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Recent work on the structure of social networks and the internet has focussed attention on graphs
with distributions of vertex degree that are significantly different from the Poisson degree distri-
butions that have been widely studied in the past. In this paper we develop in detail the theory
of random graphs with arbitrary degree distributions. In addition to simple undirected, unipartite
graphs, we examine the properties of directed and bipartite graphs. Among other results, we derive
exact expressions for the position of the phase transition at which a giant component first forms, the
mean component size, the size of the giant component if there is one, the mean number of vertices
a certain distance away from a randomly chosen vertex, and the average vertex–vertex distance
within a graph. We apply our theory to some real-world graphs, including the world-wide web and
collaboration graphs of scientists and Fortune 1000 company directors. We demonstrate that in
some cases random graphs with appropriate distributions of vertex degree predict with surprising
accuracy the behavior of the real world, while in others there is a measurable discrepancy between
theory and reality, perhaps indicating the presence of additional social structure in the network that
is not captured by the random graph.

I. INTRODUCTION

A random graph [1] is a collection of points, or vertices,
with lines, or edges, connecting pairs of them at random
(Fig. 1a). The study of random graphs has a long his-
tory. Starting with the influential work of Paul Erdős
and Alfréd Rényi in the 1950s and 1960s [2–4], random
graph theory has developed into one of the mainstays of
modern discrete mathematics, and has produced a prodi-
gious number of results, many of them highly ingenious,
describing statistical properties of graphs, such as distri-
butions of component sizes, existence and size of a giant
component, and typical vertex–vertex distances.

In almost all of these studies the assumption has been
made that the presence or absence of an edge between
two vertices is independent of the presence or absence of
any other edge, so that each edge may be considered to
be present with independent probability p. If there are N
vertices in a graph, and each is connected to an average
of z edges, then it is trivial to show that p = z/(N − 1),
which for large N is usually approximated by z/N . The
number of edges connected to any particular vertex is
called the degree k of that vertex, and has a probability
distribution pk given by

pk =

(

N

k

)

pk(1 − p)N−k ≃
zke−z

k!
, (1)

where the second equality becomes exact in the limit of
large N . This distribution we recognize as the Poisson
distribution: the ordinary random graph has a Poisson
distribution of vertex degrees, a point which turns out to
be crucial, as we now explain.

Random graphs are not merely a mathematical toy;
they have been employed extensively as models of real-

(a) (b)

FIG. 1. (a) A schematic representation of a random graph,
the circles representing vertices and the lines edges. (b) A
directed random graph, i.e., one in which each edge runs in
only one direction.

world networks of various types, particularly in epidemi-
ology. The passage of a disease through a community de-
pends strongly on the pattern of contacts between those
infected with the disease and those susceptible to it. This
pattern can be depicted as a network, with individuals
represented by vertices and contacts capable of transmit-
ting the disease by edges. The large class of epidemio-
logical models known as susceptible/infectious/recovered
(or SIR) models [5–7] makes frequent use of the so-called
fully mixed approximation, which is the assumption that
contacts are random and uncorrelated, i.e., that they
form a random graph.

Random graphs however turn out to have severe short-
comings as models of such real-world phenomena. Al-
though it is difficult to determine experimentally the
structure of the network of contacts by which a disease
is spread [8], studies have been performed of other social
networks such as networks of friendships within a variety
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of communities [9–11], networks of telephone calls [12,13],
airline timetables [14], and the power grid [15], as well as
networks in physical or biological systems, including neu-
ral networks [15], the structure and conformation space
of polymers [16,17], metabolic pathways [18,19], and food
webs [20,21]. It is found [13,14] that the distribution
of vertex degrees in many of these networks is measur-
ably different from a Poisson distribution—often wildly
different—and this strongly suggests, as has been em-
phasized elsewhere [22], that there are features of such
networks which we would miss if we were to approximate
them by an ordinary (Poisson) random graph.

Another very widely studied network is the internet,
whose structure has attracted an exceptional amount of
scrutiny, academic and otherwise, following its meteoric
rise to public visibility starting in 1993. Pages on the
world-wide web may be thought of as the vertices of a
graph and the hyperlinks between them as edges. Empir-
ical studies [23–26] have shown that this graph has a dis-
tribution of vertex degree which is heavily right-skewed
and possesses a fat (power-law) tail with an exponent
between −2 and −3. (The underlying physical struc-
ture of the internet also has a degree distribution of this
type [27].) This distribution is very far from Poisson, and
therefore we would expect that a simple random graph
would give a very poor approximation of the structural
properties of the web. However, the web differs from a
random graph in another way also: it is directed. Links
on the web lead from one page to another in only one
direction (see Fig. 1b). As discussed by Broder et al. [26]
this has a significant practical effect on the typical acces-
sibility of one page from another, and this effect also will
not be captured by a simple (undirected) random graph
model.

A further class of networks that has attracted scrutiny
is the class of collaboration networks. Examples of
such networks include the boards of directors of compa-
nies [28–31], co-ownership networks of companies [32],
and collaborations of scientists [33–37] and movie ac-
tors [15]. As well as having strongly non-Poisson de-
gree distributions [14,36], these networks have a bipartite
structure; there are two distinct kinds of vertices on the
graph with links running only between vertices of unlike
kinds [38]—see Fig. 2. In the case of movie actors, for
example, the two types of vertices are movies and actors,
and the network can be represented as a graph with edges
running between each movie and the actors that appear
in it. Researchers have also considered the projection of
this graph onto the unipartite space of actors only, also
called a one-mode network [38]. In such a projection two
actors are considered connected if they have appeared
in a movie together. The construction of the one-mode
network however involves discarding some of the infor-
mation contained in the original bipartite network, and
for this reason it is more desirable to model collaboration
networks using the full bipartite structure.

Given the high current level of interest in the structure
of many of the graphs described here, and given their sub-
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FIG. 2. A schematic representation (top) of a bipartite
graph, such as the graph of movies and the actors who have
appeared in them. In this small graph we have four movies,
labeled 1 to 4, and eleven actors, labeled A to K, with edges
joining each movie to the actors in its cast. In the lower part
of the picture we show the one-mode projection of the graph
for the eleven actors.

stantial differences from the ordinary random graphs that
have been studied in the past, it would clearly be useful
if we could generalize the mathematics of random graphs
to non-Poisson degree distributions, and to directed and
bipartite graphs. In this paper we do just that, demon-
strating in detail how the statistical properties of each of
these graph types can be calculated exactly in the limit
of large graph size. We also give examples of the ap-
plication of our theory to the modeling of a number of
real-world networks, including the world-wide web and
collaboration graphs.

II. RANDOM GRAPHS WITH ARBITRARY

DEGREE DISTRIBUTIONS

In this section we develop a formalism for calculating
a variety of quantities, both local and global, on large
unipartite undirected graphs with arbitrary probability
distribution of the degrees of their vertices. In all re-
spects other than their degree distribution, these graphs
are assumed to be entirely random. This means that
the degrees of all vertices are independent identically-
distributed random integers drawn from a specified dis-
tribution. For a given choice of these degrees, also called
the “degree sequence,” the graph is chosen uniformly at
random from the set of all graphs with that degree se-
quence. All properties calculated in this paper are aver-
aged over the ensemble of graphs generated in this way.
In the limit of large graph size an equivalent procedure is
to study only one particular degree sequence, averaging
uniformly over all graphs with that sequence, where the
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sequence is chosen to approximate as closely as possible
the desired probability distribution. The latter proce-
dure can be thought of as a “microcanonical ensemble”
for random graphs, where the former is a “canonical en-
semble.”

Some results are already known for random graphs
with arbitrary degree distributions: in two beautiful re-
cent papers [39,40], Molloy and Reed have derived for-
mulas for the position of the phase transition at which
a giant component first appears, and the size of the gi-
ant component. (These results are calculated within the
microcanonical ensemble, but apply equally to the canon-
ical one in the large system size limit.) The formalism we
present in this paper yields an alternative derivation of
these results and also provides a framework for obtaining
other quantities of interest, some of which we calculate.
In Sections III and IV we extend our formalism to the
case of directed graphs (such as the world-wide web) and
bipartite graphs (such as collaboration graphs).

A. Generating functions

Our approach is based on generating functions [41], the
most fundamental of which, for our purposes, is the gen-
erating function G0(x) for the probability distribution of
vertex degrees k. Suppose that we have a unipartite undi-
rected graph—an acquaintance network, for example—of
N vertices, with N large. We define

G0(x) =

∞
∑

k=0

pkxk, (2)

where pk is the probability that a randomly chosen ver-
tex on the graph has degree k. The distribution pk is
assumed correctly normalized, so that

G0(1) = 1. (3)

The same will be true of all generating functions consid-
ered here, with a few important exceptions, which we will
note at the appropriate point. Because the probability
distribution is normalized and positive definite, G0(x) is
also absolutely convergent for all |x| ≤ 1, and hence has
no singularities in this region. All the calculations of this
paper will be confined to the region |x| ≤ 1.

The function G0(x), and indeed any probability gener-
ating function, has a number of properties that will prove
useful in subsequent developments.

Derivatives The probability pk is given by the kth

derivative of G0 according to

pk =
1

k!

dkG0

dxk

∣

∣

∣

∣

x=0

. (4)

Thus the one function G0(x) encapsulates all the in-
formation contained in the discrete probability distribu-
tion pk. We say that the function G0(x) “generates” the
probability distribution pk.

Moments The average over the probability distribu-
tion generated by a generating function—for instance,
the average degree z of a vertex in the case of G0(x)—is
given by

z = 〈k〉 =
∑

k

kpk = G′

0(1). (5)

Thus if we can calculate a generating function we can also
calculate the mean of the probability distribution which
it generates. Higher moments of the distribution can be
calculated from higher derivatives also. In general, we
have

〈kn〉 =
∑

k

knpk =

[(

x
d

dx

)n

G0(x)

]

x=1

. (6)

Powers If the distribution of a property k of an object
is generated by a given generating function, then the dis-
tribution of the total of k summed over m independent
realizations of the object is generated by the mth power
of that generating function. For example, if we choose
m vertices at random from a large graph, then the dis-
tribution of the sum of the degrees of those vertices is
generated by [G0(x)]m. To see why this is so, consider
the simple case of just two vertices. The square [G0(x)]2

of the generating function for a single vertex can be ex-
panded as

[G0(x)]2 =

[

∑

k

pkxk

]2

=
∑

jk

pjpkxj+k

= p0p0x
0 + (p0p1 + p1p0)x

1

+(p0p2 + p1p1 + p2p0)x
2

+(p0p3 + p1p2 + p2p1 + p3p0)x
3 + . . .

(7)

It is clear that the coefficient of the power of xn in this
expression is precisely the sum of all products pjpk such
that j + k = n, and hence correctly gives the probability
that the sum of the degrees of the two vertices will be n.
It is straightforward to convince oneself that this prop-
erty extends also to all higher powers of the generating
function.

All of these properties will be used in the derivations
given in this paper.

Another quantity that will be important to us is the
distribution of the degree of the vertices that we arrive
at by following a randomly chosen edge. Such an edge
arrives at a vertex with probability proportional to the
degree of that vertex, and the vertex therefore has a prob-
ability distribution of degree proportional to kpk. The
correctly normalized distribution is generated by

∑

k kpkxk

∑

k kpk
= x

G′
0(x)

G′
0(1)

. (8)
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If we start at a randomly chosen vertex and follow
each of the edges at that vertex to reach the k nearest
neighbors, then the vertices arrived at each have the dis-
tribution of remaining outgoing edges generated by this
function, less one power of x, to allow for the edge that
we arrived along. Thus the distribution of outgoing edges
is generated by the function

G1(x) =
G′

0(x)

G′
0(1)

=
1

z
G′

0(x), (9)

where z is the average vertex degree, as before. The prob-
ability that any of these outgoing edges connects to the
original vertex that we started at, or to any of its other
immediate neighbors, goes as N−1 and hence can be ne-
glected in the limit of large N . Thus, making use of the
“powers” property of the generating function described
above, the generating function for the probability distri-
bution of the number of second neighbors of the original
vertex can be written as

∑

k

pk[G1(x)]k = G0(G1(x)). (10)

Similarly, the distribution of third-nearest neighbors is
generated by G0(G1(G1(x))), and so on. The average
number z2 of second neighbors is

z2 =

[

d

dx
G0(G1(x))

]

x=1

= G′

0(1)G′

1(1) = G′′

0 (1), (11)

where we have made use of the fact that G1(1) = 1. (One
might be tempted to conjecture that since the average
number of first neighbors is G′

0(1), Eq. (5), and the aver-
age number of second neighbors is G′′

0 (1), Eq. (11), then
the average number of mth neighbors should be given by
the mth derivative of G0 evaluated at x = 1. As we show
in Section II F, however, this conjecture is wrong.)

B. Examples

To make things more concrete, we immediately intro-
duce some examples of specific graphs to illustrate how
these calculations are carried out.

a. Poisson-distributed graphs The simplest example
of a graph of this type is one for which the distribution of
degree is binomial, or Poisson in the large N limit. This
distribution yields the standard random graph studied
by many mathematicians and discussed in Section I. In
this graph the probability p = z/N of the existence of an
edge between any two vertices is the same for all vertices,
and G0(x) is given by

G0(x) =

N
∑

k=0

(

N

k

)

pk(1 − p)N−kxk

= (1 − p + px)N = ez(x−1), (12)

where the last equality applies in the limit N → ∞. It is
then trivial to show that the average degree of a vertex is
indeed G′

0(1) = z and that the probability distribution of
degree is given by pk = zke−z/k!, which is the ordinary
Poisson distribution. Notice also that for this special case
we have G1(x) = G0(x), so that the distribution of out-
going edges at a vertex is the same, regardless of whether
we arrived there by choosing a vertex at random, or by
following a randomly chosen edge. This property, which
is peculiar to the Poisson-distributed random graph, is
the reason why the theory of random graphs of this type
is especially simple.

b. Exponentially distributed graphs Perhaps the next
simplest type of graph is one with an exponential distri-
bution of vertex degrees

pk = (1 − e−1/κ)e−k/κ, (13)

where κ is a constant. The generating function for this
distribution is

G0(x) = (1 − e−1/κ)
∞
∑

k=0

e−k/κxk =
1 − e−1/κ

1 − xe−1/κ
, (14)

and

G1(x) =

[

1 − e−1/κ

1 − xe−1/κ

]2

. (15)

An example of a graph with an exponential degree dis-
tribution is given in Section VA.

c. Power-law distributed graphs The recent interest
in the properties of the world-wide web and of social net-
works leads us to investigate the properties of graphs with
a power-law distribution of vertex degrees. Such graphs
have been discussed previously by Barabási et al. [22,23]
and by Aiello et al. [13]. In this paper, we will look at
graphs with degree distribution given by

pk = Ck−τ e−k/κ for k ≥ 1. (16)

where C, τ , and κ are constants. The reason for including
the exponential cutoff is two-fold: first many real-world
graphs appear to show this cutoff [14,36]; second it makes
the distribution normalizable for all τ , and not just τ ≥ 2.

The constant C is fixed by the requirement of normal-
ization, which gives C = [Liτ (e−1/κ)]−1 and hence

pk =
k−τe−k/κ

Liτ (e−1/κ)
for k ≥ 1, (17)

where Lin(x) is the nth polylogarithm of x, a function
familiar to those who have worked with Feynman inte-
grals.

Substituting (17) into Eq. (2), we find that the gen-
erating function for graphs with this degree distribution
is

G0(x) =
Liτ (xe−1/κ)

Liτ (e−1/κ)
. (18)
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In the limit κ → ∞—the case considered in Refs. [13]
and [23]—this simplifies to

G0(x) =
Liτ (x)

ζ(τ)
, (19)

where ζ(x) is the Riemann ζ-function.
The function G1(x) is given by

G1(x) =
Liτ−1(xe−1/κ)

xLiτ−1(e−1/κ)
. (20)

Thus, for example, the average number of neighbors of a
randomly-chosen vertex is

z = G′

0(1) =
Liτ−1(e

−1/κ)

Liτ (e−1/κ)
, (21)

and the average number of second neighbors is

z2 = G′′

0 (1) =
Liτ−2(e

−1/κ) − Liτ−1(e
−1/κ)

Liτ (e−1/κ)
. (22)

d. Graphs with arbitrary specified degree distribution

In some cases we wish to model specific real-world graphs
which have known degree distributions—known because
we can measure them directly. A number of the graphs
described in the introduction fall into this category. For
these graphs, we know the exact numbers nk of vertices
having degree k, and hence we can write down the exact
generating function for that probability distribution in
the form of a finite polynomial:

G0(x) =

∑

k nkxk

∑

k nk
, (23)

where the sum in the denominator ensures that the gen-
erating function is properly normalized. As a example,
suppose that in a community of 1000 people, each person
knows between zero and five of the others, the exact num-
bers of people in each category being, from zero to five:
{86, 150, 363, 238, 109, 54}. This distribution will then be
generated by the polynomial

G0(x) =
86 + 150x + 363x2 + 238x3 + 109x4 + 54x5

1000
.

(24)

C. Component sizes

We are now in a position to calculate some proper-
ties of interest for our graphs. First let us consider the
distribution of the sizes of connected components in the
graph. Let H1(x) be the generating function for the dis-
tribution of the sizes of components which are reached
by choosing a random edge and following it to one of its

.  .  .+++= +

FIG. 3. Schematic representation of the sum rule for the
connected component of vertices reached by following a ran-
domly chosen edge. The probability of each such component
(left-hand side) can be represented as the sum of the probabil-
ities (right-hand side) of having only a single vertex, having a
single vertex connected to one other component, or two other
components, and so forth. The entire sum can be expressed
in closed form as Eq. (26).

ends. We explicitly exclude from H1(x) the giant com-
ponent, if there is one; the giant component is dealt with
separately below. Thus, except when we are precisely
at the phase transition where the giant component ap-
pears, typical component sizes are finite, and the chances
of a component containing a closed loop of edges goes as
N−1, which is negligible in the limit of large N . This
means that the distribution of components generated by
H1(x) can be represented graphically as in Fig. 3; each
component is tree-like in structure, consisting of the sin-
gle site we reach by following our initial edge, plus any
number (including zero) of other tree-like clusters, with
the same size distribution, joined to it by single edges. If
we denote by qk the probability that the initial site has
k edges coming out of it other than the edge we came in
along, then, making use of the “powers” property of Sec-
tion II A, H1(x) must satisfy a self-consistency condition
of the form

H1(x) = xq0 + xq1H1(x) + xq2[H1(x)]2 + . . . (25)

However, qk is nothing other than the coefficient of xk

in the generating function G1(x), Eq. (9), and hence
Eq. (25) can also be written

H1(x) = xG1(H1(x)). (26)

If we start at a randomly chosen vertex, then we have
one such component at the end of each edge leaving that
vertex, and hence the generating function for the size of
the whole component is

H0(x) = xG0(H1(x)). (27)

In principle, therefore, given the functions G0(x) and
G1(x), we can solve Eq. (26) for H1(x) and substitute
into Eq. (27) to get H0(x). Then we can find the proba-
bility that a randomly chosen vertex belongs to a compo-
nent of size s by taking the sth derivative of H0. In prac-
tice, unfortunately, this is usually impossible; Eq. (26)
is a complicated and frequently transcendental equation,
which rarely has a known solution. On the other hand,
we note that the coefficient of xs in the Taylor expansion
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of H1(x) (and therefore also the sth derivative) are given
exactly by only s+1 iterations of Eq. (27), starting with
H1 = 1, so that the distribution generated by H0(x) can
be calculated exactly to finite order in finite time. With
current symbolic manipulation programs, it is quite pos-
sible to evaluate the first one hundred or so derivatives
in this way. Failing this, an approximate solution can be
found by numerical iteration and the distribution of clus-
ter sizes calculated from Eq. (4) by numerical differenti-
ation. Since direct evaluation of numerical derivatives
is prone to machine-precision problems, we recommend
evaluating the derivatives by numerical integration of the
Cauchy formula, giving the probability distribution Ps of
cluster sizes thus:

Ps =
1

s!

dsH0

dzs

∣

∣

∣

∣

z=0

=
1

2πi

∮

H0(z)

zs+1
dz. (28)

The best numerical precision is obtained by using the
largest possible contour, subject to the condition that it
enclose no poles of the generating function. The largest
contour for which this condition is satisfied in general is
the unit circle |z| = 1 (see Section II A), and we recom-
mend using this contour for Eq. (28). It is possible to
find the first thousand derivatives of a function without
difficulty using this method [42].

D. The mean component size, the phase transition,

and the giant component

Although it is not usually possible to find a closed-form
expression for the complete distribution of cluster sizes
on a graph, we can find closed-form expressions for the
average properties of clusters from Eqs. (26) and (27).
For example, the average size of the component to which
a randomly chosen vertex belongs, for the case where
there is no giant component in the graph, is given in the
normal fashion by

〈s〉 = H ′

0(1) = 1 + G′

0(1)H ′

1(1). (29)

From Eq. (26) we have

H ′

1(1) = 1 + G′

1(1)H ′

1(1), (30)

and hence

〈s〉 = 1 +
G′

0(1)

1 − G′
1(1)

= 1 +
z2
1

z1 − z2
, (31)

where z1 = z is the average number of neighbors of a
vertex and z2 is the average number of second neighbors.
We see that this expression diverges when

G′

1(1) = 1. (32)

This point marks the phase transition at which a giant
component first appears. Substituting Eqs. (2) and (9)

into Eq. (32), we can also write the condition for the
phase transition as

∑

k

k(k − 2)pk = 0. (33)

Indeed, since this sum increases monotonically as edges
are added to the graph, it follows that the giant compo-
nent exists if and only if this sum is positive. This re-
sult has been derived by different means by Molloy and
Reed [39]. An equivalent and intuitively reasonable state-
ment, which can also be derived from Eq. (31), is that
the giant component exists if and only if z2 > z1.

Our generating function formalism still works when
there is a giant component in the graph, but, by defi-
nition, H0(x) then generates the probability distribution
of the sizes of components excluding the giant compo-
nent. This means that H0(1) is no longer unity, as it is
for the other generating functions considered so far, but
instead takes the value 1 − S, where S is the fraction of
the graph occupied by the giant component. We can use
this to calculate the size of the giant component from
Eqs. (26) and (27) thus:

S = 1 − G0(u), (34)

where u ≡ H1(1) is the smallest non-negative real solu-
tion of

u = G1(u). (35)

This result has been derived in a different but equivalent
form by Molloy and Reed [40], using different methods.

The correct general expression for the average compo-
nent size, excluding the (formally infinite) giant compo-
nent, if there is one, is

〈s〉 =
H ′

0(1)

H0(1)

=
1

H0(1)

[

G0(H1(1)) +
G′

0(H1(1))G1(H1(1))

1 − G′
1(H1(1))

]

= 1 +
zu2

[1 − S][1 − G′
1(u)]

, (36)

which is equivalent to (31) when there is no giant com-
ponent (S = 0, u = 1).

For example, in the ordinary random graph with Pois-
son degree distribution, we have G0(x) = G1(x) =
ez(x−1) (Eq. (12)), and hence we find simply that 1−S =
u is a solution of u = G0(u), or equivalently that

S = 1 − e−zS . (37)

The average component size is given by

〈s〉 =
1

1 − z + zS
. (38)

These are all well-known results [1].
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For graphs with purely power-law distributions
(Eq. (17) with κ → ∞), S is given by (34) with u the
smallest non-negative real solution of

u =
Liτ−1(u)

uζ(τ − 1)
. (39)

For all τ ≤ 2 this gives u = 0, and hence S = 1, imply-
ing that a randomly chosen vertex belongs to the giant
component with probability tending to 1 as κ → ∞. For
graphs with τ > 2, the probability of belonging to the gi-
ant component is strictly less than 1, even for infinite κ.
In other words, the giant component essentially fills the
entire graph for τ ≤ 2, but not for τ > 2. These results
have been derived by different means by Aiello et al. [13].

E. Asymptotic form of the cluster size distribution

A variety of results are known about the asymptotic
properties of the coefficients of generating functions,
some of which can usefully be applied to the distribu-
tion of cluster sizes Ps generated by H0(x). Close to the
phase transition, we expect the tail of the distribution Ps

to behave as

Ps ∼ s−αe−s/s∗

, (40)

where the constants α and s∗ can be calculated from the
properties of H0(x) as follows.

The cutoff parameter s∗ is simply related to the radius
of convergence |x∗| of the generating function [41,43], ac-
cording to

s∗ =
1

log |x∗|
. (41)

The radius of convergence |x∗| is equal to the magnitude
of the position x∗ of the singularity in H0(x) nearest to
the origin. From Eq. (27) we see that such a singular-
ity may arise either through a singularity in G0(x) or
through one in H1(x). However, since the first singu-
larity in G0(x) is known to be outside the unit circle
(Section II A), and the first singularity in H1(x) tends
to x = 1 as we go to the phase transition (see below), it
follows that, sufficiently close to the phase transition, the
singularity in H0(x) closest to the origin is also a singu-
larity in H1(x). With this result x∗ is easily calculated.

Although we do not in general have a closed-form ex-
pression for H1(x), it is easy to derive one for its func-
tional inverse. Putting w = H1(x) and x = H−1

1 (w) in
Eq. (26) and rearranging, we find

x = H−1
1 (w) =

w

G1(w)
. (42)

The singularity of interest corresponds to the point w∗

at which the derivative of H−1
1 (w) is zero, which is a

solution of

G1(w
∗) − w∗G′

1(w
∗) = 0. (43)

Then x∗ (and hence s∗) is given by Eq. (42). Note that
there is no guarantee that (43) has a finite solution, and
that if it does not, then Ps will not in general follow the
form of Eq. (40).

When we are precisely at the phase transition of our
system, we have G1(1) = G′

1(1) = 1, and hence the so-
lution of Eq. (43) gives w∗ = x∗ = 1—a result which
we used above—and s∗ → ∞. We can use the fact that
x∗ = 1 at the transition to calculate the value of the ex-
ponent α as follows. Expanding H−1

1 (w) about w∗ = 1
by putting w = 1 + ǫ in Eq. (42), we find that

H−1
1 (1 + ǫ) = 1 − 1

2G′′

1 (1)ǫ2 + O(ǫ3), (44)

where we have made use of G1(1) = G′
1(1) = 1 at the

phase transition. So long as G′′
1 (1) 6= 0, which in general

it is not, this implies that H1(x) and hence also H0(x)
are of the form

H0(x) ∼ (1 − x)β as x → 1, (45)

with β = 1
2 . This exponent is related to the exponent

α as follows. Equation (40) implies that H0(x) can be
written in the form

H0(x) =
a−1
∑

s=0

Psx
s + C

∞
∑

s=a

s−αe−s/s∗

xs + ǫ(a), (46)

where C is a constant and the last (error) term ǫ(a) is as-
sumed much smaller than the second term. The first term
in this expression is a finite polynomial and therefore has
no singularities on the finite plane; the singularity resides
in the second term. Using this equation, the exponent β
can be written:

β = lim
x→1

[

1 + (x − 1)
H ′′

0 (x)

H ′
0(x)

]

= lim
a→∞

lim
x→1

[

1

x
+

x − 1

x

∑∞

s=a s2−αxs−1

∑∞

s=a s1−αxs−1

]

= lim
a→∞

lim
x→1

[

1

x
+

1 − x

x log x

Γ(3 − α,−a log x)

Γ(2 − α,−a log x)

]

, (47)

where we have replaced the sums with integrals as a be-
comes large, and Γ(ν, µ) is the incomplete Γ-function.
Taking the limits in the order specified and rearranging
for α, we then get

α = β + 1 = 3
2 , (48)

regardless of degree distribution, except in the special
case where G′′

1 (1) vanishes (see Eq. (44)). The result
α = 3

2 was known previously for the ordinary Poisson
random graph [1], but not for other degree distributions.
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F. Numbers of neighbors and average path length

We turn now to the calculation of the number of neigh-
bors who are m steps away from a randomly chosen ver-
tex. As shown in Section II A, the probability distribu-
tions for first- and second-nearest neighbors are gener-
ated by the functions G0(x) and G0(G1(x)). By exten-
sion, the distribution of mth neighbors is generated by
G0(G1(. . . G1(x) . . .)), with m − 1 iterations of the func-
tion G1 acting on itself. If we define G(m)(x) to be this
generating function for mth neighbors, then we have

G(m)(x) =

{

G0(x) for m = 1
G(m−1)(G1(x)) for m ≥ 2.

(49)

Then the average number zm of mth-nearest neighbors is

zm =
dG(m)

dx

∣

∣

∣

∣

x=1

= G′

1(1)G(m−1)′(1) = G′

1(1)zm−1.

(50)

Along with the initial condition z1 = z = G′
0(1), this

then tells us that

zm = [G′

1(1)]m−1G′

0(1) =

[

z2

z1

]m−1

z1. (51)

From this result we can make an estimate of the typi-
cal length ℓ of the shortest path between two randomly
chosen vertices on the graph. This typical path length is
reached approximately when the total number of neigh-
bors of a vertex out to that distance is equal to the num-
ber of vertices on the graph, i.e., when

1 +
ℓ

∑

m=1

zm = N. (52)

Using Eq. (51) this gives us

ℓ =
log[(N − 1)(z2 − z1) + z2

1 ] − log z2
1

log(z2/z1)
. (53)

In the common case where N ≫ z1 and z2 ≫ z1, this
reduces to

ℓ =
log(N/z1)

log(z2/z1)
+ 1. (54)

This result is only approximate for two reasons. First,
the conditions used to derive it are only an approxima-
tion; the exact answer depends on the detailed structure
of the graph. Second, it assumes that all vertices are
reachable from a randomly chosen starting vertex. In
general however this will not be true. For graphs with
no giant component it is certainly not true and Eq. (54)
is meaningless. Even when there is a giant component
however, it is usually not the case that it fills the entire
graph. A better approximation to ℓ may therefore be

given by replacing N in Eq. (54) by NS, where S is the
fraction of the graph occupied by the giant component,
as in Section II D.

Such shortcomings notwithstanding, there are a num-
ber of remarkable features of Eq. (54):

1. It shows that the average vertex–vertex distance
for all random graphs, regardless of degree distri-
bution, should scale logarithmically with size N ,
according to ℓ = A + B log N , where A and B are
constants. This result is of course well-known for a
number of special cases.

2. It shows that the average distance, which is a global
property, can be calculated from a knowledge only
of the average numbers of first- and second-nearest
neighbors, which are local properties. It would be
possible therefore to measure these numbers em-
pirically by purely local measurements on a graph
such as an acquaintance network and from them to
determine the expected average distance between
vertices. For some networks at least, this gives a
surprisingly good estimate of the true average dis-
tance [37].

3. It shows that only the average numbers of first-
and second-nearest neighbors are important to the
calculation of average distances, and thus that two
random graphs with completely different distribu-
tions of vertex degrees, but the same values of z1

and z2, will have the same average distances.

For the case of the purely theoretical example graphs
we discussed earlier, we cannot make an empirical mea-
surement of z1 and z2, but we can still employ Eq. (54) to
calculate ℓ. In the case of the ordinary (Poisson) random
graph, for instance, we find from Eq. (12) that z1 = z,
z2 = z2, and so ℓ = log N/ log z, which is the standard
result for graphs of this type [1]. For the graph with de-
gree distributed according to the truncated power law,
Eq. (17), z1 and z2 are given by Eqs. (21) and (22), and
the average vertex–vertex distance is

ℓ =
log N + log

[

Liτ (e−1/κ)/ Liτ−1(e
−1/κ)

]

log
[

Liτ−2(e−1/κ)/ Liτ−1(e−1/κ) − 1
] + 1. (55)

In the limit κ → ∞, this becomes

ℓ =
log N + log

[

ζ(τ)/ζ(τ − 1)
]

log
[

ζ(τ − 2)/ζ(τ − 1) − 1
] + 1. (56)

Note that this expression does not have a finite positive
real value for any τ < 3, indicating that one must specify
a finite cutoff κ for the degree distribution to get a well-
defined average vertex–vertex distance on such graphs.

G. Simulation results

As a check on the results of this section, we have per-
formed extensive computer simulations of random graphs
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with various distributions of vertex degree. Such graphs
are relatively straightforward to generate. First, we gen-
erate a set of N random numbers {ki} to represent the
degrees of the N vertices in the graph. These may be
thought of as the “stubs” of edges, emerging from their
respective vertices. Then we choose pairs of these stubs
at random and place edges on the graph joining them
up. It is simple to see that this will generate all graphs
with the given set of vertex degrees with equal proba-
bility. The only small catch is that the sum

∑

i ki of
the degrees must be even, since each edge added to the
graph must have two ends. This is not difficult to con-
trive however. If the set {ki} is such that the sum is odd,
we simply throw it away and generate a new set.

As a practical matter, integers representing vertex de-
grees with any desired probability distribution can be
generated using the transformation method if applica-
ble, or failing that, a rejection or hybrid method [44].
For example, degrees obeying the power-law-plus-cutoff
form of Eq. (17) can be generated using a two-step hy-
brid transformation/rejection method as follows. First,
we generate random integers k ≥ 1 with distribution pro-
portional to e−k/κ using the transformation [45]

k = ⌈−κ log(1 − r)⌉, (57)

where r is a random real number uniformly distributed
in the range 0 ≤ r < 1. Second, we accept this number
with probability k−τ , where by “accept” we mean that
if the number is not accepted we discard it and generate
another one according to Eq. (57), repeating the process
until one is accepted.

In Fig. 4 we show results for the size of the giant com-
ponent in simulations of undirected unipartite graphs
with vertex degrees distributed according to Eq. (17) for
a variety of different values of τ and κ. On the same plot
we also show the expected value of the same quantity
derived by numerical solution of Eqs. (34) and (35). As
the figure shows, the agreement between simulation and
theory is excellent.

III. DIRECTED GRAPHS

We turn now to directed graphs with arbitrary de-
gree distributions. An example of a directed graph is
the world-wide web, since every hyperlink between two
pages on the web goes in only one direction. The web
has a degree distribution that follows a power-law, as
discussed in Section I.

Directed graphs introduce a subtlety that is not
present in undirected ones, and which becomes impor-
tant when we apply our generating function formalism.
In a directed graph it is not possible to talk about
a “component”—i.e., a group of connected vertices—
because even if vertex A can be reached by following
(directed) edges from vertex B, that does not necessarily
mean that vertex B can be reached from vertex A. There
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FIG. 4. The size of the giant component in random graphs
with vertex degrees distributed according to Eq. (17), as a
function of the cutoff parameter κ for five different values
of the exponent τ . The points are results from numerical
simulations on graphs of N = 1000 000 vertices, and the solid
lines are the theoretical value for infinite graphs, Eqs. (34)
and (35). The error bars on the simulation results are smaller
than the data points.

are two correct generalizations of the idea of the compo-
nent to a directed graph: the set of vertices which are
reachable from a given vertex, and the set from which
a given vertex can be reached. We will refer to these
as “out-components” and “in-components” respectively.
An in-component can also be thought of as those ver-
tices reachable by following edges backwards (but not
forwards) from a specified vertex. It is possible to study
directed graphs by allowing both forward and backward
traversal of edges (see Ref. [26], for example). In this
case, however, the graph effectively becomes undirected
and should be treated with the formalism of Section II.

With these considerations in mind, we now develop
the generating function formalism appropriate to random
directed graphs with arbitrary degree distributions.

A. Generating functions

In a directed graph, each vertex has separate in-degree
and out-degree for links running into and out of that ver-
tex. Let us define pjk to be the probability that a ran-
domly chosen vertex has in-degree j and out-degree k.
It is important to realize that in general this joint dis-
tribution of j and k is not equal to the product pjpk of
the separate distributions of in- and out-degree. In the
world-wide web, for example, it seems likely (although
this question has not been investigated to our knowledge)
that sites with a large number of outgoing links also have
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a large number of incoming ones, i.e., that j and k are
correlated, so that pjk 6= pjpk. We appeal to those work-
ing on studies of the structure of the web to measure the
joint distribution of in- and out-degrees of sites; empiri-
cal data on this distribution would make theoretical work
much easier!

We now define a generating function for the joint prob-
ability distribution of in- and out-degrees, which is nec-
essarily a function of two independent variables, x and y,
thus:

G(x, y) =
∑

jk

pjkxjyk. (58)

Since every edge on a directed graph must leave some ver-
tex and enter another, the net average number of edges
entering a vertex is zero, and hence pjk must satisfy the
constraint

∑

jk

(j − k)pjk = 0. (59)

This implies that G(x, y) must satisfy

∂G

∂x

∣

∣

∣

∣

x,y=1

=
∂G

∂y

∣

∣

∣

∣

x,y=1

= z, (60)

where z is the average degree (both in and out) of vertices
in the graph.

Using the function G(x, y), we can, as before, define
generating functions G0 and G1 for the number of out-
going edges leaving a randomly chosen vertex, and the
number leaving the vertex reached by following a ran-
domly chosen edge. We can also define generating func-
tions F0 and F1 for the number arriving at such a vertex.
These functions are given by

F0(x) = G(x, 1), F1(x) =
1

z

∂G

∂y

∣

∣

∣

∣

y=1

, (61)

G0(y) = G(1, y), G1(y) =
1

z

∂G

∂x

∣

∣

∣

∣

x=1

. (62)

Once we have these functions, many results follow as be-
fore. The average numbers of first and second neighbors
reachable from a randomly chosen vertex are given by
Eq. (60) and

z2 = G′

0(1)G′

1(1) =
∂2G

∂x∂y

∣

∣

∣

∣

x,y=1

. (63)

These are also the numbers of first and second neigh-
bors from which a random vertex can be reached, since
Eqs. (60) and (63) are manifestly symmetric in x and y.
We can also make an estimate of the average path length
on the graph from

ℓ =
log(N/z1)

log(z2/z1)
+ 1, (64)

strongly

connected

component

links outlinks in

1 2

FIG. 5. The “bow-tie” diagram proposed by Broder et al.

as a representation of the giant component of the world-wide
web (although it can be used to visualize any directed graph).

as before. However, this equation should be used with
caution. As discussed in Section II F, the derivation of
this formula assumes that we are in a regime in which
the bulk of the graph is reachable from most vertices.
On a directed graph however, this may be far from true,
as appears to be the case with the world-wide web [26].

The probability distribution of the numbers of vertices
reachable from a randomly chosen vertex in a directed
graph—i.e., of the sizes of the out-components—is gen-
erated by the function H0(y) = yG0(H1(y)), where H1(y)
is a solution of H1(y) = yG1(H1(y)), just as before. (A
similar and obvious pair of equations governs the sizes
of the in-components.) The results for the asymptotic
behavior of the component size distribution from Sec-
tion II E generalize straightforwardly to directed graphs.
The average out-component size for the case where there
is no giant component is given by Eq. (31), and thus the
point at which a giant component first appears is given
once more by G′

1(1) = 1. Substituting Eq. (58) into this
expression gives the explicit condition

∑

jk

(2jk − j − k)pjk = 0 (65)

for the first appearance of the giant component. This
expression is the equivalent for the directed graph of
Eq. (33). It is also possible, and equally valid, to de-
fine the position at which the giant component appears
by F ′

1(1) = 1, which provides an alternative derivation
for Eq. (65).

Just as with the individual in- and out-components for
vertices, the size of the giant component on a directed
graph can also be defined in different ways. The giant
component can be represented using the “bow-tie” dia-
gram of Broder et al. [26], which we depict (in simpli-
fied form) in Fig. 5. The diagram has three parts. The
strongly connected portion of the giant component, rep-
resented by the central circle, is that portion in which ev-
ery vertex can be reached from every other. The two sides
of the bow-tie represent (1) those vertices from which the
strongly connected component can be reached but which
it is not possible to reach from the strongly connected
component and (2) those vertices which can be reached
from the strongly connected component but from which
it is not possible to reach the strongly connected compo-
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FIG. 6. The distribution Ps of the numbers of vertices ac-
cessible from each vertex of a directed graph with identically
exponentially distributed in- and out-degree. The points are
simulation results for systems of N = 1000 000 vertices and
the solid lines are the analytic solution.

nent. The solution of Eqs. (34) and (35) with G0(x) and
G1(x) defined according to Eq. (62) gives the number of
vertices, as a fraction of N , in the giant strongly con-
nected component plus those vertices from which the gi-
ant strongly connected component can be reached. Using
F0(x) and F1(x) (Eq. (61)) in place of G0(x) and G1(x)
gives a different solution, which represents the fraction
of the graph in the giant strongly connected component
plus those vertices which can be reached from it.

B. Simulation results

We have performed simulations of directed graphs as
a check on the results above. Generation of random di-
rected graphs with known joint degree distribution pjk

is somewhat more complicated than generation of undi-
rected graphs discussed in Section II G. The method we
use is as follows. First, it is important to ensure that
the averages of the distributions of in- and out-degree of
the graph are the same, or equivalently that pjk satisfies
Eq. (59). If this is not the case, at least to good approx-
imation, then generation of the graph will be impossible.
Next, we generate a set of N in/out-degree pairs (ji, ki),
one for each vertex i, according to the joint distribution
pjk, and calculate the sums

∑

i ji and
∑

i ki. These sums
are required to be equal if there are to be no dangling
edges in the graph, but in most cases we find that they
are not. To rectify this we use a simple procedure. We
choose a vertex i at random, discard the numbers (ji, ki)
for that vertex and generate new ones from the distribu-
tion pjk. We repeat this procedure until the two sums

are found to be equal. Finally, we choose random in/out
pairs of edges and join them together to make a directed
graph. The resulting graph has the desired number of
vertices and the desired joint distribution of in and out
degree.

We have simulated directed graphs in which the dis-
tribution pjk is given by a simple product of indepen-
dent distributions of in- and out-degree. (As pointed out
in Section III A, this is not generally the case for real-
world directed graphs, where in- and out-degree may be
correlated.) In Fig. 6 we show results from simulations
of graphs with identically distributed (but independent)
in- and out-degrees drawn from the exponential distri-
bution, Eq. (13). For this distribution, solution of the
critical-point equation G′

1(1) = 1 shows that the giant
component first appears at κc = [log 2]−1 = 1.4427. The
three curves in the figure show the distribution of num-
bers of vertices accessible from each vertex in the graph
for κ = 0.5, 0.8, and κc. The critical distribution fol-
lows a power-law form (see Section II C), while the others
show an exponential cutoff. We also show the exact dis-
tribution derived from the coefficients in the expansion
of H1(x) about zero. Once again, theory and simulation
are in good agreement. A fit to the distribution for the
case κ = κc gives a value of α = 1.50 ± 0.02, in good
agreement with Eq. (48).

IV. BIPARTITE GRAPHS

The collaboration graphs of scientists, company direc-
tors, and movie actors discussed in Section I are all ex-
amples of bipartite graphs. In this section we study the
theory of bipartite graphs with arbitrary degree distribu-
tions. To be concrete, we will speak in the language of
“actors” and “movies,” but clearly all the developments
here are applicable to academic collaborations, boards of
directors, or any other bipartite graph structure.

A. Generating functions and basic results

Consider then a bipartite graph of M movies and N
actors, in which each actor has appeared in an average
of µ movies and each movie has a cast of average size
ν actors. Note that only three of these parameters are
independent, since the fourth is given by the equality

µ

M
=

ν

N
. (66)

Let pj be the probability distribution of the degree of
actors (i.e., of the number of movies in which they have
appeared) and qk be the distribution of degree (i.e., cast
size) of movies. We define two generating functions which
generate these probability distributions thus:

f0(x) =
∑

j

pjx
j , g0(x) =

∑

k

qkxk. (67)
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(It may be helpful to think of f as standing for “film,”
in order to keep these two straight.) As before, we nec-
essarily have

f0(1) = g0(1) = 1, f ′

0(1) = µ, g′0(1) = ν. (68)

If we now choose a random edge on our bipartite graph
and follow it both ways to reach the movie and actor
which it connects, then the distribution of the number
of other edges leaving those two vertices is generated by
the equivalent of (9):

f1(x) =
1

µ
f ′

0(x), g1(x) =
1

ν
g′0(x). (69)

Now we can write the generating function for the distri-
bution of the number of co-stars (i.e., actors in shared
movies) of a randomly chosen actor as

G0(x) = f0(g1(x)). (70)

If we choose a random edge, then the distribution of num-
ber of co-stars of the actor to which it leads is generated
by

G1(x) = f1(g1(x)). (71)

These two functions play the same role in the one-mode
network of actors as the functions of the same name did
for the unipartite random graphs of Section II. Once
we have calculated them, all the results from Section II
follow exactly as before.

The numbers of first and second neighbors of a ran-
domly chosen actor are

z1 = G′

0(1) = f ′

0(1)g′1(1), (72)

z2 = G′

0(1)G′

1(1) = f ′

0(1)f ′

1(1)[g′1(1)]2. (73)

Explicit expressions for these quantities can be obtained
by substituting from Eqs. (67) and (69). The average
vertex–vertex distance on the one-mode graph is given
as before by Eq. (54). Thus, it is possible to estimate
average distances on such graphs by measuring only the
numbers of first and second neighbors.

The distribution of the sizes of the connected compo-
nents in the one-mode network is generated by Eq. (27),
where H1(x) is a solution of Eq. (26). The asymptotic
results of Section II E generalize simply to the bipartite
case, and the average size of a connected component in
the absence of a giant component is

〈s〉 = 1 +
G′

0(1)

1 − G′
1(1)

, (74)

as before. This diverges when G′
1(1) = 1, marking the

first appearance of the giant component. Equivalently,
the giant component first appears when

f ′′

0 (1)g′′0 (1) = f ′

0(1)g′0(1). (75)

Substituting from Eq. (67), we then derive the explicit
condition for the first appearance of the giant component:

∑

jk

jk(jk − j − k)pjqk = 0. (76)

The size S of the giant component, as a fraction of the to-
tal number N of actors, is given as before by the solution
of Eqs. (34) and (35).

Of course, all of these results work equally well if “ac-
tors” and “movies” are interchanged. One can calculate
the average distance between movies in terms of common
actors shared, the size and distribution of connected com-
ponents of movies, and so forth, using the formulas given
above, with only the exchange of f0 and f1 for g0 and
g1. The formula (75) is, not surprisingly, invariant under
this interchange, so that the position of the onset of the
giant component is the same regardless of whether one is
looking at actors or movies.

B. Clustering

Watts and Strogatz [15] have introduced the concept
of clustering in social networks, also sometimes called
network transitivity. Clustering refers to the increased
propensity of pairs of people to be acquainted with one
another if they have another acquaintance in common.
Watts and Strogatz defined a clustering coefficient which
measures the degree of clustering on a graph. For our
purposes, the definition of this coefficient is

C =
3× number of triangles on the graph

number of connected triples of vertices
=

3N△

N3
.

(77)

Here “triangles” are trios of vertices each of which is con-
nected to both of the others, and “connected triples” are
trios in which at least one is connected to both the oth-
ers. The factor of 3 in the numerator accounts for the fact
that each triangle contributes to three connected triples
of vertices, one for each of its three vertices. With this
factor of 3, the value of C lies strictly in the range from
zero to one. In the directed and undirected unipartite
random graphs of Sections II and III, C is trivially zero
in the limit N → ∞. In the one-mode projections of bi-
partite graphs, however, both the actors and the movies
can be expected to have non-zero clustering. We here
treat the case for actors. The case for movies is easily
derived by swapping fs and gs.

An actor who has z ≡ z1 co-stars in total contributes
1
2z(z − 1) connected triples to N3, so that

N3 = 1
2N

∑

z

z(z − 1)rz, (78)

where rz is the probability of having z co-stars. As
shown above (Eq. (70)), the distribution rz is generated
by G0(x) and so
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N3 = 1
2NG′′

0(1). (79)

A movie which stars k actors contributes 1
6k(k−1)(k−

2) triangles to the total triangle count in the one-mode
graph. Thus the total number of triangles on the graph
is the sum of 1

6k(k − 1)(k − 2) over all movies, which is
given by

N△ = 1
6M

∑

k

k(k − 1)(k − 2)qk = 1
6Mg′′′0 (1). (80)

Substituting into Eq. (77), we then get

C =
M

N

g′′′0 (1)

G′′
0(1)

. (81)

Making use of Eqs. (66), (67), and (70), this can also be
written as

1

C
− 1 =

(µ2 − µ1)(ν2 − ν1)
2

µ1ν1(2ν1 − 3ν2 + ν3)
, (82)

where µn =
∑

k knpk is the nth moment of the distribu-
tion of numbers of movies in which actors have appeared,
and νn is the same for cast size (number of actors in a
movie).

C. Example

To give an example, consider a random bipartite graph
with Poisson-distributed numbers of both movies per ac-
tor and actors per movie. In this case, following the
derivation of Eq. (12), we find that

f0(x) = eµ(x−1), g0(x) = eν(x−1), (83)

and f1(x) = f0(x) and g1(x) = g0(x). Thus

G0(x) = G1(x) = eµ(eν(x−1)
−1). (84)

This implies that z1 = µν and z2 = (µν)2, so that

ℓ =
log N

log µν
=

log N

log z
, (85)

just as in an ordinary Poisson-distributed random graph.
From Eq. (74), the average size 〈s〉 of a connected com-
ponent of actors, below the phase transition, is

〈s〉 =
1

1 − µν
, (86)

which diverges, yielding a giant component, at µν = z =
1, also as in the ordinary random graph. From Eqs. (34)
and (35), the size S of the giant component as a fraction
of N is a solution of

S = 1 − eµ(e−νS
−1). (87)

And from Eq. (81), the clustering coefficient for the one-
mode network of actors is

C =
Mν3

Nν2(µ2 + µ)
=

1

µ + 1
, (88)

where we have made use of Eq. (66).
Another quantity of interest is the distribution of num-

bers of co-stars, i.e., of the numbers of people with whom
each actor has appeared in a movie. As discussed above,
this distribution is generated by the function G0(x) de-
fined in Eq. (70). For the case of the Poisson degree dis-
tribution, we can perform the derivatives, Eq. (4), and
setting x = 0 we find that the probability rz of having
appeared with a total of exactly z co-stars is

rz =
νz

z!
eµ(e−ν

−1)
z

∑

k=1

{ z

k

}

[

µe−ν
]k

, (89)

where the coefficients
{

z
k

}

are the Stirling numbers of
the second kind [46]

{ z

k

}

=

k
∑

r=1

(−1)k−r

r!(k − r)!
rz . (90)

D. Simulation results

Random bipartite graphs can be generated using an
algorithm similar to the one described in Section III B
for directed graphs. After making sure that the required
degree distributions for both actor and movie vertices
have means consistent with the required total numbers
of actors and movies according to Eq. (66), we generate
vertex degrees for each actor and movie at random and
calculate their sum. If these sums are unequal, we dis-
card the degree of one actor and one movie, chosen at
random, and replace them with new degrees drawn from
the relevant distributions. We repeat this process until
the total actor and movie degrees are equal. Then we
join vertices up in pairs.

In Fig. 7 we show the results of such a simulation for a
bipartite random graph with Poisson degree distribution.
(In fact, for the particular case of the Poisson distribu-
tion, the graph can be generated simply by joining up
actors and movies at random, without regard for indi-
vidual vertex degrees.) The figure shows the distribution
of the number of co-stars of each actor, along with the
analytic solution, Eqs. (89) and (90). Once more, numer-
ical and analytic results are in good agreement.

V. APPLICATIONS TO REAL-WORLD

NETWORKS

In this section we construct random graph models of
two types of real-world networks, namely collaboration
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FIG. 7. The frequency distribution of numbers of co-stars
of an actor in a bipartite graph with µ = 1.5 and ν = 15. The
points are simulation results for M = 10 000 and N = 100 000.
The line is the exact solution, Eqs. (89) and (90). The error
bars on the numerical results are smaller than the points.

graphs and the world-wide web, using the results of Sec-
tions III and IV to incorporate realistic degree distribu-
tions into the models. As we will show, the results are in
reasonably good agreement with empirical data, although
there are some interesting discrepancies also, perhaps in-
dicating the presence of social phenomena that are not
incorporated in the random graph.

A. Collaboration networks

In this section we construct random bipartite graph
models of the known collaboration networks of company
directors [29–31], movie actors [15], and scientists [36].
As we will see, the random graph works well as a model
of these networks, giving good order-of-magnitude esti-
mates of all quantities investigated, and in some cases
giving results of startling accuracy.

Our first example is the collaboration network of the
members of the boards of directors of the Fortune 1000
companies (the one thousand US companies with the
highest revenues). The data come from the 1999 For-
tune 1000 [29–31] and in fact include only 914 of the
1000, since data on the boards of the remaining 86 were
not available. The data form a bipartite graph in which
one type of vertex represents the boards of directors, and
the other type the members of those boards, with edges
connecting boards to their members. In Fig. 8 we show
the frequency distribution of the numbers of boards on
which each member sits, and the numbers of members of
each board. As we see, the former distribution is close to
exponential, with the majority of directors sitting on only
one board, while the latter is strongly peaked around 10,
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FIG. 8. Frequency distributions for the boards of directors
of the Fortune 1000. Left panel: the numbers of boards on
which each director sits. Right panel: the numbers of direc-
tors on each board.

indicating that most boards have about 10 members.
Using these distributions, we can define generating

functions f0(x) and g0(x) as in Eq. (23), and hence
find the generating functions G0(x) and G1(x) for the
distributions of numbers of co-workers of the directors.
We have used these generating functions and Eqs. (72)
and (81) to calculate the expected clustering coefficient
C and the average number of co-workers z in the one-
mode projection of board directors on a random bipar-
tite graph with the same vertex degree distributions as
the original dataset. In Table I we show the results of
these calculations, along with the same quantities for the
real Fortune 1000. As the table shows the two are in
remarkable—almost perfect—agreement.

It is not just the average value of z that we can cal-
culate from our generating functions, but the entire dis-
tribution: since the generating functions are finite poly-
nomials in this case, we can simply perform the deriva-
tives to get the probability distribution rz . In Fig. 9, we
show the results of this calculation for the Fortune 1000
graph. The points in the figure show the actual distribu-
tion of z for the real-world data, while the solid line shows

clustering C average degree z

network theory actual theory actual

company directors 0.590 0.588 14.53 14.44
movie actors 0.084 0.199 125.6 113.4
physics (arxiv.org) 0.192 0.452 16.74 9.27
biomedicine (MEDLINE) 0.042 0.088 18.02 16.93

TABLE I. Summary of results of the analysis of four col-
laboration networks.
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FIG. 9. The probability distribution of numbers of
co-directors in the Fortune 1000 graph. The points are the
real-world data, the solid line is the bipartite graph model,
and the dashed line is the Poisson distribution with the same
mean. Insets: the equivalent distributions for the numbers of
collaborators of movie actors and physicists.

the theoretical results. Again the agreement is excellent.
The dashed line in the figure shows the distribution for
an ordinary Poisson random graph with the same mean.
Clearly this is a significantly inferior fit.

In fact, within the business world, attention has fo-
cussed not on the collaboration patterns of company di-
rectors, but on the “interlocks” between boards, i.e., on
the one-mode network in which vertices represent boards
of directors and two boards are connected if they have one
or more directors in common [28,29]. This is also simple
to study with our model. In Fig. 10 we show the distri-
bution of the numbers of interlocks that each board has,
along with the theoretical prediction from our model. As
we see, the agreement between empirical data and theory
is significantly worse in this case than for the distribution
of co-directors. In particular, it appears that our theory
significantly underestimates the number of boards which
are interlocked with very small or very large numbers of
other boards, while over estimating those with interme-
diate numbers of interlocks. One possible explanation of
this is that “big-shots work with other big-shots.” That
is, the people who sit on many boards tend to sit on those
boards with other people who sit on many boards. And
conversely the people who sit on only one board (which
is the majority of all directors), tend to do so with others
who sit on only one board. This would tend to stretch
the distribution of numbers of interlocks, just as seen
in figure, producing a disproportionately high number of
boards with very many or very few interlocks to others.
To test this hypothesis, we have calculated, as a function
of the number of boards on which a director sits, the av-
erage number of boards on which each of their codirectors
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FIG. 10. The distribution of the number of other boards
with which each board of directors is “interlocked” in the
Fortune 1000 data. An interlock between two boards means
that they share one or more common members. The points are
the empirical data, the solid line is the theoretical prediction.
Inset: the number of boards on which one’s codirectors sit, as
a function of the number of boards one sits on oneself.

sit. The results are shown in the inset of Fig. 10. If these
two quantities were uncorrelated, the plot would be flat.
Instead, however, it slopes clearly upwards, indicating in-
deed that on the average the big-shots work with other
big-shots. (This idea is not new. It has been discussed
previously by a number of others—see Refs. [47] and [48],
for example.)

The example of the boards of directors is a particu-
larly instructive one. What it illustrates is that the cases
in which our random graph models agree well with real-
world phenomena are not necessarily the most interest-
ing. Certainly it is satisfying, as in Fig. 9, to have the
theory agree well with the data. But probably Fig. (10)
is more instructive: we have learned something about
the structure of the network of the boards of directors by
observing the way in which the pattern of board inter-
locks differs from the predictions of the purely random
network. Thus it is perhaps best to regard our random
graph as a null model—a baseline from which our expec-
tations about network structure should be measured. It
is deviation from the random graph behavior, not agree-
ment with it, that allows us to draw conclusions about
real-world networks.

We now look at three other graphs for which our theory
also works well, although again there are some noticeable
deviations from the random graph predictions, indicating
the presence of social or other phenomena at work in the
network.

We consider the graph of movie actors and the movies
in which they appear [15,49] and graphs of scientists
and the papers they write in physics and biomedical re-
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search [36]. In Table I we show results for the cluster-
ing coefficients and average coordination numbers of the
one-mode projections of these graphs onto the actors or
scientists. As the table shows, our theory gives results for
these figures which are of the right general order of mag-
nitude, but typically deviate from the empirically mea-
sured figures by a factor of two or so. In the insets of
Fig. 9 we show the distributions of numbers of collabo-
rators in the movie actor and physics graphs, and again
the match between theory and real data is good, but not
as good as with the Fortune 1000.

The figures for clustering and mean numbers of col-
laborators are particularly revealing. The former is uni-
formly about twice as high in real life as our model pre-
dicts for the actor and scientist networks. This shows
that there is a significant tendency to clustering in these
networks, in addition to the trivial clustering one expects
on account of the bipartite structure. This may indicate,
for example, that scientists tend to introduce pairs of
their collaborators to one another, thereby encouraging
clusters of collaboration. The figures for average numbers
of collaborators show less deviation from theory than the
clustering coefficients, but nonetheless there is a clear
tendency for the numbers of collaborators to be smaller
in the real-world data than in the models. This probably
indicates that scientists and actors collaborate repeat-
edly with the same people, thereby reducing their total
number of collaborators below the number that would
naively be expected if we consider only the numbers of
papers that they write or movies they appear in. It would
certainly be possible to take effects such as these into
account in a more sophisticated model of collaboration
practices.

B. The world-wide web

In this section we consider the application of our theory
of random directed graphs to the modeling of the world-
wide web. As we pointed out in Section III A, it is not at
present possible to make a very accurate random-graph
model of the web, because to do so we need to know the
joint distribution pjk of in- and out-degrees of vertices,
which has not to our knowledge been measured. How-
ever, we can make a simple model of the web by assum-
ing in- and out-degree to be independently distributed
according to their known distributions. Equivalently, we
assume that the joint probability distribution factors ac-
cording to pjk = pjqk.

Broder et al. [26] give results showing that the in-
and out-degree distributions of the web are approxi-
mately power-law in form with exponents τin = 2.1 and
τout = 2.7, although there is some deviation from the
perfect power law for small degree. In Fig. 11, we show
histograms of their data with bins chosen to be of uniform
width on the logarithmic scales used. (This avoids certain
systematic errors known to afflict linearly histogrammed
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FIG. 11. The probability distribution of in-degree (left
panel) and out-degree (right panel) on the world-wide web,
rebinned from the data of Broder et al. [26]. The solid lines
are best fits of form (91).

data plotted on log scales.) We find both distributions
to be well-fitted by the form

pk = C(k + k0)
−τ , (91)

where the constant C is fixed by the requirement of nor-
malization, taking the value 1/ζ(τ, k0), were ζ(x, y) is the
generalized ζ-function [46]. The constants k0 and τ are
found by least-squares fits, giving values of 0.58 and 3.94
for k0, and 2.17 and 2.69 for τ , for the in- and out-degree
distributions respectively, in reasonable agreement with
the fits performed by Broder et al. With these choices,
the data and Eq. (91) match closely (see Fig. 11 again).

Neither the raw data nor our fits to them satisfy the
constraint (59), that the total number of links leaving
pages should equal the total number arriving at them.
This is because the data set is not a complete picture of
the web. Only about 200 million of the web’s one billion
or so pages were included in the study. Within this sub-
set, our estimate of the distribution of out-degree is pre-
sumably quite accurate, but many of the outgoing links
will not connect to other pages within the subset studied.
At the same time, no incoming links which originate out-
side the subset of pages studied are included, because the
data are derived from “crawls” in which web pages are
found by following links from one to another. In such a
crawl one only finds links by finding the pages that they
originate from. Thus our data for the incoming links is
quite incomplete, and we would expect the total number
of incoming links in the dataset to fall short of the num-
ber of outgoing ones. This indeed is what we see. The
totals for incoming and outgoing links are approximately
2.3 × 108 and 1.1 × 109.

The incompleteness of the data for incoming links lim-
its the information we can at present extract from a ran-
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dom graph model of the web. There are however some
calculations which only depend on the out-degree distri-
bution.

Given Eq. (91), the generating functions for the out-
degree distribution take the form

G0(x) = G1(x) =
Φ(x, τ, k0)

ζ(τ, k0)
, (92)

where Φ(x, y, z) is the Lerch Φ-function [46]. The cor-
responding generating functions F0 and F1 we cannot
calculate accurately because of the incompleteness of the
data. The equality G0 = G1 (and also F0 = F1) is a gen-
eral property of all directed graphs for which pjk = pjqk

as above. It arises because in such graphs in- and out-
degree are uncorrelated, and therefore the distribution of
the out-degree of a vertex does not depend on whether
you arrived at it by choosing a vertex at random, or by
following a randomly chosen edge.

One property of the web which we can estimate from
the generating functions for out-degree alone is the frac-
tion Sin of the graph taken up by the giant strongly con-
nected component plus those sites from which the giant
strongly connected component can be reached. This is
given by

Sin = 1 − G0(1 − Sin). (93)

In other words, 1 − Sin is a fixed point of G0(x). Using
the measured values of k0 and τ , we find by numeri-
cal iteration that that Sin = 0.527, or about 53%. The
direct measurements of the web made by Broder et al.

show that in fact about 49% of the web falls in Sin, in
reasonable agreement with our calculation. Possibly this
implies that the structure of the web is close to that of
a directed random graph with a power-law degree distri-
bution, though it is possible also that it is merely coinci-
dence. Other comparisons between random graph models
and the web will have to wait until we have more accurate
data on the joint distribution pjk of in- and out-degree.

VI. CONCLUSIONS

In this paper we have studied in detail the theory of
random graphs with arbitrary distributions of vertex de-
gree, including directed and bipartite graphs. We have
shown how, using the mathematics of generating func-
tions, one can calculate exactly many of the statistical
properties of such graphs in the limit of large numbers
of vertices. Among other things, we have given explicit
formulas for the position of the phase transition at which
a giant component forms, the size of the giant compo-
nent, the average and distribution of the sizes of the
other components, the average numbers of vertices a cer-
tain distance from a given vertex, the clustering coeffi-
cient, and the typical vertex–vertex distance on a graph.
We have given examples of the application of our the-
ory to the modeling of collaboration graphs, which are

inherently bipartite, and the World-Wide web, which is
directed. We have shown that the random graph theory
gives good order-of-magnitude estimates of the properties
of known collaboration graphs of business-people, scien-
tists and movie actors, although there are measurable
differences between theory and data which point to the
presence of interesting sociological effects in these net-
works. For the web we are limited in what calculations
we can perform because of the lack of appropriate data to
determine the generating functions. However, the calcu-
lations we can perform agree well with empirical results,
offering some hope that the theory will prove useful once
more complete data become available.
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