P )
the set of maximal antichains ofP . The lattice of
maximal antichains ofP , AM(P ) = (AM(P ),6) is
defined by

A6 B⇔Al ⊆ Bl for A,B ∈ AM(P ).

Corollary 4. Let P = (X,<) be a poset andB =
{↓x \ {x} | x ∈X} a basis. Then AM(P ) is isomorphic
to (FB,⊇).

Proposition 3. Algorithm 3 computes the adjacency
lists of the covering graph for the lattice of maxi-
mal antichains AM(P ) = (FB,⊇) of P = (X,6) in
O(|X|2 · |FB|).

Proof. Clearly |B| = |X|. 2
The algorithm in [14] has time complexity O(|X|3 ·
|FB|).
4.4. Galois lattice

Let R = (J,M,E) be a binary relation. A concept
of R is a pair (A,B) with A ⊆ J and B ⊆ M

with Au = B andA = Bl . It is well known that the
concepts, ordered by

(A1,B1)6 (A2,B2) :⇔A1⊆A2 or (B1⊇ B2)

form a complete lattice, called the Galois lattice ofR

and denoted byGal(R).

Corollary 5. LetR = (J,M,E) be a binary relation
andB = {J \ ↓m | m ∈M} a basis. ThenGal(R) is
isomorphic to(FB,⊆).

Theorem 4. Algorithm3 computes the adjacency lists
of the covering graph for the latticeGal(R)= (FB,⊆)
in O((|J | + |M|) · |M| · |F |) time complexity.

The algorithm in [2] has time O(|J | · |E| · |FB|).

5. Conclusion

Our method leads to algorithms whose complexity
is lower than that of those in [2,7,14]. One open

question is the enumeration of the family generated by
a basis (without computing the tree or the lattice) with
the same complexity. A fast enumeration algorithm
uses O(|X|3) per element [6].
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Appendix A

A lexicographic treeTF is an arborescence(V (TF ),
A(TF )) with root r, labeled by

a :A(TF )→X and b : V (TF )→X∗ × 2B,

whereX∗ is the set of finite words on the alphabetX
satisfying
(1) b(r)= (ε,∅) corresponds to the empty set.
(2) If a((x, y))= c thena((y, z)) > c for each child

z of y. Also,a((y, z)) 6= a((y, z′)) for all children
z 6= z′ of y. This gives a natural order on the set of
children ofy.

(3) b(x) = ((Px), γ ((Px))) wherePx is the unique
path from the rootr to x and where(Px) is
obtained by concatening in order, the labels of the
arcs onPx . Clearly by (2),(Px) is a word whose
symbols occur in increasing order.

(4) The nodesx such that(Px) ∈F are marked.
For our purpose, we combine (3) and (4) to

(3′) b(x)= ∅ if (Px) /∈F otherwiseb(x)= γ ((Px)).
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