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Abstract

Conforti, Cornuéjols, Kapoor and Vušković [4] gave a 73-page polynomial time algorithm to test
whether a graph has an induced subgraph that is a cycle of even length. Here we provide another
algorithm to solve the same problem. The differences are:

1. Our algorithm is simpler — we are able to search directly for even holes, while the algorithm
of [4] made use of a structure theorem for even-hole-free graphs, proved in an earlier paper [3];

2. It is marginally faster — O(n31) for an n-vertex graph (and we sketch another more complicated
algorithm that runs in time O(n15)) while [4] appears to take about O(n40); and

3. We can permit 0/1 weights on the edges and look for an induced cycle of even weight. Conse-
quently we can test if a graph is “odd-signable”.



1 Introduction

In [1, 2] two of us found an algorithm to test whether a graph contains an odd hole or antihole.
There were a couple of novel techniques in that algorithm, and it seemed that they might be equally
applicable when testing for even holes. It was already known that the problem of testing whether a
graph contains an even hole is polynomially solvable [4], but that algorithm was very complicated,
and we decided to try to adapt the method of [1, 2] to see if we could do it better. We did get
an algorithm, not as nice as we hoped, but simpler than the algorithm of [4]. Incidentally, the
complexity of finding the shortest even hole in a graph is still open as far as we know.

We begin with some definitions. All graphs in this paper are finite and simple. We denote the
vertex-set of G by V (G) and the edge-set by E(G). A path in G means an induced subgraph that is
a path (that is, it is non-null, connected, has no cycles, and has no vertex of degree > 2). Its ends
are defined in the natural way, and for a path P with at least two vertices, its interior is the vertex
set of the path obtained by deleting the ends of P . A hole in G means an induced subgraph that
is a cycle. The length of a path or hole is the number of edges in it. (Note that cycles of length 3
count as holes. This is nonstandard, but convenient for us.) Two subsets X,Y ⊆ V (G) are said to
be separate if X ∩ Y = ∅ and there do not exist x ∈ X and y ∈ Y such that x, y are adjacent.

We denote by Z2 the two-element group with elements {0, 1}, using additive notation. A signed
graph is a pair (G, γ), where G is a graph and γ is a function from E(G) to Z2. If X ⊆ E(G), we
define

γ(X) =
∑

e∈X

γ(e).

If X is a path or hole in G, γ(X) means γ(E(X)); and if γ(X) = 1, we say that X is γ-odd (and
otherwise it is γ-even). We call γ(X) the γ-parity of X. A graph G is said to be odd-signable if
there exists γ such that there are no γ-even holes in the signed graph (G, γ). It is easy to show that
the problem of testing whether a graph is odd-signable is polynomially equivalent to that of testing
whether a signed graph (G, γ) has a γ-even hole.

In [4], Conforti, Cornuéjols, Kapoor and Vušković presented an algorithm to test whether G
contains a hole of even length. It ran in time polynomial in the number of vertices of the input
graph; they gave no explicit bound on its running time, but it seems to us to take time about O(n40)
for an n-vertex graph. Their algorithm relied on a decomposition theorem for graphs without even
holes, proved in an earlier paper [3].

In this paper we give an algorithm which takes as input a signed graph (G, γ), and tests whether
there is a γ-even hole in G. Its running time is O(n31) (and we sketch some improvements that
bring the running time down to O(n15)). It uses cleaning techniques to search directly for γ-even
holes, and does not depend on any decomposition theorem. Consequently we can test if a graph is
odd-signable in polynomial time.

Our algorithm was derived from the algorithm presented in [1, 2] to test whether a graph has
an odd length hole or antihole (of length > 3). Searching for even holes is easier in some respects
than searching for odd ones, and more difficult in some respects. For instance, it is still not known
how to test in polynomial time whether a graph contains an odd hole of length > 3; the algorithm
of [1, 2] tests for odd holes and antiholes simultaneously. On the other hand, there were some tricks
that worked nicely for odd holes (testing first for pyramids, detecting clean shortest odd holes); they
have analogues in the even hole case, but don’t work so well.
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The idea of the algorithm is as follows. Let (G, γ) be the input signed graph. Suppose that C is
a γ-even hole in G of minimum length; how can we detect the presence of C? Let its length be t say.
Let P be a path in G of length > 1 with ends u, v say in C, and let C1, C2 be the two paths of C
between u, v, where C1 is the shorter of the two. We say that P is a shortcut across C if its length
is at most the length of C1, and less than t/4. A shortcut P is good if its union with C2 is another
shortest γ-even hole; in other words, P has the same length and γ-parity as C1, and its interior is
separate from the interior of C2. The shortcut is bad otherwise. A shortcut P is shallow if it is bad,
the length of C1 is at most one more than the length of P , and the union of P and C2 is a hole. We
first implement a “cleaning” subroutine; we generate polynomially many subsets of V (G), such that
it is guaranteed that one of them (say X) is disjoint from V (C) and intersects enough of the bad
shortcuts that, if any bad shortcuts still remain in G \ X, then the “worst” one of them is shallow.
Now we examine all the graphs G \ X (over all the choices of X that we generated, since we do not
know which is the right one). If G has a γ-even hole, then in one of these graphs G\X there is either

• a shortest γ-even hole with no bad shortcut, or

• a shortest γ-even hole such that the worst shortcut over it is shallow.

In both kinds of graphs it is easy to detect that there is a γ-even hole. For example, for the first
kind of graph we proceed as follows: we check all 8-tuples of vertices v1, . . . , v8; for each of the pairs
v1v2, v2v3, . . . , v8v1 we find the shortest path joining the pair; and test whether the union of these
eight paths is a γ-even hole. It can be shown that for graphs of the first kind, this algorithm will
detect a γ-even hole. A similar method works for the second kind of graph.

We explain the cleaning subroutine in the next three sections, and then the two methods to detect
γ-even holes in sections 5 and 6. In section 7 we sketch some variations which improve the running
time to O(|V (G)|15).

2 Major vertices

A theta in a graph G means an induced subgraph X of G with two nonadjacent vertices s, t and
three paths P,Q,R, each between s, t, such that P,Q,R are internally disjoint, the union of every
pair of them is a hole, and X = P ∪ Q ∪ R. A prism in G is an induced subgraph K in which there
are three paths P1, P2, P3, with the following properties:

• for i = 1, 2, 3, Pi has length > 0; let its ends be ai, bi

• P1, P2, P3 are pairwise disjoint, and V (K) = V (P1 ∪ P2 ∪ P3)

• for 1 ≤ i < j ≤ 3, there are precisely two edges between V (Pi) and V (Pj), namely aiaj and
bibj .

It is easy to see that in any theta and in any prism, at least one of the holes has even γ-parity, for
any choice of γ.

Throughout this section, let (G, γ) be a signed graph with a γ-even hole, and let C be such a
hole with minimum length, length t say. We call C a shortest γ-even hole. We observe:
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2.1 Let C1, . . . , Ck be a list of holes in G with k odd, such that every edge is in an even number of
C1, . . . , Ck. Then one of them is γ-even, and therefore has length at least t. (In particular, for every
theta or prism in G, at least one of its holes has length ≥ t.) Also, let C1, . . . , Ck be a list of holes
with k odd such that every edge is in an even number of C,C1, . . . , Ck. Then one of C1, . . . , Ck is
γ-even, and therefore has length at least t.

Proof. Suppose there is a list as in the first assertion. Since every edge is in an even number of
C1, . . . , Ck, the sum of their parities is 0, and so one of them is γ-even, and therefore has length at
least t. The proof of the second assertion is similar, using that C is γ-even. This proves 2.1.

2.2 Let C ′ be a hole in G of length ≤ t, and let v ∈ V (G) \ V (C ′). Then either:

• there is an edge xy of C ′ such that v has no neighbours in V (C ′) \ {x, y}, or

• C ′ has length t and there are three consecutive vertices x, y, z of C ′ such that v has no neighbours
in V (C ′) \ {x, y, z}, or

• v has an even number of neighbours in V (C ′) if and only if C ′ is γ-even.

Proof. Let us say a path of C ′ with both ends adjacent to v and no internal vertex adjacent to v
is a gap. We may assume that the first outcome of the theorem does not hold. Consequently, every
edge of C ′ belongs to a unique gap. Every gap can be completed to a hole, via a two-edge path with
middle vertex v. The sum of the γ-parities of these holes equals the γ-parity of C ′, and the number
of these holes is the number of neighbours of v in C ′; so if all these holes are γ-odd then the third
outcome of the theorem holds. We may therefore assume that one of them is γ-even. Consequently
it has length ≥ t, and so the corresponding gap has length ≥ t − 2. It follows that C ′ has length t
and the second outcome holds. This proves 2.2.

Let us say a vertex v ∈ V (G) \ V (C) is major if there are three of its neighbours in C that are
pairwise nonadjacent. Our first task is to clean away major vertices, and in fact this is the most
difficult step of the entire algorithm. Let us assign an orientation to C called clockwise, and let
C have vertices c1, . . . , ct in clockwise order. If a, b ∈ V (C) are distinct, we denote by C(a, b) the
subgraph of C consisting of all the vertices and edges of C traversed as we move from a to b along
C in the clockwise direction. So if a, b are nonadjacent then C(a, b) and C(b, a) are the two paths of
C between a and b.

Let u, v be nonadjacent major vertices. A gate for the ordered pair (u, v) is an edge xy of C with
the following properties:

• y follows x as C is traversed in clockwise direction

• uy, vx and at least one of ux, vy are edges

• there is a vertex z ∈ V (C) \ {x, y} such that u has no neighbours in the interior of C(y, z), and
v has no neighbours in the interior of C(z, x).

A vertex z as above is called a divider for the gate.

2.3 For every pair u, v of distinct nonadjacent major vertices, either there is a unique gate for (u, v)
and none for (v, u), or vice versa.
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Proof.

(1) There is at most one gate for (u, v).

For suppose that there are two, say c1c2 and cici+1 where 2 ≤ i < t. Since u is major, it has a
neighbour different from c1, c2, ci, ci+1, say cj . Similarly v has a neighbour ch in C different from
c1, c2, ci, ci+1. Since c1c2 is a gate for (u, v), and uci+1, vch are edges, it follows that h ≤ i + 1 and
consequently h < i; and since ucj , vci are edges it follows similarly that j > i + 1. But since ucj , vch

are edges, this contradicts that cici+1 is a gate for (u, v). This proves (1).

(2) There is not both a gate for (u, v) and a gate for (v, u).

For suppose that c1c2 is a gate for (u, v), and some cici+1 is a gate for (v, u) where 1 ≤ i < t.
Let ck be a divider for the first gate. Since v has no neighbours in the interior of C(ck, c1) and ci+1

is a neighbour of v and i < t, it follows that k ≥ i + 1; and since u has no neighbours in the interior
of C(c2, ck) and ci is a neighbour of u, it follows that i ≤ 2. Since u is major, it follows from 2.2 that
there is a neighbour ch of u with 4 ≤ h ≤ t; and similarly there is a neighbour cj of v with 4 ≤ j ≤ t.
Since c1c2 is a gate for (u, v), it follows that h ≥ j; and since cici+1 is a gate for (v, u) and i = 1
or 2, it follows that h ≤ j. Consequently h = j, and so both ch and cj are unique. Since u, v both
have at least four neighbours in C by 2.2, it follows that they both have exactly four neighbours in
C, namely c1, c2, c3 and ch. Since u is major it follows that 4 < h < t and in particular, t ≥ 6; but
then the vertices u, v, c1, c3, ch induce a theta in which all holes have length 4. Since 4 < n, i this
constradicts 2.1. This proves (2).

It remains to show that there is a gate for at least one of (u, v), (v, u). Let us say a gap is a
minimal path in C containing a neighbour of u and a neighbour of v. It follows that every edge of
C is in at most one gap, and consequently any two distinct gaps share no edges, and any common
vertex is an end of both. Every gap P is the interior of a path between u, v, say P +.

(3) If P1, P2 are distinct gaps and P +
1

, P+
2

have the same γ-parity, then P1, P2 are disjoint and
an end of P1 is adjacent to an end of P2.

For suppose first that they are not disjoint, and therefore share an end, ci say. We may assume
that P1 is C(ch, ci) and P2 is C(ci, cj), where 1 ≤ h ≤ i ≤ j ≤ t. Since ci belongs to two gaps, it is
not adjacent to both u and v and so h < i < j. We may assume that u is adjacent to ch, cj and v
to ci. But then C(ch, cj) can be completed to a hole via cj-u-ch, and it is γ-even since its γ-parity
is the sum of the parities of P +

1
and P+

2
; and its length is < t since u is major, a contradiction. So

P1, P2 are disjoint. Suppose there is no edge between them. Then P +
1

∪ P+
2

is a γ-even hole, and
therefore has length ≥ t. Since P1, P2 are disjoint and there are no edges between them, and C has
length t, it follows that there are two vertices a, b of C, nonadjacent, so that P1 is the interior of
C(a, b) and P2 the interior of C(b, a). Since u has exactly two neighbours in P1 ∪ P2, and has at
least four in C, it follows that ua, ub are edges, and similarly so are va, vb. The subgraph induced
on {u, v} ∪ V (C(a, b)) is a prism, and all its holes are strictly shorter than C, contrary to 2.1. This
proves (3).
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(4) There are at most six gaps.

For let the gaps be P1, . . . , Pk, numbered in their order on C, and suppose that k ≥ 7. It fol-
lows that P1, P5 are disjoint and there are no edges between them, and the same holds for P2, P5.
By (3), P +

1
, P+

5
have opposite γ-parity, and so do P +

2
, P+

5
; and consequently P +

1
, P+

2
have the same

γ-parity. Similarly P +

2
, P+

3
have the same γ-parity, and so do all such consecutive pairs, and therefore

so do P +
1

, P+
5

, a contradiction. This proves (4).

(5) There are at most five gaps.

For assume there are exactly six, say P1, . . . , P6 in order. By (3) we deduce that P +
1

, P+
4

have
opposite γ-parity, and so do P +

2
, P+

5
and P+

3
, P+

6
. Since P +

1
, . . . , P +

6
do not all have the same γ-

parity, there are two consecutive with opposite γ-parity, say P +
1

, P+
2

. It follows that P +
2

, P+
4

have
the same γ-parity, and so by (3) P2, P4 are disjoint and there is an edge between them; and so P3

is not disjoint from both of P2, P4, and therefore by (3), P +

3
has opposite γ-parity from P +

2
. We

have shown then that if P +

1
, P+

2
have opposite γ-parity then so have P +

2
, P+

3
. Consequently every

consecutive pair of gaps are the interiors of u − v paths of opposite γ-parity. We also showed that
there is an edge between P2, P4, and therefore P3 shares a vertex with one of P2, P4. Consequently
P3 has length > 0, and so it has length 1 and shares an end with P2 and shares the other end with
P4. The same holds for every other gap, and so t = 6. But then u has exactly three neighbours in
C, contrary to 2.2. This proves (5).

(6) There are at most four gaps.

For assume there are exactly five, say P1, . . . , P5 in order. Since there is an odd number of gaps, it
follows that u, v have a common neighbour in C, and so some gap has length 0, say P5. So P2, P5

are disjoint and there is no edge between them, and P +

2
, P+

5
therefore have opposite γ-parity, by (3);

and similarly P +

3
, P+

5
have opposite γ-parity. Also P1, P4 are disjoint and there is no edge between

them, so P +
1

, P+
4

have opposite γ-parity; and therefore from the symmetry between P1 and P4, we
may therefore assume that P +

1
, P+

5
have opposite γ-parity. It follows that P +

1
, P+

2
, P+

3
all have the

same γ-parity, so by (3) they are pairwise disjoint and every pair of them is joined by an edge, which
is impossible. This proves (6).

(7) There are at most three gaps.

For assume there are exactly four, say P1, . . . , P4 in order. Suppose first that at least three of
P+

1
, . . . , P +

4
have the same γ-parity. Then these three are pairwise disjoint and pairwise joined by

edges, by (3), and so have union C; but since u has only one neighbour in each of them, it has only
three neighbours in C, contrary to 2.2. So two of P +

1
, . . . , P +

4
have γ-parity 0 and the other two have

γ-parity 1. Suppose that P +
1

, P+
3

have equal γ-parity, and hence P +
2

, P+
4

have the other γ-parity.
By (3) there is an edge between P1 and P3, and also one between P2, P4. Consequently we may
assume that P1, . . . , P4 all have a vertex in {c1, c2, c3}, and so no subpath of C(c4, ct) is a gap. It
follows that not both u, v have neighbours in C(c4, ct), a contradiction since they are both major. So
we may assume that P +

1
, P+

2
have the same γ-parity, and therefore P +

3
, P+

4
have the other γ-parity.
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Consequently P1, P2 are disjoint and are joined by an edge and so are P3, P4. These two edges are
necessarily disjoint; so we may assume that they are c1c2 and cici+1 for some i with 3 ≤ i < t.
Thus c1 is an end of P1, and P1 is contained in C(ci+1, c1); c2 is an end of P2 and P2 is contained
in C(c2, ci); and similarly for P3, P4. Since the interior of C(c2, ci) includes no gap, not both u, v
have neighbours in it, and similarly they do not both have neighbours in the interior of C(ci+1, c1).
But since they are both major, they both have neighbours in C different from c1, c2, ci, ci+1; so we
may assume that u has neighbours in the interior of C(c2, ci), and not in the interior of C(ci+1, c1),
and vice versa for v. Since P2 is a gap and therefore contains a neighbour of v, it follows that c2 is
adjacent to v, and similarly vci, uc1, uci+1 are edges. Hence C(c2, ci) can be completed to a hole via
ci-v-c2, and this hole (say C ′) has length < t. But u has the same neighbours in C and in C ′, except
for c1, ci+1, and therefore it has an even number in C ′, since it has an even number in C by 2.2. By
2.2 applied to C ′, we deduce u has exactly two neighbours in C ′ (and thus in C(c2, ci)) and they are
adjacent. Similarly v has exactly two neighbours in C(ci+1, c1) and they are adjacent. Since c1-c2

is not a gap, it follows that one of u, v is adjacent to both c1, c2, and similarly for ci, ci+1. We may
therefore assume that u is adjacent to c2 and so its only neighbours in C are c1, c2, c3, ci+1. Since u
is major, it follows that i > 3, and so u is nonadjacent to ci. Hence v is adjacent to ci and ci+1. The
subgraph induced on {u, v, c2, c3, . . . , ci+1} is a prism and all its holes have length < t, contrary to
2.1. This proves (7).

(8) There are exactly three gaps.

For assume there are at most two. Then there exist two vertices of C, say c1, ci, such that ev-
ery gap contains at least one of them. Consequently not both u, v have neighbours in the interior
of C(c1, ci), and similarly for C(ci, c1). Since they do both have more neighbours, we may assume
that all neighbours of u in C belong to C(c1, ci), and all neighbours of v belong to C(ci, c1). We
may also assume that vc1, uci are edges. Choose h, j with 1 ≤ h, j ≤ t minimum such that uch and
vcj are edges; then 1 ≤ h ≤ i ≤ j ≤ t. Since all neighbours of u in C belong to C(ch, ci), and
it has at least four such neighbours, it follows that i ≥ h + 3, and similarly j ≤ t − 2. But then
every edge of G is in an even number of the holes C, v-c1-c2- · · · -cj-v, u-ci-ci+1- · · · -ct-c1- · · · -ch-u,
v-c1- · · · -ch-u-ci- · · · -cj-v, and the latter three all have length < t, contrary to 2.1. This proves (8).

From (8), there are two gaps with the same γ-parity, and so by (3) these gaps are disjoint and
joined by an edge. We may assume the edge is ctc1 and there exist h, j with 1 ≤ h < j ≤ t such that
P1 = C(cj , ct) and P2 = C(c1, ch). In particular, c1, ct are both adjacent to one of u, v. Since u, v
both have neighbours in C(c2, ct−1) and hence P3 is included in this path, it follows that the path
ct-c1 is not a gap, and so one of u, v, say u, is adjacent to both of ct, c1. Consequently v is adjacent
to ch, cj . Now C(ch+1, cj−1) includes at most one gap, and u, v both have at least two neighbours in
it, so there exists i with h + 2 ≤ i ≤ j − 2 such that one of u, v has no neighbours in C(ch+1, ci−1)
and the other has no neighbours in C(ci+1, cj−1). We may assume (by reversing the orientation of C
if necessary) that u has no neighbours in C(ch+1, ci−1) and v has none in C(ci+1, cj−1). By reducing
i if necessary, we may also assume that v is adjacent to ci. Since u has at least two neighbours in
C(ci, cj), and v is adjacent to both ci, cj , it follows that C(ci, cj) includes at least two gaps, neither
of which is P2. Consequently one of them is P1, and so j = t. But then ctc1 is a gate for (u, v), and
the theorem holds. This proves 2.3.
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2.4 Let u, v, w be distinct major vertices, such that w is nonadjacent to both u and v. Then there
is a vertex in C adjacent to all of u, v, w.

Proof. We assume for a contradiction that there is no such vertex.

(1) No edge of C is a gate for one of (u,w), (w, u) and a gate for one of (v, w), (w, v).

For suppose that ctc1 is such an edge. Consequently one of ct, c1 is adjacent to both u and w,
and one is adjacent to both v, w. Since neither of ct, c1 is adjacent to all three of u, v, w, we may
assume that c1 is adjacent to u,w and not to v, and ct is adjacent to v, w and not to u. Consequently
ctc1 is not a gate for (w, u), so it is a gate for (u,w), and similarly it is a gate for (w, v). Choose i, j
with 2 ≤ i ≤ j ≤ t − 1, such that wci, wcj are edges, with i minimum and j maximum. Since w is
major it follows that j ≥ i + 2. Since ctc1 is a gate for (u,w) it follows that u has no neighbours in
C(c2, cj−1), and similarly v has none in C(ci+1, ct−1). Thus u, v have no common neighbour in C,
and hence u, v are adjacent, by 2.3. Choose h with 1 ≤ h ≤ i maximum such that vch is an edge,
and k with j ≤ k ≤ t minimum such that uck is an edge. Since v is major it follows that h ≥ 4, and
similarly k ≤ t−3. But then the three paths u-c1-w, u-v-ch- · · · -ci-w and u-ck- · · · -cj-w form a theta
in which all three holes have length < t, contrary to 2.1. This proves (1).

(2) There do not exist two consecutive edges of C such that one is a gate for either (u,w) or (w, u),
and the other is a gate for either (v, w) or (w, v).

For assume that, say, ctc1 is a gate for one of (u,w), (w, u), and c1c2 is a gate for one of (v, w), (w, v).
Suppose first that u is nonadjacent to c1. Hence ctc1 is not a gate for (u,w), and so it is a gate for
(w, u). It follows that wct is an edge, and w is nonadjacent to c2 (because u has some neighbour ci

where i ≥ 3, and therefore w has no neighbours in the interior of C(c1, ci)). The first implies that
c1c2 is not a gate for (v, w), and the second implies that c1c2 is not a gate for (w, v), a contradiction.
It follows that uc1 is an edge, and similarly vc1 is an edge. Since c1 is not adjacent to all of u, v, w
it follows that w is nonadjacent to c1. So ctc1 is not a gate for (w, u), and therefore it is a gate for
(u,w), and similarly c1c2 is a gate for (w, v). So wct, wc2, uct, vc2 are edges. Hence ct is nonadjacent
to v since it is not adjacent to all of u, v, w, and similarly c2 is nonadjacent to u. Since w is major,
it has a neighbour ci in C(c3, ct−1). Since ctc1 is a gate for (u,w) it follows that u has no neigh-
bours in C(c2, ci−1), and similarly v has none in C(ci+1, ct). There is therefore no gate for (u, v) or
(v, u), and so they are adjacent by 2.3. But then there are five holes in the subgraph induced on
{u, v, w, ct , c1, c2}, all of length < t, and every edge is in an even number of them, contrary to 2.1.
This proves (2).

In view of 2.3 and (2), we may assume that ctc1 is a gate for (u,w), and some cici+1 is a gate for
one of (v, w), (w, v), where 2 ≤ i ≤ t − 2. In particular, uc1, wct are edges.

(3) cici+1 is a gate for (w, v). Consequently, vci, wci+1 are edges; u has no neighbours in C(c2, ci);
and v has no neighbours in C(c1, ci−1).

For suppose cici+1 is not a gate for (w, v); then cici+1 is a gate for (v, w). In particular, vci+1

and wci are edges. Since w is adjacent to ct and cici+1 is a gate for (v, w), it follows that v has no
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neighbours in C(ci+2, ct−1). We claim also that v is not adjacent to ct. For suppose it is; then u is
not adjacent to ct, since ct is not adjacent to all of u, v, w, and w is not adjacent to c1 since cici+1

is a gate for (v, w); and this contradicts that ctc1 is a gate for (u,w). So v is not adjacent to ct.
Choose h with 1 ≤ h ≤ t minimum such that v is adjacent to ch; then 1 ≤ h ≤ i, and all neighbours
of v in C belong to C(ch, ci+1) (and consequently h ≤ i − 3). Similarly there is a neighbour cj of
u with i + 1 ≤ j ≤ t − 3 such that all neighbours of u in C belong to C(cj , c1). Thus there is no
gate for (u, v) or for (v, u), and therefore u, v are adjacent by 2.3. Since ctc1 is a gate for (u,w), it
follows that w has no neighbours in C(cj+1, ct−1), and similarly it has none in C(ch+1, ci−1). Since
w is major, it has a neighbour in C different from ct, c1, ci, ci+1, and from the symmetry between
ctc1 and cici+1, we may assume that wcg is an edge, where 2 ≤ g ≤ h. Choose g maximum with
this property. Choose k with 1 ≤ k ≤ t, maximum such that uck is an edge; then k ≥ j + 2 ≥ i + 3
since u has at least four neighbours in C. Let P1 be the path w-cg- · · · -ch-v, and P2 a path between
w, v with interior in {ci, ci+1}, and P3 the path w-ct-ct−1- · · · -ck-u-v; then the union of these three
paths is a theta, and the union of any two of them is a hole of length < t, contrary to 2.1. This
proves the first assertion of (3). It follows that vci, wci+1 are edges. Since w is adjacent to ci+1

and ctc1 is a gate for (u,w), it follows that u has no neighbours in C(c2, ci); and since w is adjacent
to ct and cici+1 is a gate for (w, v), it follows that v has no neighbours in C(c1, ci−1). This proves (3).

(4) w has no neighbours in C(ci+2, ct−1).

For suppose it does, and choose k′ with i +2 ≤ k′ ≤ t− 1, such that w is adjacent to ck′ . Since ck′ is
not adjacent to all of u, v, w, we may assume from the symmetry that ck′ is not adjacent to u. Choose
k minimum such that i+2 ≤ k ≤ t−1 and w is adjacent to ck; then it follows that ck is not adjacent to
u (because ctc1 is a gate for (u,w)). Since ctc1 is a gate for (u,w), it follows that u has no neighbours
in C(c2, ck−1); and consequently k ≤ t − 2. Since cici+1 is a gate for (w, v), it follows that v has no
neighbours in C(ck+1, ci−1). Since ck is not adjacent to all of u, v, w, it follows that u, v have no com-
mon neighbour in C, and so they are adjacent, by 2.3. Choose j with 1 ≤ j ≤ t maximum such that
v is adjacent to cj ; then i + 3 ≤ j ≤ k. Let P1 be the path v-cj- · · · -ck-w, let P2 be a path from v to
w with interior in {u, ct, c1}, and let P3 be the path from v to w with interior in {ci, ci+1}. The union
of these three paths is a theta, and all the holes in it have length < t, contrary to 2.1. This proves (4).

(5) w has exactly two neighbours in C(c1, ci), and they are adjacent.

For u, v both have neighbours in C(ci+2, ct−1), and so there is a path P between u, v with inte-
rior in {ci+2, . . . , ct−1} (if u, v are adjacent then P has length 1.) Let C ′ be the hole formed by the
union of c1-u-P -v-ci and C(c1, ci); its length is < t, so it has odd γ-parity. But by 2.2, w has an
even number of neighbours in C, and it has exactly the same neighbours in C ′ except for ci+1, ct,
and therefore it has an even number in C ′. By 2.2, it has exactly two adjacent in C ′. This proves (5).

(6) u, v are nonadjacent.

Let the neighbours of w in C(c1, ci) be ch, ch+1. Since w is major, it has neighbours in C dif-
ferent from ct, c1, ci, ci+1, so we may assume that h > 1. So w is not adjacent to c1. Since ctc1 is a
gate for (u,w), it follows that u is adjacent to ct. If u is adjacent to v, then the subgraph induced on
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{u, v, w, ct , c1, . . . , ci} is a prism, and all its holes have length < t, a contradiction. This proves (6).

This restores the symmetry between u, v, w. By 2.3, (1) and (2) there is a gate for one of
(u, v), (v, u), different from and disjoint from both ctc1 and cici+1; and since u, v have a common
neighbour in this gate, it therefore belongs to C(ci+1, ct). Let ckck+1 be this gate, where i+2 ≤ k ≤
t − 2. Since v has a neighbour ci in the interior of C(c1, ck), it follows that ckck+1 is not a gate for
(u, v), and therefore it is a gate for (v, u). So all neighbours of v in C belong to C(ci, ck+1), and all
neighbours of u in C belong to C(ck, c1); and uck is an edge. Let the neighbours of w in C(c1, ci) be
ch, ch+1. As before, we may assume from the symmetry that h > 1, and therefore u is adjacent to
ct. Choose j with 1 ≤ j ≤ k maximum such that v is adjacent to cj ; so j ≥ i + 2. Then the three
paths c1- · · · -ch, ct-w, and u-ck- · · · -cj-v-ci- · · · -ch+1 form a prism, and all its holes have length < t,
a contradiction. This proves 2.4.

We use 2.4 for the following algorithm.

2.5 There is an algorithm with the following specifications:

• Input A signed graph (G, γ).

• Output A sequence of subsets X1, . . . , Xr of V (G), with r ≤ |V (G)|9, such that for every
shortest γ-even hole C in G, one of X1, . . . , Xr is disjoint from V (C) and includes all major
vertices for C.

• Running time O(|V (G)|10).

Proof. The algorithm is as follows. If G has at most two vertices, we output the null sequence; this
output evidently has the desired properties, and so henceforth we assume that G has at least three
vertices. In the first phase, we enumerate all 9-tuples v1, . . . , v9 of distinct vertices of G. For each
such 9-tuple, let X be the set of all vertices of G that are different from v3, . . . , v9 and are either
adjacent to one of v4, v5, v8 or are adjacent to both of v1, v2. Let X1, . . . , Xa be the different subsets
X generated in this phase.

In the second phase, we generate all 8-tuples v1, . . . , v8 of vertices (not necessarily distinct). For
each such 8-tuple, let Y be the set of all vertices adjacent to all of v1, v2, v3; if v8 /∈ Y let Z be the
set of all vertices in V (G) \ (Y ∪ {v1, . . . , v8}) that are adjacent to all of Y ∪ {v8}, and if v8 ∈ Y let
Z = ∅; and let X = Y ∪ Z ∪ {v8}. Let Xa+1, . . . , Xb be the subsets X generated in this phase.

We output the list X1, . . . , Xb, ∅. That concludes the description of the algorithm; now we prove
that it works correctly. For an n-vertex graph, the total number of subsets that we output is

n(n − 1)(n − 2) · · · (n − 8) + n8 + 1 ≤ n9,

as claimed; and the running time is indeed O(n10), because it takes linear time to process each
9-tuple and quadratic time for each 8-tuple. (If the running time was critical, we could arrange it
more efficiently, but it turns out that improvements here make only a negligible improvement in the
running time of the complete algorithm.)

It remains to check that the sequence X1, . . . , Xb, ∅ that we generate has the property claimed
for the output. Let C be a shortest γ-even hole in G. If there are no major vertices for C then the
sequence works because it contains the empty set. Suppose next that there are two nonadjacent major
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vertices, say v1, v2. By 2.3, there are seven distinct vertices v3, . . . , v9 of C, such that v3-v4-v5-v6

and v7-v8-v9 are paths, and v1, v2 have no common neighbours in C except possible v4, v5, v8. Let X
be the corresponding subset generated in phase 1 of the algorithm when we come to examine this
9-tuple. Since every vertex in X is either adjacent to one of v4, v5, v8 or is adjacent to both of v1, v2,
and v3, . . . , v9 /∈ X, it follows that X contains no vertex of C. On the other hand, we claim that
every major vertex belongs to X. Certainly v1, v2 each are adjacent to one of v4, v5, v8; indeed, by 2.3
they have a common neighbour in V (C), which must be one of v4, v5, v8. Consequently v1, v2 ∈ X.
Let v3 6= v1, v2 be a major vertex. If v3 is adjacent to both v1, v2 then v3 ∈ X from the definition of
X; and otherwise v1, v2, v3 have a common neighbour in V (C) by 2.4, which therefore must be one
of v4, v5, v8, and again v3 ∈ X. This proves that all major vertices belong to X, so in this case the
claim holds. Finally we assume there is a major vertex, but all major vertices are pairwise adjacent.
Since there is a major vertex, it follows that C has length ≥ 6. Choose v1, v2, v3 in C, pairwise
nonadjacent and with as many common neighbours as possible. Let Y be the set of their common
neighbours. Since there is a major vertex, it follows that Y 6= ∅. Let v8 be a major vertex, chosen
nonadjacent to one of v1, v2, v3 if possible. If v8 ∈ Y then Y contains all major vertices and is disjoint
from C, and Y belongs to the output list, so the claim holds. Finally we assume that v8 /∈ Y . From
the choice of v1, v2, v3 it follows that there do not exist three nonadjacent vertices in C all adjacent
to all of Y ∪ {v8}. Consequently there are four vertices v4, v5, v6, v7 in C such that every vertex in
C that is adjacent to all of Y ∪ {v8} is one of these four. Let Z,X be the sets defined in phase 2
of the algorithm when we come to examine the 8-tuple v1, . . . , v8. Certainly all members of Y are
major, and therefore not in C. Every vertex in Z is adjacent to all of Y ∪ {v8}, and different from
v1, . . . , v7, and is therefore not in C; so X is disjoint from C. It remains to show that X contains
all major vertices. Let w be a major vertex. If w ∈ Y ∪ {v8} then w ∈ X as required, so we assume
not; but w is adjacent to all of Y ∪ {v8}, since every two major vertices are adjacent, and therefore
w ∈ Z ⊆ X, as required. This proves 2.5.

3 Shortcuts

For any two vertices u, v of any graph H, we denote by dH(u, v) the length of the shortest path of
H between u, v. Let (G, γ) be a signed graph, and let C be a shortest γ-even hole in G, of length t.
A shortcut across C is a path P in G with distinct nonadjacent ends u, v ∈ V (C), such that P has
length < t/4, and length ≤ dC(u, v). A shortcut P is good if its union with one of C(u, v), C(v, u) is
another γ-even hole of length t, and bad otherwise. In other words, assume that C(u, v) has length
at most that of C(v, u); then P is good if all the following are satisfied:

• P and C(u, v) have the same length,

• no internal vertex of P belongs to C(v, u),

• no internal vertex of P has a neighbour in the interior of C(v, u), and

• P and C(u, v) have the same γ-parity.

If P is a shortcut, we say P is shallow if it is bad, the interior of P is separate from the interior of
C(v, u), and the length of P is at least dC(u, v) − 1. We say it is deep if it is bad and there is no
shallow shortcut with the same interior as P . We say a shortcut P with vertices u-p1- · · · -pk-v is
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clear if it is deep (and therefore bad), and no internal vertex of P belongs to C, and there are two
subpaths Q1, Q2 of C with the following properties:

• p1 is adjacent to every vertex of Q1, and pk is adjacent to every vertex of Q2, and there are no
other edges between {p1, . . . , pk} and V (C)

• Q1, Q2 are disjoint; they both have length ≤ 2; and they both have even length or both have
length 1

• if k = 1 then Q1, Q2 both have length at most 1.

We call Q1, Q2 the attachments paths of P . A clear shortcut P is said to be of even (respectively,
odd) type depending whether its attachment paths Q1, Q2 have even or odd length.

Let P, P ′ be bad shortcuts across C, with ends u, v and u′, v′ respectively. We say that P ′ is
worse than P if either

• the length of P ′ is strictly less than that of P , or

• P ′ and P have the same length, and dC(u, v) < dC(u′, v′).

If P is a bad shortcut and there is no bad shortcut that is worse than P , we say P is a worst shortcut.
In this section we analyze the possible types of a worst shortcut.

3.1 Let (G, γ) be a signed graph, and let C be a shortest γ-even hole in G, and let P be a worst
shortcut across C. Then either:

• P has exactly one internal vertex, and it is major, or

• P is clear, or

• P is shallow.

Proof. For a contradiction, we suppose that P does not satisfy the theorem. Let P have vertices
u-p1- · · · -pk-v, and let C have vertices c1- · · · -ct, in order. We may assume that C(u, v) has length
at most that of C(v, u).

(1) p1, . . . , pk /∈ V (C).

For assume that some pi ∈ V (C). Since u-p1- · · · -pi is not a bad shortcut, it follows that dC(u, pi) ≤ i,
and similarly dC(pi, v) ≤ k − i + 1. Consequently dC(u, v) ≤ k + 1, and since P has length k + 1,
we have equality throughout. In particular, C(u, v) has length k + 1, and pi belongs to a minimum
length path of C between u, v, and so we may assume that pi ∈ V (C(u, v)). Since u-p1- · · · -pi is not
a bad shortcut, and it has the same length as C(u, pi), it follows that it also has the same γ-parity as
C(u, pi), and there are no edges between its interior and the interior of C(pi, u). Similar statements
hold for the path pi- · · · -pk-v; but this contradicts that P is a bad shortcut. This proves (1).

(2) k ≥ 2.

For suppose that k = 1. Then p1 is adjacent to both u, v. If it has exactly two neighbours in
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C, then P is either shallow or clear, a contradiction. Assume that it has exactly three; then by 2.2
they are consecutive, say c1, c2, c3, where C has vertices c1, . . . , ct in order. Since u, v are nonadjacent,
it follows that {u, v} = {c1, c3}; and since P is a bad shortcut, and has the same length as C(c1, c3)
and p1 has no neighbours in the interior of C(c3, c1), it follows that P and C(c1, c3) have opposite
γ-parity. Consequently one of the two holes p1-c1-c2-p1, p1-c2-c3-p1 has even γ-parity, and therefore
t = 3, contradicting that u, v are nonadjacent. So p1 has at least four neighbours in C. By 2.2 it
has an even number. Since it is not major, it follows easily that there are two edges of C so that
the neighbours of p1 in C are the ends of these two edges, and therefore P is clear, a contradiction.
This proves (2).

Since P is a shortcut, and P has length k +1, it follows that k +1 < t/4, and so t ≥ 4k +5 ≥ 13.

(3) There are disjoint subpaths Q1, Q2 of C, both of length ≤ 2, such that V (Q1) is the set of
neighbours of p1 in C, and V (Q2) is the set of neighbours of pk in C.

Since k ≥ 2, it follows that p1 is not the unique internal vertex of any bad shortcut; and so ev-
ery two of its neighbours in C are joined by a path in C of length ≤ 2. Since C has length ≥ 13 ≥ 7,
there is a path Q1 in C of length ≤ 2 containing all neighbours of p1 in C. Choose Q1 minimal.
We claim that p1 is adjacent to every vertex of Q1. For the minimality of Q1 implies that p1 is
adjacent to the ends of Q1, so we only need check that if Q1 has length 2 then p1 is adjacent to its
middle vertex. Let Q1 be c1-c2-c3 say. Then the path c1-p1-c3 is not a bad shortcut, and therefore it
has the same γ-parity as the path c1-c2-c3. If the union of these paths is a hole, then this hole has
length 4 and γ-parity 0, contradicting that t ≥ 6. So it is not a hole, and therefore p1 is adjacent
to c2. This proves that p1 is adjacent to every vertex of Q1. Define Q2 similarly for pk. Suppose
Q1 meets Q2. Then Q1 ∪ Q2 is a path of length ≤ 4 with ends q1 ∈ V (Q1) and q2 ∈ V (Q2) say.
If dC(q1, q2) > dC(u, v), then q1-p1- · · · -pk-q2 is a bad shortcut, worse than P , a contradiction. So
dC(q1, q2) ≤ dC(u, v), and since C has length at least 13, and u, v belong to Q1 ∪ Q2, it follows
that u = q1 and v = q2; but then P is shallow, since it has length k + 1 ≥ 3 and dC(u, v) ≤ 4, a
contradiction. So Q1, Q2 are disjoint. This proves (3).

(4) There are edges between {p2, . . . , pk−1} and V (C).

For suppose there are no such edges; then the only edges between the interior of P and C are
those incident with p1 or with pk. Let Q1, Q2 be as in (3). Since P is not clear, one of Q1, Q2 has
even length, and the other is odd; say Q1 has even length, and Q2 has length 1. In the subgraph
induced on V (C) ∪ {p1, . . . , pk} there is a set of either four or six holes, depending whether p1 has
one or three neighbours in C, such that every edge is in an even number of them (C itself, the two
holes that include p1- · · · -pk, and either one or three holes of length 3); one of these holes is C, and
so by 2.1, one of the others is γ-even and has length ≥ t. Hence we may assume that there are
ends qi of Qi (i = 1, 2), such that no internal vertex of C(q2, q1) belongs to Q1 or to Q2, and the
hole q1-p1- · · · -pk-q2-C(q2, q1)-q1 is γ-even and has length ≥ t. It follows that C(q2, q1) has length
at least t − k − 1, and so C(q1, q2) has length at most k + 1. Consequently dC(u, v) ≤ k + 1, with
strict inequality unless u = q1 and v = q2; and since P is a shortcut it follows that equality holds
and u = q1, v = q2. But the hole induced on the union of P and C(v, u) is therefore another shortest
γ-even hole, contradicting that P is a bad shortcut. This proves (4).
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(5) C(u, v) has length at most k + 3, and C(v, u) has length at least 3k + 2, and there are no
edges between {p1, . . . , pk} and the interior of C(v, u).

For by (4), pi is adjacent to cj for some i, j with 2 ≤ i ≤ k − 1 and 1 ≤ j ≤ t. Let P ′ be a
path between u, cj with interior in {p1, . . . , pi}. Then the interior of P ′ is a proper subset of that
of P , and so by hypothesis, P ′ is not a bad shortcut. Consequently dC(u, cj) ≤ i + 1. Similarly
dC(v, cj) ≤ k − i + 2 and so dC(u, v) ≤ (i + 1) + (k − i + 2) = k + 3. Since C(u, v) is the shorter of
the two paths of C between u, v, it follows that C(u, v) has length at most k +3. Since C has length
≥ 4k + 5, we deduce that C(v, u) has length at least 3k + 2. That proves the first two assertions
of (5). Now suppose that cj belongs to C(v, u). Since dC(u, cj) ≤ i + 1 and C(u, v) has length
≥ k + 1 > i + 1, it follows that the shortest path of C between u, cj does not include C(u, v), and
therefore is C(cj , u). We deduce that C(cj , u) has length at most i+1. Similarly C(v, cj) has length
at most k − i + 2, and so C(v, u) has length at most the sum of these, that is, at most k + 3, a
contradiction. So there are no edges between {p2, . . . , pk−1} and C(v, u). Finally, suppose that there
is an edge between say p1 and the interior of C(v, u). Consequently there is a vertex q ∈ V (Q1), not
in C(u, v) and adjacent to u. But then the path q-p1- · · · -pk-v is a bad shortcut, worse than P , a
contradiction. This proves (5).

Since P is not shallow, it follows from (5) that C(u, v) has length > k + 2. Since C(u, v) has
length at most k + 3, it has length exactly k + 3. Let u = c1, v = ck+4 say. By (4), pi is adjacent
to cj for some i, j with 2 ≤ i ≤ k − 1 and 1 ≤ j ≤ k + 4. As we saw above, dC(u, cj) ≤ i + 1, that
is, j ≤ i + 2, and dC(v, cj) ≤ k − i + 2, that is, j ≥ i + 2. So equality holds, and in particular,
c1-p1- · · · -pi-cj is a path (P ′ say) with the same length as C(c1, cj). Since P ′ is not a worse shortcut
than P , it is not a bad shortcut at all, and so P ′ has the same γ-parity as C(c1, cj). Similarly,
cj-pi- · · · -pk-ck+4 is a path (P ′′ say), and P ′′ has the same γ-parity as C(cj, ck+4). It follows that P
has the same γ-parity as C(u, v); but then the union of P and C(v, u) is a γ-even hole of length < t,
a contradiction. This proves 3.1.

4 Eliminating clear shortcuts

In this section we give another cleaning subroutine, an extension of 2.5; this time, we will generate
polynomially many subsets such that for one of them (say X), no vertex of C is in X, and if in G\X
there is still a bad shortcut across C, then the worst is shallow. We need the following two lemmas.

4.1 Let (G, γ) be a signed graph, and let C be a shortest γ-even hole in G. Let P be a worst
shortcut, and assume that P is clear. Let P be u-p1- · · · -pk-v, and let R be a minimum length path
in G between p1, pk. Then the interior of R is separate from V (C), and u-p1-R-pk-v is another worst
shortcut, again clear.

Proof. If k ≤ 2 the claim is trivial, so we assume k ≥ 3. Let C have vertices c1- · · · -ct in order,
where the neighbours of p1 in C are c1, . . . , ch and those of pk are ci, . . . , cj . So 1 ≤ h < i ≤ j ≤ t.
Since P is clear, dC(u, v) ≥ k + 3. Let P ′ be a path between u, v with interior in V (R). Since R
has length ≤ k − 1 (because p1- · · · -pk is a path between p1, pk), it follows that P ′ has length at
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most k + 1, and therefore P ′ is a bad shortcut. Since its length is at most that of P , and P is a
shortest bad shortcut, it follows that P ′ has length k + 1 and is another shortest bad shortcut, and
has interior V (R). Since it has the same ends as P , P ′ is another worst shortcut. By 3.1, either
P ′ has only one internal vertex and that vertex is major, or P ′ is clear, or P ′ is shallow. The first
is impossible since there are no major vertices for C (because P is a shortest bad shortcut and has
length > 2). The second implies the desired result; and the third is impossible since P is deep. This
proves 4.1.

Let P be a clear shortcut across C, with attachment paths Q1, Q2. If P is of even type, we define
the anchors of P to be the middle vertices of Q1, Q2, and if it is of odd type, we define its anchors
to be the edges of Q1, Q2.

4.2 Let (G, γ) be a signed graph, and let C be a shortest γ-even hole in G. Let P,Q be clear
shortcuts, both of the same type. Then either

• the interiors of P,Q are not separate, or

• P,Q share an anchor.

Proof. Let P ,Q have interiors p1- · · · -pk and q1- · · · -ql respectively, and assume that neither of the
outcomes hold. Suppose first that there is an edge of C which is in one of the attachment paths for
P and in one of them for Q. Since P,Q do not share an anchor, it follows that they have even type.
The two attachment paths which share an edge therefore both have length 2, and so k, l ≥ 2; and
since P,Q do not share an anchor, we may assume that p1 is adjacent to c1, c2, c3 and q1 is adjacent
to c2, c3, c4, where C has vertices c1, . . . , ct as usual. Choose i with 1 ≤ i ≤ t minimum such that
pk is adjacent to ci. The hole c2-p1- · · · -pk-ci-C(c4, ci)-q1-c2 is shorter than C (since P is clear and
therefore deep), and so this hole is γ-odd; but c3 has four neighbours in it, contrary to 2.2.

It follows that the attachment paths for P,Q are edge-disjoint. Since P,Q share no anchor, it
follows that any vertex that is in both an attachment path for P and one for Q is an end of both
paths. Let C have vertices c1- · · · -ct in order. We may assume that the attachment paths of P are
C(c1, cg) and C(ci1 , ci2), where p1 is adjacent to c1; and those for Q are C(ch1

, ch2
) and C(cj1 , cj2),

where q1 is adjacent to ch1
. Suppose first that they do not alternate; say

1 ≤ g ≤ h1 ≤ h2 ≤ j1 ≤ j2 ≤ i1 ≤ i2 ≤ t.

Let C1, C2, C3 be the following three holes:

cg-C(cg, ci1)-ci1 -pk- · · · -p1-cg

ch1
-q1- · · · -ql-cj2 -C(cj2 , ch1

)-ch1

ch1
-q1- · · · -ql-cj2 -C(cj2 , ci1)-ci1 -pk- · · · -p1-cg-C(cg, ch1

)-ch1
.

Then they are all of length < t and yet every edge is in an even number of C,C1, C2, C3, contrary to
2.1. Next assume the paths do alternate; that is, say,

1 ≤ g ≤ h1 ≤ h2 ≤ i1 ≤ i2 ≤ j1 ≤ j2 ≤ t.

Let C1, C2 be the following two holes:

cg-C(cg, ch1
)-ch1

-q1- · · · -ql-cj1 -C(ci2 , cj1)-ci2 -pk- · · · -p1-cg

ch2
-C(ch2

, ci1)-ci1 -pk- · · · -p1-c1-C(cj2 , c1)-cj2 -ql- · · · -q1-ch2
.
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The sum of their lengths is at most 2k + 2l + 4 + t, and since k + 1, l + 1 < t/4, the sum of their
lengths is less than 2t. Consequently one of them has length less than t and from the symmetry we
may assume it is C1. Let C3, C4 be the following two holes:

c1-p1- · · · -pk-ci2 -C(ci2 , c1)-c1

ch1
-q1- · · · -ql-cj2-C(cj2 , ch1

)-ch1
,

and append to the list C1, C3, C4 all the triangles within {p1, c1, . . . , cg} and all the triangles within
{ql, cj1 , . . . , cj2}. The total number of triangles we append is even since P,Q have the same type.
Every edge is in an even number of the members of the expanded list, and yet they all have length
< t, contrary to 2.1. This proves 4.2.

4.3 There is an algorithm with the following specifications:

• Input A signed graph (G, γ).

• Output A sequence of subsets X1, . . . , Xr of V (G) with r ≤ |V (G)|8, such that, if C is a
smallest γ-even hole in G, and there is a worst shortcut across C, and it is clear and of even
type, then there is a member X of the output list such that X ∩V (C) = ∅ and there is no clear
shortcut of even type across C in G \ X.

• Running time O(|V (G)|8).

Proof. Here is the algorithm. For every quadruple v1, v2, v3, v4 of vertices, such that v1, v2 are in
the same component of G and v1v3, v2v4 are edges, we proceed as follows. Let Z be the set of all
vertices adjacent to at least one of v3, v4; find a shortest path R between v1, v2 in G; and find the set
Y of all vertices different from v3, v4, that are either in R or with a neighbour in R; remove at most
four vertices from Y ∪ Z, in all possible ways; and output the sets we generate. Finally, output ∅.

The algorithm outputs at most |V (G)|8 subsets, and its running time is as claimed. We must
prove that the output sequence has the required property. So let C be a shortest γ-even hole in G,
and let P be a worst shortcut across C, say u-p1- · · · -pk-v, and assume that it is clear and of even
type. Let q1, q2 be the anchors of P , where p1 is adjacent to q1. Let R be the shortest path between
p1, pk chosen by the algorithm when it examines the quadruple p1, pk, q1, q2. By 4.1, u-p1-R-pk-v is
another worst shortcut, and it is again clear. Let Y be the set of all vertices different from q1, q2

that are either in R or with a neighbour in R. Let Z be the set of all vertices in G adjacent to one of
q1, q2. So there are at most four vertices of Y ∪Z that belong to C; let X be the members of Y ∪Z
that are not in C. So X is a member of the list output by the algorithm. Clearly it is disjoint from
C, and by 4.2 it meets all clear shortcuts of even type. This proves 4.3.

We need a similar subroutine to clean shortcuts of odd type, as follows.

4.4 There is an algorithm with the following specifications:

• Input A signed graph (G, γ).

• Output A sequence of subsets X1, . . . , Xr of V (G) with r ≤ |V (G)|6, such that, if C is a
smallest γ-even hole in G, and there is a worst shortcut across C, and it is is clear and of odd
type, then there is a member X of the output list such that X ∩V (C) = ∅ and there is no clear
shortcut of odd type across C in G \ X.
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• Running time O(|V (G)|6).

Proof. Here is the algorithm. For every edge uv, find the set of all vertices adjacent to both u, v,
say Z(uv). For every pair of vertices (u, v) in the same component, find a shortest path R(u, v)
between u, v, and find the set Y (u, v) of all vertices that are either in R(u, v) or have a neighbour in
it. For each 6-tuple v1, . . . , v6 with v1, v2 in the same component, such that v3v4 and v5v6 are edges,
output the set

(Y (v1, v2) ∪ Z(v3v4) ∪ Z(v5v6)) \ {v3, v4, v5, v6}.

Finally, output ∅.
Again we must show that the output has the desired property. So let C be a shortest γ-even hole

in G, and let P be a worst shortcut across C, say u-p1- · · · -pk-v, and assume that P is clear and of
odd type. Let v3v4, v5v6 be the anchors of P , where p1 is adjacent to v3. Let

X = (Y (p1, pk) ∪ Z(v3v4) ∪ Z(v5v6)) \ {v3, v4, v5, v6}.

So Y is one of the sets output by the algorithm; we claim it has the property we need. No vertex
of C belongs to Z(v3v4) ∪ Z(v5v6), since v3v4, v5v6 are disjoint edges of C. Moreover, by 4.1,
u-p1-R(p1, pk)-pk-v is another worst shortcut, and it is again clear and of odd type. Consequently,
no vertex of Y (p1, pk) belongs to C except v3, . . . , v6. Moreover, every clear shortcut of odd type
contains a vertex of X, by 4.2. This proves 4.4.

Next we combine our three cleaning subroutines into one, as follows.

4.5 There is an algorithm with the following specifications:

• Input A signed graph (G, γ).

• Output A sequence of subsets X1, . . . , Xr of V (G) with r ≤ 2|V (G)|23, such that, if C is a
smallest γ-even hole in G, then there is a member X of the output list such that X ∩V (C) = ∅
and in G \ X, every worst shortcut across C is shallow.

• Running time O(|V (G)|23).

Proof. The algorithm is in three phases, as follows. First we run 2.5 on G; let X1, . . . , Xa be the
subsets we generate. In phase 2 we examine all the graphs G \Xi in turn. Fix i with 1 ≤ i ≤ a. We
run 4.3 on G \ Xi (let Y1, . . . , Ybi

be the sets we generate), and then run 4.4 on each of the graphs
G \ (Xi ∪ Yj) for 1 ≤ j ≤ bi; and for each j, and for each member of the output list from 4.4 applied
to G \ (Xi ∪ Yj), we output its union with Xi ∪ Yj. We repeat this for all i.

In phase 3 we repeat phase 2, this time running 4.4 before 4.3. So again, for 1 ≤ i ≤ a, we run
4.4 on G \Xi, generating Y1, . . . , Ybi

say; run 4.3 on each of the graphs G \ (Xi ∪Yj); and output the
union of each of the output sets with Xi ∪ Yj. That completes the description of the algorithm.

The running time is evidently as claimed, and the number of output sets is as claimed. We must
check that the output has the desired property. So let C be a smallest γ-even hole in G. There is one
of the Xi’s produced by 2.5 such that Xi is disjoint from C and contains all major vertices. Suppose
that in G \ Xi there is a worst shortcut across C, and it is clear and of even type. When we run 4.3
in phase 2 on G \ Xi, one of the sets Yj we output has the property that Yj is disjoint from C and
meets all clear shortcuts of even type across C in G \ (Xi ∪ Yj). So in G \ (Xi ∪ Yj), every worst
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shortcut is either clear and of odd type, or shallow, and there is no clear shortcut of even type. Now
Xi ∪ Yj belongs to the output list of 4.5 (because ∅ is always one of the sets in the output of 4.4),
so if every worst shortcut in G \ (Xi ∪ Yj) is shallow, then we have the desired property. We may
therefore assume that there is a worst shortcut in G \ (Xi ∪ Yj) that is clear and of odd type. When
we apply 4.4 to G \ (Xi ∪ Yj) in phase 2, we output a set Zk that is disjoint from C and meets every
clear shortcut of odd type. It follows that in G \ (Xi ∪ Yj ∪ Zk), there is no major vertex, and no
clear shortcut. In particular, by 3.1, every worst shortcut is shallow. Consequently in this case we
have been successful.

We may therefore assume that in G \ Xi there is no worst shortcut across C that is clear and of
even type. If there is one that is clear and of odd type, then the argument is similar, using phase 3
instead of phase 2. Finally, if there is no worst shortcut that is clear at all, then we have succeeded
since Xi is one of the outputs of 4.5. This proves 4.5.

5 Detecting shallow shortcuts

That concludes the “cleaning” part of the algorithm. So far, we have not detected any γ-even holes
at all; in fact the algorithm has not even read the γ-values on the edges of G. In this section we
give an algorithm that attempts to find a γ-even hole. It might not succeed, even if such a hole is
present, but it is guaranteed to succeed if there is a shortest γ-even hole C such that some worst
shortcut across C is shallow. We need the following lemma.

5.1 Let C be a shortest γ-even hole in G, with vertices c1, . . . , ct in order. Let P be a worst shortcut
across C, and assume P is shallow. Let P be c1-p1- · · · -pk-ci say, and assume that C(c1, ci) has length
at most that of C(ci, c1). (So i = k + 2 or k + 3.) Then

• every path between c1, ci in G has length ≥ k + 1

• for every path Q of length k + 1 between c1, ci, the interiors of Q and of C(ci, c1) are separate

• every path between c2, ci−1 has length at least i − 3

• for every path Q of length i − 3 between c2, ci−1, the interiors of Q and of C(ci−1, c2) are
separate.

Proof. Since P is a shortcut, dC(c1, ci) ≥ k +1. Since C(c1, ci) has length at most that of C(ci, c1),
it follows that dC(c1, ci) = i − 1; and since P is shallow, we deduce that i = k + 2 or k + 3.

Suppose there is a major vertex for C, say w. Then k = 1, and t ≥ 4(k + 1) + 1 = 9. Since
w has at least four neighbours in C, and three are pairwise nonadjacent, it follows that w has two
neighbours u′, v′ with dC(u′, v′) ≥ 4, contrary to the choice of the ends of P . So there is no major
vertex for C.

If Q is a path between c1, ci of length < k +1, then it is a bad shortcut, which is impossible since
P is a worst shortcut. This proves the first assertion.

For the second, assume that Q is a path of length k +1 between c1, ci. Then Q is a shortcut, and
if it is good then the claim follows, so we assume it is bad. Since it has the same length and ends as
P , it is another worst shortcut. In particular, since dC(ct, ci) > dC(c1, ci), it follows that no internal
vertex of Q is adjacent to p1, and similarly no internal vertex of Q is adjacent to ci+1. Thus if Q is
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clear then the second assertion follows. But it also follows trivially if Q is shallow, and since there
are no major vertices, the result follows from 3.1 applied to Q. This proves the second assertion.

For the third assertion, suppose that Q is a path between c2, ci−1 of length < i− 3. Then Q is a
bad shortcut strictly shorter than P , a contradiction. This proves the third assertion.

For the fourth, suppose that Q is a path between c2, ci−1 of length i− 3. So Q is a shortcut; and
since P is a worst shortcut, it follows that Q is good, and in particular the fourth assertion follows.
This proves 5.1.

For the main algorithm of this section, we need the following:

5.2 There is an algorithm with the following specifications:

• Input A signed graph (G, γ).

• Output For each pair of vertices u, v, it computes dG(u, v); and for z = 0, 1, it finds a path of
G between u, v with length dG(u, v) and γ-parity z if one exists.

• Running time O(|V (G)|3).

Proof. We can compute all the numbers dG(u, v) in time O(|V (G)|3), using Dijkstra’s algorithm
repeatedly. Now make a new graph H as follows. To each vertex x of G there correspond two vertices
x1, x2 of H; and to each edge e = xy of G there correspond two edges of H, x1y1, x2y2 if γ(e) = 0,
and x1y2, x2y1 if γ(e) = 1. Now for all u, v in V (G), we test whether there is a path in H of length
dG(u, v) between u1, v1 and also test for such a path between u1, v2. These paths exist if and only if
there is a path in G between u, v of length dG(u, v) and γ-parity 0 and 1 respectively. For the pairs
of H where such a path exists, we find such a path and output the corresponding path of G. This
proves 5.2.

5.3 There is an algorithm with the following specifications:

• Input A signed graph (G, γ).

• Output Either:

– a γ-even hole in G, or

– a determination that there is no shortest γ-even hole in G such that some worst shortcut
is shallow.

• Running time O(|V (G)|6).

Proof. The algorithm is in three phases.
First we run 5.2; for each pair u, v of vertices, we find dG(u, v), and find a path of this length

between u, v and of γ-parity z, for z = 0, 1 if such a path exists. Call the path we find Pz(u, v).
In phase 2, for every pair of distinct vertices u, v such that P0(u, v) and P1(u, v) both exist, let

W be the union of the interiors of these two paths; we test whether there is a path Q between u, v
with interior separate from W . If there is such a path, then Q has the same γ-parity as one of
P0(u, v), P1(u, v), and so their union is a γ-even hole, and we output it and stop.

In phase 3, we examine all quadruples u, v, w, x of distinct vertices and y, z ∈ {0, 1} such that
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• u, v are adjacent, and so are w, x; let uv = e and wx = f say

• y + z + γ(e) + γ(f) = 1

• dG(u, x) = dG(v, w) − 1

• Py(x, u) and Pz(w, v) both exist, and

• v and w have no neighbour in Py(x, u) except u and x respectively (and in particular, v, w are
nonadjacent).

For every such choice of u, v, w, x, y, z, let

W = V (Py(x, u)) ∪ V (Pz(w, v)) \ {w, v}.

We test whether there is a path Q in G between v, w with interior separate from W . If Q exists,
then it has the same γ-parity as one of the paths w-x-Py(x, u)-u-v, Pz(w, v); and so their union is a
γ-even hole and and we output it and stop. If we do not find such a hole, we report that there is no
shortest γ-even hole in G such that some worst shortcut is shallow.

This evidently has running time O(|V (G)|6), but we have to check that the output is correct.
Suppose then that there is a shortest γ-even hole C, and some worst shortcut P across C is shallow.
Let C have vertices c1, . . . , ct in order, and let P have vertices c1-p1- · · · -pk-ci, where i = k + 2 or
k + 3 and there are no edges between {p1, . . . , pk} and the interior of C(ci, c1). Since P is a bad
shortcut, the hole formed by the union of P and C(ci, c1) is γ-odd, and so P , C(c1, ci) have opposite
γ-parity. By the first assertion of 5.1, dG(c1, ci) = k + 1.

Suppose first that i = k + 2. Since P,C(c1, ci) have opposite γ-parity and both have length
dG(c1, ci), it follows that the algorithm will find two paths P0(c1, ci), P1(c1, ci). Let W denote the
union of the interiors of these two paths. Now there is a path Q between c1, ci with interior separate
from W (for C(ci, c1) is such a path, by the second assertion of 5.1); and therefore the algorithm will
detect such a path and output a γ-even hole. So in this case the output is correct.

Now assume that i = k + 3. Then dG(ci−1, c2) = i− 3 = k, by the third assertion of 5.1. Let y, z
be the γ-parities of C(c2, ci−1), P respectively; then y + z + γ(c1c2)+ γ(ci−1ci) = 1, since P,C(c1, ci)
have opposite γ-parity. The algorithm will choose paths Py(ci−1, c2) and Pz(ci, c1), since they both
exist. Let

W = V (Py(ci−1, c2)) ∪ V (Pz(ci, c1)) \ {ci, c1}.

There is a path Q between c1, ci with interior separate from W , because C(ci, c1) is such a path,
by the second and fourth assertions of 5.1. Consequently the algorithm will detect such a path and
output a γ-even hole. So in all cases the output is correct. This proves 5.3.

6 The complete algorithm

Before we can put these pieces together, we need one more subroutine; this one will detect a γ-even
hole in the case when there is a shortest γ-even hole with no bad shortcut at all.

6.1 There is an algorithm with the following specifications:
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• Input A signed graph (G, γ), such that there is no γ-even hole in G with length at most 12.

• Output Either:

– a γ-even hole in G, or

– a determination that there is no shortest γ-even hole in G such that every shortcut across
it is good.

• Running time O(|V (G)|8).

Proof. The algorithm is as follows. For every pair of vertices u, v in the same component of G,
find dG(u, v), and find a path P (u, v) between u, v of this minimum length. Next, for every 8-tuple
v1, . . . , v8 of distinct vertices in the same component of G, test whether the union of the eight paths
P (v1, v2), P (v2, v3), . . . , P (v8, v1) is a γ-even hole. If so, output this hole and stop. If we do not find
such a hole, output that there is no shortest γ-even hole in G such that every shortcut across it is
good.

This has running time O(|V (G)|10), but with a little more care we can get it down to O(|V (G)|8),
as follows. First, for each pair u, v we find the γ-parity of P (u, v). Then, we compute the triples
u, v, w such that P (u, v) ∪ P (v, w) is a path from u to w; and we compute the quadruples u, v, w, x
such that P (u, v) and P (w, x) are disjoint and there is no edge between P (u, v) and P (w, x) except
possibly between their ends. And given all that information, we examine each 8-tuple v1, . . . , v8 as
before; but now we can process each one in constant time.

We must also check that the output is correct. Suppose then that there is a shortest γ-even
hole C, and every shortcut across C is good. Let C have length t say. By hypothesis, t ≥ 13. Let
t = 8a+b, where a, b are integers and 0 ≤ b ≤ 7. Choose eight distinct vertices v1, . . . , v8 in clockwise
order on C; let C1 = C(v1, v2), C2 = C(v2, v3) and so on. Choose v1, . . . , v8 so they are as evenly
spaced as possible; more precisely,

• each Ci has length a or a + 1

• if b ≤ 4 then no two consecutive of C1, . . . , C8 both have length a + 1.

(1) The union of any two consecutive of C1, . . . , C8 has length < t/4 + 1.

For if b = 0 then this is clear; if 1 ≤ b ≤ 4 then C1∪C2 (say) has length at most 2a+1 < (8a+b)/4+1
since b > 0; and if b > 4 then C1 ∪ C2 has length at most 2a + 2 < (8a + b)/4 + 1 since b > 4. This
proves (1).

(2) P (v1, v2) has the same length and γ-parity as C(v1, v2), and v3, . . . , v8 do not belong to it and
have no neighbours in its interior.

For let C(v1, v2) have length k say. Then P (v1, v2) exists and has length ≤ k; and since there
is no bad shortcut over C, it follows that P (v1, v2) has length k and its interior is separate from the
interior of C(v2, v1); and P (v1, v2) has the same γ-parity as C(v1, v2). This proves (2).

(3) P (v1, v2) ∪ P (v2, v3) is a path from v1 to v3.
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For suppose not; then there is a path P between v1, v3 whose length is strictly less than the sum
of the lengths of C(v1, v2), C(v2, v3). But by (1) the latter is < t/4 + 1 ≤ t/2, and therefore equals
dC(v1, v3), and so P has length at most dC(v1, v3)−1 < t/4. In particular, P is a bad shortcut across
C, a contradiction. This proves (3).

(4) P (v1, v2), P (v3, v4) are disjoint, and there is no edge between them, except possibly the edge
v2v3 if C2 has length 1.

For suppose not. If P (v1, v2), P (v3, v4) both have length at most 2, then there is a path of length ≤ 3
between v1, v4, which is therefore a bad shortcut (since C has length ≥ 13), a contradiction. So we
may assume that one of P (v1, v2), P (v3, v4) has length ≥ 3. Consequently one of C1, C3 has length
≥ 3, and so a ≥ 2 and t ≥ 17. There are two paths P,Q, such that P is between v1, v3, and Q is
between v2, v4, sharing at most two vertices, and both with interior in W , where W is the union of
the interiors of P (v1, v2) and P (v3, v4). Consequently, the sum of the lengths of P and Q is at most
dC(v1, v2) + dC(v3, v4) + 2. Since P is not a bad shortcut, it has length at least dC(v1, v3) as before,
and similarly Q has length at least dC(v2, v4); and so

dC(v1, v2) + dC(v3, v4) + 2 ≥ dC(v1, v3) + dC(v2, v4),

which implies that v2v3 is an edge, a contradiction since a ≥ 2. This proves (4).

(5) For i = 4, 5, 6, V (P (v1, v2)), V (P (vi, vi+1)) are separate.

For suppose not. As in the previous case, it follows that a ≥ 2 and t ≥ 17. There are two paths
P,Q, such that P is between v1, vi, and Q is between v2, vi+1, sharing at most two vertices, and both
with interior in W , where W is the union of the interiors of P (v1, v2) and P (vi, vi+1). The sum of
the lengths of P and Q is at most dC(v1, v2) + dC(vi, vi+1) + 2. Since P is not a bad shortcut, it has
length at least min(t/4, dC (v1, vi)), and in particular, P has length at least a + 3. So does Q, and
hence 2(a+3) ≤ dC(v1, v2)+dC(vi, vi+1)+2, which is impossible since dC(v1, v2), dC(vi, vi+1) ≤ a+1.
This proves (5).

From (2)-(5), the union of the eight paths P (v1, v2), . . . , P (v8, v1) is a hole, and from (2), this
hole has the same γ-parity as C, and is therefore γ-even. Consequently, in this case the algorithm
correctly outputs a γ-even hole. This proves 6.1.

Now let us assemble the pieces, in the following, the main result of the paper.

6.2 There is an algorithm with the following specifications:

• Input A signed graph (G, γ).

• Output Either:

– a γ-even hole in G, or

– a determination that there is no γ-even hole in G.

• Running time O(|V (G)|31).
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Proof. Here is the algorithm. First we test whether there is a γ-even hole with length at most 12,
by examining all 12-tuples of vertices. If we find one we stop. Otherwise, we run 4.5, and generate
a sequence X1, . . . , Xr of subsets of V (G). For i = 1, . . . , r, we run both 5.3 and 6.1 on G \ Xi. If
at any stage we find a γ-even hole, we output it and stop; and otherwise we output that there is no
such hole.

This has running time O(|V (G)|31). To see that the output is correct, suppose that G has a
γ-even hole, and let C be a shortest such hole. Then there is some Xi such that Xi is disjoint from
C, and every worst shortcut across C in G \Xi is shallow. If there is a worst shortcut across C, then
when we run 5.3 on G \ Xi we find a γ-even hole; and if there is none, then every shortcut across C
is good, and we detect a γ-even hole when we run 6.1 on G \ Xi. In either case we detect a γ-even
hole, and so the output is correct. This proves 6.2.

7 Variations and refinements

The running time O(|V (G)|31) is a little embarrassing. Our excuse is that we decided to present the
simplest polynomial-time algorithm that we could find; there are places where we could have made
it run faster with a little more work. But not that much faster, in fact; we can get it down to about
O(|V (G)|15), but not much less. In this section we sketch how to do so.

The algorithm presented here was constructed by adapting the algorithm in [1, 2] to test for
Bergeness. The main difference between the algorithms for the even hole problem and for the odd
hole problem is that when we are looking at the shortest odd hole, we can prove that if there is no
major vertex then there is no bad shortcut. For the shortest even hole, we can’t prove this; we can
only arrange it by cleaning. In the first case, we know something about every shortest odd hole, and
in the second case we only know it about some shortest even hole (assuming there is one); and that
makes a significant difference. For instance, suppose we have arranged that some shortest even hole
C has no bad shortcuts, by cleaning. When we reroute C along a good shortcut, we get another
shortest even hole, and it would be helpful if this one was as good as C; but it might not be, because
the second hole might have bad shortcuts. This is the reason why we have to guess eight vertices in
6.1; in the analogous result of [1] it was enough to guess three vertices of the shortest odd hole.

The reason that we could prove there were no bad shortcuts in [1] was that we were sure that
the graph contained no pyramids. (A pyramid is an induced subgraph consisting of three pairwise
adjacent vertices b1, b2, b3, a fourth vertex a adjacent to at most one of b1, b2, b3, and three paths
from a to b1, b2, b3 respectively, disjoint except for a, and with no edges between them except those
already specified.) Any graph with a pyramid certainly contains an odd hole, and a key idea of that
paper was to test for the presence of pyramids first, before we do any cleaning; if we find one we
are done, and if we can show that there are none then that greatly simplifies the remainder of the
problem.

The analogous operation in our context would be to first test for the presence of thetas and
prisms. The nice thing about searching for pyramids is that if there is one, there is a smallest one,
and guessing a few important vertices of the smallest pyramid allows one essentially to reconstruct
the remainder, by taking shortest paths. One might hope that something similar would work in the
even hole case, looking for a smallest theta or prism.

For thetas it does work (although it is nasty — there is one case that doesn’t work as one would
wish, and we have to start looking for the smallest subgraph that is either a theta or a kind of
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extended pyramid, not worth describing fully here). Having guessed a few critical vertices, we can
reconstruct the remainder, just like for pyramids, in time O(|V (G)|12). Henceforth we can therefore
assume that G contains no theta. We can (and need to) handle a few related subgraphs similarly.
For instance, if there is a hole and a vertex with exactly four neighbours in the hole, three of which
are consecutive, then we can detect it by a similar method, and deduce that G has an even hole.
Similarly, if there is a hole and a vertex with exactly six neighbours on it, falling into two subpaths
each of length 3, we can do the same. So we can assume that G contains neither of these subgraphs.
This can all be done in time O(|V (G)|12).

What we would really like to do is to test for prisms. The method used above for thetas does
not seem to work for prisms directly, however; the only way we can make it work is by combining it
with cleaning. First we guess a few important vertices of the smallest prism; then clean the major
vertices from it (where “major” means a vertex with three nonadjacent neighbours in the prism) by
a version of 2.5 for prisms; and then we can use shortest path methods to reconstruct the prism.
Altogether it takes us time O(|V (G)|15) to detect prisms.

Henceforth then we can assume that there are no prisms in G either, and that makes things much
easier. Now we use 2.5 to clean a shortest even hole; and go directly to 5.3 and 6.1, since there cannot
be any clear shortcut, and so we don’t have to clean them away. And there is now a faster version
of 6.1, in time O(|V (G)|5), because now we can prove that if you have a clean shortest even hole,
and reroute it along a good shortcut, then you produce another clean shortest even hole. Putting all
these pieces together gives an algorithm to detect even holes, with running time O(|V (G)|15). But
the details are quite complicated and messy, and it does not seem worthwhile to explain them any
further here.
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