
Finding a Minimum Circuit in a Graph

Alon Itai
Technlon, Israel Institute of Technology, Halfa, Israel

Michael Rodeh
IBM Israel Sceintific Center, Haifa, Israel

Abstract

Finding minimum circuits in graphs and di-

graphs is discussed. An almost minimum circuit

is a circuit which may have only one edge more

than the minimum. An O(n 2) algorithm is pre-

sented to find an almost minimum circuit. The

straightforward algorithm for finding a minimum

circuit has an O(ne) behavior. It is refined

to yield an 0(n z) average time algorithm . An

alternative method is to reduce the problem of

finding a minimum circuit to that of finding a

triangle in an auxiliary graph. Three methods

for finding a triangle in a graph are presented.

The first has an O(e 3/2) worst case bound

(0(n) for planar graphs); the second takes

0(n J3) time on the average; the third has an

O(n l°g?) worst case behavlor. For digraphs,

recent results of Blonlarz, Fisher and Meyer are

used to obtain an algorithm with O(n21ogn)

average behavior.

i. Introduction

In this paper we discuss finding short

circuits in graphs and digraphs. We assume that

the reader is familiar with the standard defin-

itions of graph theory [Liu68]. Let G = (V~E)

be a graph with n vertices and e edges. The

length of a path (circuit) is the number of its

edges. We assume that the vertices are numbered

and will not distinguish between a vertex and its

number. A minimum circuit is a circuit whose

length is minimum. An almost minimum circuit is a

circuit whose length is greater than that of a

minimum circuit by at most one. We present an

0(n2) algorithm for finding an almost minimum

circuit. To find a minimum circuit an 0(n 2)

average time algorithm is developed. We also

show an 0(n 2) reduction from the problem of

finding a minimum circuit to that of finding a

triangle (a circuit of length 3). Three methods

for finding a triangle are presented:

(i) Using rooted trees. The algorithm takes

O(e 3/2) time in the worst case and O(n)

for planar graphs.

(li) Checking directly whether an edge is cont-

ained in a triangle - 0(he) worst case and

O(n 5/3) average time.

(iii) By Boolean matrix multiplication, in O(n l°g?)

time [Str691 (all logarithms are taken to

base 2).

Two methods are described for "finding

directed circuits (dicircuits) in digraphs. The

first requires 0(n8) worst case and O(n21ogn)

on the average (we use the results of [BFM76]).

The second uses |ogn Boolean matrix multiplic-

ations (i.e. o(nl°g?logn) time).

We use three representations of labelled

graphs:

(i) The adjacency lists: A(V) is the set of

vertices adjacent to v.

(ii) The upper adjacency vectors: UA(v) is a

sorted vector which contains those vertices

w>u adjacent to u. This representation

depends on the labelling of the vertices.

Each edge is represented in exactly one vect-

or. The vectors may be obtained from the

adjacency lists in 0(8) time (using bucket

sort).

(iii) The adjacency matrix: (M)uv = 1 if and only if

u and u are connected by an edge. The ad-

jacency matrix may he constructed from the

adjacency lists in 0(e) time ([AHU74] p.71,

Ex. 2.12).

2. Findin~ and Almost Minimum Circuit

Let G= (V,E) be an undirected labelled graph

with n vertices and 8 edges which has neither

parallel edges nor self loops. Let Imc denote

the length of a minimum circuit (if G is circuit

free then lmc=~). A circuit is an almost minim-

um circuit if its length is less than or equal to

Imc + 1. We present an O(n 2) algorithm for

finding an almost minimum circuit.

First the algorithm FRONT is presented. Given

a vertex u ~ V this algorithm finds a lower bound

on the length of the minimum circuit through v.

The by-products of the algorithm are used in the

sequel. FRONT conducts a partial breadth first

search (BFS) from U level-by-level. If the con-

nected component which contains v is circuit-free

then the algorithm terminates with k(v) =oo.

Otherwise, it stops when the first circuit is

closed; this circuit does not necessarily pass

through v; k(v) is defined to be the last level

from which the search was conducted; 2k(v) + I is

a lower bound on the length of the minimum circuit

through v.

The algorithm FRONT uses a first-in, first-

out queue which is initially empty. The queue

operations are enqueueCu) which inserts u at the

rear of the queue, and dequeue which removes and

takes the value of the first element of the queue.

procedure FROYZ (v , k, l eve l) ;
begin for u£V d.._o l~oel(u):=nil;

l~elCv) :=0; e~(v) ;

while the queue is mot empty d__oo

begin comment if the connected component of
V contains a circuit then the queue is
never empty at this point;

u: =dequeue ;

for WeA(U) do

begin if level(w)=nil then

begin leve I (w) : =level (u) +i;

enqueue (w) end

i. else if level(u)~level(w) then

begi. k(v):=level(u);

return end

end

end"

comment the connected component of V is
circuit free;

2. kCv) :=®

end

FRONT builds a partial BFS tree. When a non-

tree edge is encountered (line i) the algorithm

terminates. Otherwise, k(v) = = (line 2). Each

tree edge is scanned at most twice. Thus the

algorithm takes O(n) time. The space requirements

consist of the vector leusl of length n, and the

queue, in which each vertex can appear at most

once. Hence, the algorithm requires O(n) space in

addition to the input. Observe that a minimum

circuit through v could be found by scanning all

the edges. In the worst case this requires 0(8)

(o) (b) (c)

Figure

time. In the next section we present a scanning

method which takes O(n) time on the average.

Let us apply FRONT to every vertex v ~ V, and

let kmin be the minimum value of k(v).

Le~na 1: Let x be a vertex for which k(x)=kmin < ~,

then x is contained in an almost minimum circuit.

Proof: Let v be a vertex which belongs to a min-

imum circuit C. If Imo is even, FRONT(v) stops

when encountering a vertex w as in Figure l(a);

k(v) = Imc/2-1. If Zme is odd the algorithm stops

as in Figure l(b) or Figure l(c); k(v)= (lmc-l)/2.

In either case we have

2k(v) + 1 ~ Zinc ~ 2k(v) + 2.

Since k(v) ~kmin ,

2kmin + 1 ~ Ime.

The circuit found when applying FRONT to x is not

longer than 2kmin + 2. Therefore, it is not longer

than Z~c + 1 and is an almost minimum circuit. This

circuit contains x, since otherwise its length

would have been at most 2(~nin-l) + 2=2k:nin < lmo,

a contradiction. Q.E.D.

Note that if Z~nc is even then for a vertex x

on a minimum circuit the algorithm stops as in

Figure l(a) and finds a minimum circuit. In part-

icular, in bipartite graphs the length of all

circuits is even and the algorithm finds a minimum

circuit.

1

Since FRONT is applied n times, at most O(n 2)

time is required to find an almost minimum circuit.

If the algorithm is applied to the full bipartite

graph to which we add zero or more edges the alg-

orithm might find only circuits of length four,

even though the graph may contain triangles. In

this case the algorithm requires O(n 2) time, hence

the bound is tight for the algorithm.

The space is bounded by O(n) provided that we

record only the minimum value of k and a vertex x

for which it was obtained. Then an almost minimum

circuit may be found in O(n)time by applying a

procedure similar to FRONT to x.

3. Findin~ a Minimum Circuit

We have shown how to find a minimum circuit

for the special case in which its length is known

a priori to be even. In this section by-products

of FRONT are used to develop an 0(n 2) average time

algorithm to find a minimum circuit for the

general case.

Assume that FRONT has been applied to a vertex

v for which k is minimum. If the connected

component of v is circuit-free then'the entire

graph is circuit-free. Otherwise, a circuit is

detected. Using the notation of FRONT, this

circuit passes through u and w. If level(u)

= leuel(w) then the circuit is odd and thus minimum.

Otherwise, the circuit is even and may not be min-

imum. It remains to check for the existence of an

edge (x,y) such that leve~(x)=level(y)=level(u).

The vertex x must be either a vertex still in the

queue or u itself. Thus, when FRONT(V) termin-

ates, define

F(v) = {u} u {xlx E V , x is in the queue,

level (x) = level (u) }.

In O(n) time we may sort F(v) (bucket sort)

and prepare a bit vector representing F(v) and a

linked list of its non-zero elements. The pro-

cedure EDGE below, when applied to F(v) searches

for an edge (x,y) such that both m and y belong

to F(v).

Let S be an ordered list of distinct vertices

with the additional property that membership can be

determined in constant ti~. (Observe that F(v)

satisfies these requirements.) The edge (m,y) is

an S-edge if x,y ~ S. EDGE(S) searches for

vertices u < w such that (u,w) is an S-edge.

First it searches (lines 1-4) for (u,w) such that

u is not among the last n I/3 vertices of S.

If unsuccessful, it searches exhaustively for an

edge, the endpoints of which belong to the last

n I/3 portion of S (lines 5-6). If both searches

fail then there exists no S-edge.

EDGE uses UA in a destructive mode. Since

it is needed later, it can either be copied before

use or reconstructed using a stack to undo all the

destructive operations. The latter solutiOn is

preferred since it enables a sublinear algorithm.

However, the details are omitted.

procedure EDGE(S);

i. begin for i:=I step l until _ _ I s l - n 113 d__~o
besin u:=S(i);

while UA(u) is not empty d_~o
2. begin choose at random a vertex w in UA(u);

3. if wES them return ((u,w))$

delete w from UA(u)

end

4. end;

5. for i : ~ = = (1 , IS [-n l /3+ l) step 1 until lSl do
begin u:=S(i);

for j:=/+l step 1 until I SI d_~o

begin W :=S(j);

if (u,w)EE then return((u,w))

end

end ;

6. return(nil)

end

EDGE may require O(n 2) time. However, its

average behavior is better.

Let m/ be the upper degree vector (ud(v) =

IUA(V) I) and Gudbe the class of all labelled

graphs with a given~dvector. Observe that the

class of all labelled graphs is a disjoint union

of all the Gud classes.

Let P be a probability measure on labelled

graphs, such that any two graphs in Gu~ are equi-

probable. . The following probability measures

satisfy this requirement [ES74]:

(i) The existence of each edge is an independent

random variable with equal probabilities.

(ii) All graphs with a given number of edges are

equiprobable.

For S~V, let E S be a subset of S× (V-S) and

e S the cardinality of E S.

Lsmm~ 2: Let GE= {C-=(V,E)IE~ES}. Then the

average behavior of EDGE on GES is bounded by

O(e S + n2/3).

Proof: If (u,w) belongs to E S then the test w £ S

(line 3) necessarily fails. EDGE might waste at

most O(e S) time on such edges. Therefore, it suf-

fices to prove that the other edges require

O(n 2/3) time on the average.

Using the linked list representation of S and

the adjacency matrix, lines 5-6 require at most

OCn 2/3) time. Thus, it remains to show that lines

1-4 require O(n 2/3) average time.

Under P, all graphs in GEsn Gud are equi-

probable. We now wish to estimate the probability

that an edge (u,w) chosen at random in line 2 is

an S-edge. By assumption, (u,W) does not belong to

E S. Let there be 11 edges in UA(~) n E S. Denote

by 12 the number of edges in UA(u)-E S checked

before (ujw). The vertex w may be any one of the

n-u-(11 + 12) remaining vertices, with equal probab-

ilities. Since w> u, if w e S then it may be

any one of the vertices of Sn {u+l,...,n}. The

probability that we S is therefore:

Jsn {u+l n}J ~ n I/3 = n-2/~
n-u-(l I + 12) n

By decreasing the probability of success, the aver-

age number of trials until the first success in-

creases. Hence, the average execution time of

lines i-4 is bounded by:

O(E i(l-n-2/3)i-2n-2/3) = 0(n2/3). Q.E.D.

i=I

The followlng procedure MIN CIRCUIT finds a

minimum circuit of length lmc. If /rnc is finite

the circuit passes through v. If lmc is odd

then the circuit also passes through the edge a.

procedure MIN_CIRCUIT (Imc, v, a);

I. begin for V£V d__oo FRONT(V);

2. flnd kmin;

if kmin=~ then

begin lmc : •

return end ;

3. for vEV and k(v)=kmin do

4. begin find F(v);

prepare a representation of F(v) as a
sorted linked list;

prepare a bit vector representation of F(v);

a :=EDGE(F(v));

if a~nil then

begin /mc :=2 .~in+l ;

return end

7. end ;

/mc : = 2 • km/n+2 ;

v :=any vertex for which k is minimum

end

51

6.

Theorem 1: The average execution time of

MIN_CIRCUIT is bounded by 0(n2).

Proof: Line 1 requires at most 0(n 2) time; line 2

0(n) time. In each iteration, lines 4-5 require

O(n) time. In line 6 EDGE is called with S=F(v)

and ES is the set of edges incident with S which

were scanned by FRONT(v). Hence, e S~ n and each

iteration of llne 6 costs O(es+n2/3) = O(n) time

on the average. Since the loop (lines 4-7) may be

executed at most n times, the average execution

time of MIN__CIRCUIT is bounded by O(n2). Q.E.D.

The minimum circuit itself may easily be found

in additional 0(n) time by applying FRONT to v.

If Imc is odd the edge a is used to close the

circuit.

4. A Reduction to Finding Triangles

Now we show a reduction of the problem of

finding a minimum circuit to that of finding a

triangle in an auxiliary graph. A disadvantage of

this method is that the number of edges might grow

considerably. However, the number of vertices may

V

t

X

w

Y

U

v

B

F(v) k(v)

W,w 2

tjMjW 1

z , y , u I

W,V I

z,W,~ I

y , u , z 1

y , u 2

Fisure 2

only be doubled. Thereby, an upper bound for the Imc=2~nin+l, k(v)=kmin and v'e V'. Let C be

complexity of the problem is obtained. a minimum circuit through v. There are exactly

To this end we construct the graph

G'= (V'u ~E'uE). Y' consists of a copy of those

two vertices x,y in C whose distance from v is

kmin = [lmc/2J. Thus, x,y ~ F(V) and (x,y) E E'.

vertices of G for which k is minimum. Let V ' den- Therefore, (v',x,y) is a triangle in G'. Q.E.D.

ote the vertex corresponding to v. E' contains

all the edges between each new vertex v' and the

vertices in F(v). Figure 2 contains an example of

an auxiliary graph G'. The original graph G

appears in boldface.

Lemma 3: G' contains a triangle through V' if and

only if v is contained in a minimum circuit of G

and Imo is odd (i.e. lmo= 2kmin+ i).

Corollary: If a triangle in G' passes through a

vertex x e V then x is contained in a minimum

circuit of G.

Proof: If the triangle consists solely of vertices

of V then the triangle is contained in G and is a

minimum circuit (because parallel edges and self

loops have been excluded). If the triangle con-

tains a vertex of V' then this follows from the

Proof: Let G' contain a triangle (v',x,y). By proof of Lemma 3. Q.E.D.

the construction, v r is connected only to vertices Finding a triangle in G'-provides an edge

of F(v). Therefore, x,y EF(v) cV. The vertices

x and y are at distance kmin from v. FRONT

(x,y) E E which is contained in a minimum circuit

of G. The circuit itself may be found in O(n)

traces minimum length paths v- x, v- y. The length time by an algorithm similar to FRONT.

of these paths is kmin and they are vertex dis-

joint (i.e. they intersect only at v), because an

additional intersection world entail a shorter

circuit. (v',x,y) is a triangle in G' and x, ye V.

Thus, (x,y) belongs to E. This edge and the two

paths form a circuit of length 2kmin+ i. Since

Imc ~ 2kmin + 1 the circuit is minimum.

In the other direction, assume Imc is odd and

a minimum circuit passes through V. Therefore,

5. Al~orithms for Findin~ Triangles

(i) Search by rooted spanning trees.

Let T be a rooted spanning tree of a connected

graph. ~Using the following lemma we may

construct an algorithm to check whether the

graph contains a triangle.

Lemma 4: There exists a triangle which contains

a tree edge iff there exists a non-tree edge (x,y)

for which (father(x),y) ~ E. (Every edge is checked

in both directions.)

Proof: If (father(x), y) c E then obviously

(x,y, (father(~)) is a triangle.

In the other direction, assume that (x,y,z)

is a triangle and (x,z) is a tree edge (without

loss of generality x=father(z)). Two cases arise:

If (z,y) % T then the condition is met for thiS edge

since (father(z),y)= (x,y)E E. Otherwise, (z,y)ET.

In this case z =father(y) (each vertex has at most

one father). The condition is met for the non-tree

e <- 3n-6 and we delete n-i edges; n-1 >- e/3. At

subsequent iterations a third of the edges of each

connected component are deleted. Therefore, a

third of the remaining edges are deleted. Conseq-

uently, the number of edges at the i-th iteration

is at most (2/3)i-le. The work in the i-th stage

is proportional to the number of the remaining

edges. Therefore, the total work is proportional to
co

e(2/3) i-I = 3e = O(n). Q.E.D.

i=i

Theorem 3: For any graph TRIANGLE requires at

most O(e 3/2) time.

edge (y,x) since (father(y),x)= (z,x) eE. Q.E.D.

For each non-tree edge (x,y) we can check

whether (fdther(x),y) E E in constant time using the

adjacency matrix. Consequently, 0(8) time is

required to check whether any tree edge belongs to

a triangle.

Henceforth, a connected component is trivial

if it consists of a single isolated vertex. We may

now describe the procedure TREE :

procedure TREE;

I. Find a rooted spanning tree for each non-

trivial connected component of G;

2. If any tree edge is contained in a triangle

then stop (a triangle has been found);

3. Delete the tree edges from G.

Each application of TREE requires at most

O(e) time

procedure TRIANGLE;

Repeat TREE until all edges of G are deleted

or a triangle is found.

Proof: Let c denote the number of connected

components. In the course of the execution of

TRIANGLE the value of c increases. Initially c = i.

At first we estimate the time required by TRIANGLE

while c ~ n-e I/2. Then we estimate the time while

c > n-el~2:

(a) c ~ n-e I/2.

At each application of TREE n-c~n-(n-e I/2)

= e I/2 edges are deleted. Since there are e

edges there may be at most e/e I/2 = e I/2 such

iterations.

(b) c > n-e I/2.

The degree of each vertex is at most

n-c < n-(n-e I/2) = e I/2. Since each iteration of

TREE decreases the degree of each non-isolated

vertex, there may be at most e I/2 such iterations.

Therefore, we have at most 2e I/2 iterations

in the entire process. Each iteration takes O(e)

time. Thus, TRIANGLE takes O(el/2)O(e) = O(e 3/2)

Theorem 2: For planar graphs TRIANGLE requires at

most O(n) time.

Proof: T~IANGLE deletes edges from the graph. We

first show that each iteration of TREE deletes at ~

least a third of the remaining edges. At first,

time. Q.E.D.

For K (the full bipartite graph with 2n
nn

vertices) the algorithm may take O(e 3/2) time

while c ~ n-e I/2. For the graph obtained by adding

3m 2 vertices all connected to a single vertex of

Kn~ , O(e 3/2) time is required while c > n-e I/2.

(il) Search by vertices.

G contains a triangle if there exists a vertex

v and an edge a between two vertices u and w

(u < w) of UA(V).

procedure VERTEX~

for VeV do

begin a : =EDGE(UA (v)) ;

if a~il then return (V)

end

EDGE requires that UA(v) be represented by an

ordered linked list; moreover, membership in UA(v)

can be determined in constant time using the

adjacency matrix.

Theorem 4: VERTEX finds a triangle in at most

O(n 5/3) time on the average.

Proof: The proof is based on Lemma 2. When calling

EDGE(UA(v)), E S is empty. Therefore, EDGE(UA(v))

requires at most 0(n 2/3) time on the average. The

result follows since EDGE is called at most n times.

Q.E.D.

Note , t h a t i f t h e upper a d j a c e n c y v e c t o r s o r

t h e a d j a c e n c y m a t r i x has ro be p r e p a r e d t h e n t h e

a l g o r i t h m r e q u i r e s a d d i t i o n a l 0 (e) t i m e .

(i i i) M a t r i x m u l t i p l i c a t i o n

Le t M be t h e a d j a c e n c y m a t r i x (i . e . (M) u v = l

i f and o n l y i f (u , v) ~ E) . Le t M 2 be t h e

Boo lean m u l t i p l i c a t i o n of M w i t h i t s e l f .

(M 2) u v = l i f and o n l y i f t h e r e e x i s t s a v e r t e x

w such t h a t (M) W= (M)WV=I (i . e . (u,w),Cw, v)£

E). If also (M)uv=l, then (u,v,w) forms a

triangle. Let B=M 2 and M (and denotes elem-

ent-by-element logical and). (B)uv = 1 if and

only if a t.rlangle passes through the edge

(u,v). Using Strassen's algorithm [Sir69] we

may multiply Boolean matrices in O(n l°gT) time,

thus obtaining an O(n l°g?) algorithm.

Combining this algorithm with the reduction

of Section 4 yields an O(n l°gT) algorithm for

finding a minimum circuit..

6. Finding a Minimum DiclrCult

In the sequel digraphs, diclrcults and dlpaths

denote directed graphs, circuits and paths respect-

ively. Given a digraph G= (V,E) with no self loops,

we wish to find a minimum dicirctti£ in it. The

techniques for (undirected) graphs described in the

previous sections are not applicable. However, a

minimum dicircuit may be found by n applications

of the procedure DICIRCUIT described below. The

worst case behavior of this method is O(ne) but on

the average it requires 0(n21ogn) time. An

alternative method is also presented. It uses

Boolean matrix multiplication and requires

o(nl°g71ogn) t ime.

(i) The procedure DICIRCUIT

DICIRCUIT(v,k) finds a shortest dlclrcult

among those which pass through v. The procedure

conducts a directed BFS from v. Whenever

a new vertex w is encountered, DICIRCUIT

checks whether (wjv) £ E. If so, a shortest

diclrcult through v has been discovered and

the process terminates. Otherwise, w is

enqueued. Consequently there exists no edge

from a vertex in the queue to v. The queue has

the same role as in FRONT; level(u) denotes the

length of the shortest dlpath from v to u if

one has been found and nll otherwise; scan

denotes the number of scanned vertices.

procedure DICIRCUIT(v , k)

besin for ueV d__oo level(u):=nil;

level(v) :ffi0; k(v) :ffinll ;

enqueue (v) ; scan : •l ;

while scan<n do

i. begin i_~f queue is empty then return;

u: =dequeue ;

for WeA(u) and leve l (w)fnil do

begin if (W,V)EE then

begin k(v) :=level(u)+2 ;

2. return end ;

leve I (w) : =leve I (u) +1 ;
enqueue (w) ;
scan:fscan+l end

eld

3 . end

The procedure may terminate at three points in

the program:

(a) Line i: The queue has become empty, In this

case there exists no dicircuit through v.

hence, kCv) = ~il.

(b) Line 2: Since (u,w),(w,v) ~ E, a shortest

diclrcult through V has been closed. Its

length is k(v).

(c) Line 3: All the vertices have been reached.

No edge enters v. Thus, v is not contained

in any dicircuit and k(v) = nil.

Even though DICIRCUIT may require O(e) time,

the average performance is somewhat better.

Theorem 5: Suppose P is a probability measure on

labelled digraphs with n vertices such that di-

graphs with the same outdegree are equiprobable.

Then DICIRCUIT takes O(nlogn) time on the average.

Proof: It suffices to bound the average time

needed to reach all the vertices.

Procedure R of [BFM76] also scans a digraph

until all vertices are reached. The main differ-

ence is that R uses a stack while DICIRCUIT uses

a queue. However, R does not take advantage of

any property of the stack not shared by a queue.

R is proven to take O(nlogn) time on the average.

Thus, DICIRCUIT has the same behavior. Q.E.D.

DICIRCUIT can easily be modified to also

find the shortest dicircuit through v itself.

By applying DICIRCUIT to all vertices of

the digraph a minimum dicircuit may be found in

O(n21ogn) time on the average.

(ii) Binary search using matrix multiplication.

Let Zmdc be the length o{ a minimum dicircuit

in G; M-the adjacency matrix; D.-the
J

matrix of dipaths of length less than or equal

to j. (Dj)u~ = 1 if and only if there exists

a dipath of length l~lsj from u to v. The

matrix D. has a non-zero diagonal if and
$

only if Im~ ~ j. (I.e. Zmdc is the smallest

j for which D. contains a non-zero element
$

on its diagonal.) Moreover, the diagonal of

D is zero if and only if G is acyclic.

We computeD, by the following method:

DI:=M

D21:=D ~ o__[rM

(o__rr is an element-by-element logical or).

(D~)uv = 1 if and only if there exists a dipath of

length 2 ~ m s 21. The o__[r operation adds the

dipaths of length I.

Thus, for 4:=1,2,...

the diagonal is non-zero.

we compute D . until
2 z

(If for i> [logn] the

diagonal of D . is still zero, then G is acycllc.
2 z

Therefore, we may terminate if i becomes equal to

[logn] + I.) If G contains a dicircuit a non-zero

diagonal is found when i = [logZ~n~]. The value

of Z~ndc is found by a binary search on j in the

region 2 i-I < j ~ 2i: First we compute

D
= D2i_2+2i_ 2 = D2i_2D2i_2 or M. If (2~-I+2i)/2

the diagonal is zero t~e search is continued in

the region 2i-I + ~i-2 < j ~ 2 i. Otherwise, we

continue in 2 i-l<j ~2 i-2+2 i-2.

The process requires 21ogZ~ndc matrix

multiplications. Therefore,

o(nl°g?logZ~dc) = o(nl°g?logn) time.

The space requirements are O(n21ogDnc~) =

= O(n21ogn) since loglmdd matrices have to be

stored.

The minimum dicircuit itself may be found in

additional O(e) time by a directed BFS from a

vertex v for which (D~ndc)vv = I.

7. Conclusions

Using FRONT we have an 0(n 2) reduction from

the problem of finding a minimum circuit to that of

finding a triangle. We have shown a method to find

a triangle in Oln 5/3) average time. However, this

by itself does not yield an O(n 2) average time

algorithm to find a minimum circuit, since the

graphs obtained by the reduction might have a

special structure. They do not necessarily satisfy

the probabilistic assumptions which led to the

O(n 5/3) average time bound. Fortunately, we can

solve the problem directly in O(n 2) time on the

average. However, any algorithm which finds a

triangle in time greater than or equal to O(n 2)

entails an algorithm to find a minimum circuit

within the same time bound. Consequently, finding

triangles by Boolean matrix multiplication leads

to an O(n l°g?) worst case algorithm to find

a minimum circuit.

We have seen several algorithms for finding

a triangle. TRIANGLE is efficient for sparse

graphs (especially for planar graphs). VERTEX

appears better on the average but has an 0(n 3)

worst case behavior. Better worst case perfor-

mance can be achieved by using Boolean matrix

multiplication.

REFERENCES

[AHU74] A.V.Aho, J.E.Hopcroft and J.D. Ullman,
"The Design and Analysis of Computer
Algorithms", Addison Wesely, 1974.

[BFM76] P.A.Bloniarz, M.J. Fisher and A.R. Meyer,
"A Note on the Average Time to Compute
Transitive Closures", Proc. of the 3rd
Int. Colloquium on Automata, Languages
and Programing, S. Michelson and
R. Milner (eds.),July 1976.

[ES74] P. Erd~s and J. Spencer, "Probabilistic
Methods in Combinatorics", Academic Press,
1974.

[Liu68] C.L.Liu, "Introduction to Combinatorial
Mathematics", McGraw-Hill, 1968.

[Sir69] "Gaussian Elimination is not Optimal",
Numerische Mathematik 13, 354-356.

Acknowledgment

The authors wish to thank Dr. Shmuel Katz

for making valuable suggestions.

i0

