
Partition Refinement:

a meaningful technique for Graphs

Qinna Wang
∗

qinna.wang@ens-lyon.fr

ABSTRACT
The partition refinement is a meaningful technique for
applications in graphs. Currently, the applications in aim
of the graph problems like chordal graphs [7], permutation
graphs [6] and modular decomposition [3] focus on increasing
the efficiency. In those propositions, the partition refinement
plays an important role for the resolutions. Therefore, we
describe this efficient technique which overcomes the con-
straints such as the unreasonable complexity and ambigu-
ous understanding of certain applications that are used for
graph problems in this paper. Through the illustration with
various examples, we will show how efficient the algorithm
become according to the partition refinement.

Keywords
graph theory, partition refinement

1. INTRODUCTION
The graph theory has been developed for several decades.
Since the first graph theory paper [1] was written by Leon-
hard Euler on the Seven Bridges of Konigsberg and pub-
lished in 1736, the graph theory has been used for resolving
multiple problems in different domains such as computation
science, for example, [5] has shown that the hyper graph
partition is considerable for parallel scientific computing.

Generally, a good graph algorithm should be efficient and
simple to understand while it is used to resolve complicated
problems. The focus of this paper is the partition refinement
which is a meaningful technique to simplify and optimize the
applications in several domains such as in graphs.

In traditional, pivots are used to split the classes. The most
classical algorithm with respect to the pivot rule is Quick
Sort which is used for sorting integers. In this case, the

∗ENS Lyon, Laboratoire de l’information du Paral-
lÃl’lisme,69364 Lyon cedex, France

final partition is the ordering elements. Note the complex-
ity of Quick Sort which is really considerable. Therefore, a
similar conceptual technique is then generated for develop-
ing algorithms, which is the partition refinement.

In the domain of the graph, the partition refinement is de-
veloped to split a class of partition vertices into disjoint sub-
classes according to the adjacencies between vertices. In this
way, the underlying information of graphs is able to mined
and particular graph problems can be resolved. For example,
there are several proposed partition refinement applications
for twin vertex calculation [6], chordal graphs recognition [7]
and permutation graphs recognition [6].

For the valuable contributions of the partition refinement,
we introduce it in this paper which is organized as: in section
2, we present the partition refinement in detail; in section
3, we describe several classical partition refinement appli-
cations based on the ordering of elements; we then list the
categories of the partition refinement applications according
to different citations in section 4; we finally provide the dis-
cussion on the partition refinement and give a conclusion of
this paper.

2. THE PARTITION REFINEMENT
Explicitly, all applications referred to the partition refine-
ment can be described in a general framework which is shown
in this section.

2.1 definition and notation
Firstly, we introduce the basic definitions and notations re-
lated with the partition refinement.

definition 1. The partition P of a set E is the collec-
tion of disjoint subsets {χ1, χ2, ..., χk} where ∪16i6kχi = E.
We call the subset collection as classes.

definition 2. The set S intersects strictly with the
set S′ if and only if S∩S′ 6= ∅ and S * S′. Note that S′ ⊆ S
is possible when the set S intersects strictly with the set S′.

definition 3. The refined partition P ′ = refine(P, S)
where P = {χ1, χ2, ..., χk} and S is the subset of E, is ob-
tainned by replacing the classes χi with χia and χib where
χia = χi ∩ S and χib = χi \ S.



definition 4. The partition P is stable for the subset
S, if and only if any class χi doesn’t intersect strictly with
the set S. i.e,P = refine(P, S).

definition 5. In case of an ordering partition P =
{χ1, χ2, ..., χk}, elements in each class χi are ordered.

definition 6. The ordering partition Q is compatible

with another ordering partition P if and only if Q � P which
means that for each class χ in Q there exists another class
γ in P and χ ⊆ γ and the order of elements in χ respects
for the order in γ.

We then introduce the data structure in the partition refine-
ment: the double chain list L(E) is used to store the element
in the set E = {x1, x2, ..., xk}. Each element x has a pointer
to its partition class χ and each class χ has two pointers
to its minimal and maximal elements in L(E). Hence, the
insetting and deleting operations are easy to realize in the
partition refinement algorithms. Therefore, the partition re-
finement which deletes the class χa = χ

⋂
S and inserts it to

the right of the class χ has reasonable computational time
with the pointer structure. Further, marque the ordering of
the list L(E) which is related with the ordering of the par-
tition classes and the compatibility of the classes. Hence,
the partition refinement is useful for applications concern-
ing with the ordering of elements.

2.2 the partition refinement
Secondly, we show the total algorithm of the partition refine-
ment. In order to well understand it, we present a general
algorithm at the beginning. Then we describe its basic pro-
cedures with explications. At end, we provide the algorithm
of the partition refinement in global view.

Input: the partition P = {χ1, χ2, ..., χk}
Output: the refined partition P ′ = {χ′1, χ′2, ..., χ′m}
begin

pivots = ∅
while the InitPartition (P) doesn’t stop the loop do

InitPartition (P)
while the Pivots 6= ∅ do

select an element E from the Pivots
ClassPivot (E)

end

end

end
Algorithm 1: a general algorithm for the partition refine-
ment

Now, we illustrate the general algorithm which is shown in
Algorithm 1.

• InitPartition (P) is essential for the total algorithm.
It is used to start the following procedures and indi-
cates the end of the total algorithm. One of its im-
portant contribution is used to add the known pivots
into Pivots. Additionally, the InitPartition (P) can
be considered as the beginning of the recursive process.

Therefore, the procedure of InitPartition (P) is impor-
tant. Note that some applications arrives their strategy
only by executing InitPartition (P) one time such as
twin vertex calculation.

• ClassPivot (E) is a procedure to produce the subset S
according to the pivot p which is implied by the ele-
ment E. It is related with the strategy of the applica-
tion. Hence, there are two versions of the procedure
ClassPivot: only one pivot p is used for the procedure
refine(P, S) or several pivots are used for refine(P, S).
For the first version of ClassPivot, the operation of
refine(P, S) is executed several times. However, the
refine(P, S) is only run one time. Therefore, we con-
sider that the first version of ClassPivot saves the space
for pivots.

We then discuss the procedure of ClassPivot according its
two versions:

Input: an element E in Pivots
Output: the stable partition for the subsets S which are

generated by E
for each element x ∈ E do

p← (x, E)
S ← PivotSet(p)
refine(P, S)

end
Algorithm 2: ClassP ivot(E)

Input: an element E in Pivots
Output: the stable partition for the subset S which is

generated by E
begin

S ← ∅
for each element x ∈ E do

p← (x, E)
S ← S ∪ PivotSet(p)

end
refine(P, S)

end
Algorithm 3: ClassPivot (E)

In the procedure ClassP ivot(E), p is the pivot to produce
the subset S where S ⊆ E and one element x ∈ E is used to
produce an unique pivot p.

Now, we observe the Algorithm 2 and Algorithm 3: the
Algorithm 2 executes the operation refine(P, S) with one
subset S. Distinct from it, the other Algorithm 3 runs the
operation refine(P, S) with several subsets S. The second
version of ClassPivot (E) is used to minimize the determined
determined automate.

Next, we present the key algorithm refine(P, S) which is
used to refine the current partition with the set S.

• The operation refine(P, S) is to split the partition class
χ into the class χa and χb, where χa=χ

⋂
S and χb =

χ\S. Then we insert the new class χa next to the
partition class χ, where the current class χ = χb. Note



Input: the partition P = {χ1, χ2, ...χk} for the set E and
subset S, where the class χi intersect strictly with
S

Output: the partition P ′ = {χ′1, χ′2, ...χ′m},which is stable
for S

for each class χ do
χa=χ

⋂
S

if χa 6= ∅ and χ\S 6= ∅ then
remove χa from χ
if InsertRight(χ, χa, p) then

insert χa to the right of χ
end
else

insert χa to the left of χ
end
AddPivot(χ, χa)

end

end
Algorithm 4: refine(P, S)

that the class χa implies the ordering of the list L(E)
and the position of the new class χa depends on the
strategy of applications.

• InsertRight(χ, χa, p) is used to determine whether in-
sert the class χa in the right of χ. It depends on the
strategies of applications and the expectation of the
operator. If the return value is true, we then insert χa

to the right of χ; otherwise, insert χa to the left of χ.

• AddPivot(χ, χa) is used to update the pivots. With
respect to the new partition P ′ and the new class, the
set pivots must be updated for the relations with the
subset Sa = {x ∈ χa : pa 6 x} and Sb = {x ∈ χb :
pb 6 x}.

• The computational complexity referring to the data
structure: all elements in E is stored in a double chain
list and each partition class ” touch ” its elements in
L(E) with two points, the total operation of the parti-
tion refinement can be considered to delete all elements
of χa in L(E) and add an interval χa next to the in-
terval χ simultaneously(Once one element x is in χa,
add a pointer to the interval χa). And the class χb is
presented by the ancient χ. Therefore, the total com-
putational complexity is in time |S| which presents the
operation time on the interval χa. Note the position
of element x in the list L(E) doesn’t change, thus the
ordering of elements in χa respects for the ordering of
elements in L(E). We state that the final partition
implies the ordering.

• In the domain of graph theory, all elements in the
set E can be considered as the vertex set V in graph
G = (V,E). The partition classes χ1, χ2, ..., χk provide
the adjacency list of the graph. As a result, the algo-
rithm of the partition refinement is meaningful for the
problems in graphs such as recognizing chordal graphs
and permutation graphs.

At the end of this section, we show the global algorithm of
the partition refinement in the following:

Input: a partition P = {χ1, χ2, ..., χk} for the set E
Output: the refined partition P ′ = {χ′1, χ′2, ..., χ′m}
begin

Pivots← ∅
while the InitPartition (P) doesn’t stop the loop do

InitPartition (P)
while Pivots 6= ∅ do

select an element E from the Pivots
ClassPivot (E)
for each element x ∈ E do

p← (x, E)
S ← PivotSet(p)
refine(P, S)
if the current partition P isn’t stable for S
then

Let the set of classes χ which intersect
strictly with S be denoted as M
for each class χ ∈M do

χa = χ
⋂
S

remove χa from χ
if InsertRight(χ, χa, p) then

insert χa to the right of χ
end
else

insert χa to the left of χ
end
AddPivot(χ, χa)

end

end

end

end

end

end
Algorithm 5: the global algorithm of the partition refine-
ment



Algorithm 5 shows the global algorithm for the partition re-
finement which is used for applications in aim of different
problems. Depending on the basic procedures such as the
InitPartition(P), ClassPivot(E) and refine(P, S), it splits
the partition classes into the singleton classes or the congru-
ent classes1.

We then study the complexity of the global algorithm for
the partition refinement. We firstly note the size of Pivots
which contains the element E . We have learned that the el-
ement E is used to produce the subset S. When the size of
Pivots unknown, it’s difficult to estimate the running time.
Note the case such as the twin vertex calculation, all elements
are considered as the pivots during the total procedure. In
this case, the size of Pivots is limited to the number of the
elements in set E. Then the computational time on pivot
selection is in O(n) where n is the number of elements in set
E. We secondly consider the time for the partition refine-
ment. Reviewing the time for the procedure refine(P, S),
it is in time O(|S|). Considering the total procedures in
refine(P, S), we define the running time is m =

∑
|S|. In

conclusion, the algorithm for the partition refinement costs
O(n + m) in time. Note that the above analysis is based
on the known Pivots which depends on the size of the set
E. In case of unknown pivots, the total computational time
may be in O(n+mlogn) which is proposed by Hopcroft [4]
for ”process the small half” pivot rule.

2.3 invariant
In [8], it proposes the invariant to prove the correctness of
the partition refinement:

invariant: the partition verifies the property A; if the parti-
tion fails to verify the property B, there are partition classes
which intersect strictly with the subset S, where S is related
with the current Pivots.

• A: some properties imply the existence of a resolution
which is compatible with the partition P

• B: some properties indicate the partition P correspond-
ing to the resolution

The invariant will be used to prove the correctness of the
partition refinement applications. Here, we take the Quick

Sort as an example.

Proof. invariant

• A: for each element x which is in front of y in the
resultant list E, then x < y.

• B: all classes in the final partition are singleton.

The inputting data is the ordering partition P for the set
E. And the Pivots can be defined in the InitPartition (P).
According to the procedure ClassPivot(E), the partition P
is divided into the singleton classes.

1The classes in the partition are equal to each other. It also
implies that elements in each class are ordered independently

With respect to the other partition refinement applications,
we then analyze the proof related with invariant: once the
property A is verified by the partition then the procedure
InitPartition is executed with iterative until the partition
maintains the property B. It implies the contribution of the
procedure InitPartition for the practical application for the
correctness.

3. APPLICATIONS
Based on the algorithm of the partition refinement, we then
present several partition refinement applications with differ-
ent strategies. Considering the differences between appli-
cations, we present them according to their problems: the
partition classes are congruent or the classes are sorted. Ad-
ditionally, the invariant is also used to prove the correctness
of applications.

3.1 unordered partition refinement
The applications like twin vertex calculation [8], determin-
istic automation and modular decomposition [3] imply the
unordered partition refinement. In this case, each partition
class doesn’t care the order of its elements and the total par-
tition classes implies the congruent relations. So we consider
that such applications resolve the problems by the congruent
classes or congruent relations between objects.

We then take the twin vertex calculation as an example.
Firstly we introduce the twin vertices.

definition 7. twin vertices are defined to be two ver-
tices in one graph have the same neighbours. It is obvious
that being twin vertices corresponds to an congruent relation.
Thus, the calculation is a procedure of unordered partition
refinement.

definition 8. If two vertices in one graph have N(u) =
N(v) where N(u) is the open neighbours of vertex u that
excludes the vertex u itself, they are defined to be fake twin

vertices

definition 9. Two vertices are defined to be true twin

vertices, if and only if they have N [u] = N [v] where N [u] is
the close neighbours of the vertex u that contains the vertex
u itself.

Secondly, we introduce the algorithm for calculating the twin
vertices in the following:

• In this case, one execution of the procedure InitParti-
tion (P) is enough for the calculation where the pivots
correspond to the adjacency lists of vertices. After
the InitPartition (P), the partition classes then are
divided into the singleton classes according to the pro-
cedure refine(P, S). Therefore, the algorithm stops
when it starts InitPartition (P) in second time. Addi-
tionally, the procedure AddPivot(χ, χa) does nothing
because the calculation doesn’t need more pivots.



Input: the vertex set V in a graph G with the adjacency
lists of vertices

Output: the partition P = {χ1, χ2, ..., χk} where each
class is composed by twin vertices

begin
P ← {V}
execute the Algorithm 5 with the following procedures

end
procedure InitPartition (P) begin

add all vertices in V to pivots at the first execution
exit and return the partition P at the second execution

end
procedure PivotSet (p = (x, χ)) begin

the adjacency list of the vertex x
end
procedure InsertRight(χ, χa, p) begin

true
end
procedure AddPivot(χ, χa) begin

do nothing
end

Algorithm 6: calculating the twin vertices

• invariant:the partition verifies the property A; if the
partition fails to verify the property B, there are par-
tition classes which intersect strictly with the subset
S, where S is related with the Pivots.

– A: if vertex x and y are twin vertices, they belong
to the same class.

– B: the partition P is stable for the N(u) where
the u is a vertex in graph G 2

proof : It’s obvious to observe the correctness of such
an algorithm: if the vertex x and y are twin vertices, no
vertex in N(u) can separate them to different classes.
And if the property B can’t be verified, there exist two
vertices x and y belonging to the same class which can
be separated by one element in N(u). The reason is
that the pivot p which split the vertex x and y hasn’t
been selected and the algorithm is in the execution.

• This algorithm 6 is in linear time. For each PivotSet
(p = (x, χ)), it is related with the pivot vertices. Ac-
cording to the number of pivot vertices is limited by
the number of vertices, we estimate the computational
time for PivotSet (p = (x, χ)) as O(n). For the proce-
dure of refine(P, S), it depends on the adjacency lists
which is implied by the edges in the graph. Therefore,
the total twin vertex calculation costs O(n+m) in time
where n is the number of vertices and m is the number
of edges in graph G.

Therefore, the twin vertices can be calculated by the par-
tition refinement application. And the partition refinement
application has the reasonable running time and it isn’t com-
plicated for the understanding. We also note that the par-
tition classes aren’t single for the existences of the twin ver-
tices.

2If the algorithm is used to calculate the true twin vertices,
replace the N(u) by N [u]. It means the partition P is stable
for the N [u] where the u is a vertex in graph G in case of
true twin vertex calculation.

3.2 ordered partition refinement
Some applications such as Lex-BFS concerns on the ordering
of the partition. In this case, each class in refined partition
yields the ordering of the inputting data.

We have introduced the unordered partition refinement with
an example of the twin vertex calculation. In fact, we can
consider the twin vertex calculation as an ordered algorithm
which respects for the order of the inputting data. Here we
define the original partition as P and the refined partition
as P ′. Therefore, the partition P ′ is compatible with the
partition P: i.e. if x <P y, then x <L(E) y.

Now, we discuss how to use the partition refinement for lex-
icographical literature.

definition 10. the lexicographical order comes from
the order of letters in dictionary: for a sequence of letters
a1a2...ak appear before b1b2...bk in a dictionary, if and only
if there is a letter j where x(j) < y(j) in alphabet order and
x(i) = y(i) for the other letters i where i < j.3

definition 11. Assume
∑

is a sequence of letters in al-
phabet order and

∑∗ is a set of strings which come from
∑

.
Additionally, the i-th letter which is in the string x belonging
to the set

∑∗ is denoted to be x(i). Under this condition,
we consider the string x is in front of y according to the lex-
icographical order: x <lex y,if and only if there is a letter j
where x(j) < y(j) in alphabet order and x(i) = y(i) for the
other letters i where i < j or x is the strictly prefix of y.

Apparently, the algorithm which is used to sort the lexi-
cographical strings is classified into the ordered partition
refinement. Hence, we take it as an example in this section.

Input: n strings x1, x2, ..., xn
Output: the partition P = (χ1, χ2, ..., χn) of strings
begin
P ← {x1, x2, ..., xn}
execute the Algorithm 5 with the following procedures

end
procedure InitPartition (P) begin

precompute the sets Si,a where Si,a 6= ∅ and each Si,a

has a fixed letter a at the fixed position i.
add all sets Si,a in pivots at the first execution
exit and return the partition P at the second execution

end
procedure PivotSet (p = (x, χ)) begin

the p
end
procedure InsertRight(χ, χa, p,M,N) begin

true
end
procedure AddPivot(χ, χa) begin

do nothing
end

Algorithm 7: lexicographical strings sorting

• The procedure InsertRight(χ, χa, p,M,N) refers to the
M,N that implies the a, i.

3The string x is also possible to be the strictly prefix of y



• The complexity of this algorithm is in O(n + k + m)
where n is the number of strings, k is the size of the
Pivots and m is the

∑
|Si,a|. According to precompute

the sets Sia, the total procedure has to estimate the
cost for pivot calculations which is O(k) . For O(n) is
far less than O(m), the total complexity can be esti-
mated in O(k +m)

• invariant:the partition verifies the property A; if the
partition fails to verify the property B, there are par-
tition classes which intersect strictly with the subset
S, where S is related with the Pivots.

– A: a lexicographical sort of the strings is compat-
ible with P

– B: two different strings don’t appear in the same
class

proof : It’s obvious to observe the correctness of such
an algorithm according to the Pivots and the property
of the partition refinement.

Focus on the ordered partition refinement, the partition is
generally refined until all classes yielding the order of their
elements. It means that each final refined class is not nec-
essary to be a singleton. The congruent classes are possible
to exist.

4. LEX-BFS
According to the standard bread-first search failing to obtain
an ordering list for vertices that are visited in a graph G,
the Lex-BFS is proposed to visit vertices in a graph in order
with respect to certain properties. Therefore, the Lex-BFS
is a resolution for graph problem. Here, we will present the
Lex-BFS algorithm in detail.

• Lex-BFS [2] is used to recognize triangulated graphs
in traditional.

definition 12. Triangulated graphs are also called
chord graphs which are subsets of the perfect graphs.
If each cycle composed by at least of four nodes has
a chord, we call the graph is chordal, where chord is
an edge joining two nodes that are not adjacent in the
cycle.

[2] firstly indicates how to use the Lex-BFS for the
problems of graphs. It numerates all vertices according
to the visiting order. Each vertex has a label: label(x).
label(x) is related with the adjacency lists. Once a
visited vertex x is numbered i, the number i will be
added into the labels of the non-visited neighbours of
x. i.e. i will be added into the label(y) where the y
is the neighbour of x and y hasn’t been visited. In
the following execution, the size of label(x) is consid-
ered to number the vertex x. In this way, the result
P = {χ1, χ2, ..., χn} implies the perfect elimination or-
dering of the graph G.

definition 13. σ = [x1, x2, ..., xn] is a perfect elim-

ination ordering of a graph G = (V,E) if the neigh-
bours of each vertex xi is a clique of the induced sub-
graph Gi = G[x1, x2, ..., xn]. For example, the σ =

Input: a graph G = (V,E) with its adjacency lists for
vertices

Output: an ordering Lex-BFS list P for the vertices in set
V

begin
P ← (V);
execute the algorithm 5 with respect to the following
procedures.

end
procedure
InitPartition (P) with respect to the i-th execution begin

if i = n then
return P : the end of the procedure

end
else

select the vertex x from the class χi where χi is
composed by the non-visited vertices and is located
in the most right in the partition P
i.e.χnon−visit

max ∈ P
if |χi| 6= 1 then

replace the class χi by χi\{x}
add {x} to P

end
add {x} to Pivots

end

end
procedure
PivotSet(p = (x, χ)) begin

return the adjacency list of the vertex x
end
procedure
InsertRight(χ, χa, p) begin

return true;
end
procedure
AddPivot(χ, χa) begin

nothing to do
end

Algorithm 8: Lex-BFS



[f, g, a, e, c, b, d], then the subgraph Gi[e, c, b, d] may be
a cycle.

As known, the chordal graph can be specified by the
perfect elimination ordering. So, the Lex-BFS is really
useful for the graph problems such as chordal graph
recognition.

• Reviewing the Lex-BFS algorithm, it is easier to under-
stand with the framework of the partition refinement.
Unlike the previous algorithms, pivots are unknown in
this case. In fact, pivots are produced in PivotSet(p).
It implies one type of partition refinement applications
that produce pivots during the execution. So the pro-
cedure of ClassPivot(E) corresponds to the Algorithm
?? in this case.

• We then discuss the implication through this algo-
rithm. During the partition refinement process, each
class implies the lexicographical ordering of its ele-
ments. i.e. if the vertex x and y have belonged to
the same class χ, they may have the same prefix. And
if the vertex x is split before the vertex y, then the
x <Lex y.

• We then discuss the complexity of the algorithm. The
time for operations is related with the size of pivots
which is the vertices in G. And the procedure refine(P,S)
costs O(|

∑
S|) in total. Note that the S depends on

the edges between vertices. Therefore, we conclude
that the total computational time for the algorithm
of Lex-BFS is in O(n + m) where n is the number of
vertices and the m is the number of edges in graph.

• As before, we verify the correctness of this algorithm
through the invariant:the partition verifies the prop-
erty A; if the partition fails to verify the property B,
there are partition classes which intersect strictly with
the subset S, where S is related with the Pivots.

– A: there is an lexicographical ordering of the ver-
tices in graph G which is compatible with the Piv-
ots.

– B: all classes are in singleton.

proof : The lexicographical ordering is compatible with
the Pivots for the property of the partition refinement
and the partition refinement operation: delete the sub-
set S from the class χ and add it to the right of χ and
each element which is used to produce the pivot p for
the next operation is selected from the class χ where
χnon−visit

max ∈ P. Additionally, the process is ended
when i = n, where n is the size of the vertex set V.
From the procedure of the algorithm, one no-visited
vertex x is selected to InsertRight(χ, χa, p = (x, χ)).
After n executions of InitPartition (P), each class is a
singleton.

Here, we only show the Lex-BFS algorithm. In fact, it pro-
vides a perfect elimination ordering. According to its spe-
ciality, it has been applied for diverse problems. [?] uses it
to recognize permutation graphs which are the comparabil-
ity graph. [7] uses it to recognize the chordal graph. And [7]
even develops it for co-chordal graphs and co-interval graphs.

Therefore, the algorithm of partition refinement is really in-
teresting and meaningful for graphs.

5. CATEGORIES
We have presented the algorithm of the partition refinement
according to diverse applications that are classified by the
ordering of elements in partition classes.

In fact, the partition refinement applications can be clas-
sified to diverse categories according to different critations.
We have introduced the ordering. Next we will introduce
the pivot rules.

According to the descriptions on different partition refine-
ment applications, pivots play the key role in each algorithm,
especially it is related with the complexity of the algorithm.
If the pivots are known in advance. Then the application is
a linear time algorithm. Otherwise, the computational time
is complicated to estimate. Therefore, pivot rules are used
as a citation for classify the categories of applications:

• simple rule is used to describe the applications that ex-
ecute with the known pivots. In this case, there doesn’t
exist any rule to select pivots. Probably, the applica-
tions like Lex-BFS use simple rules such as arbitrary
choice to determine pivots. Therefore, the complexity
of applications in this category is linear.

• Hopcroft is a popular rule for pivots. We have pre-
sented that pivots can be generated during the proce-
dure of the partition refinement. Hopcroft is proposed
by Hopcroft [4] which applies the ”process the smaller
half” strategy. It benefits to applications which pro-
duce pivots during the procedure such as coarse par-
tition computation. With the help of Hopcroft, the
pivot selection becomes easier and the complexity is
more efficient. Generally, applications based on such a
pivot rule is in time O(mlogn) where m is the size of
inputting data and n is the number of elements.

Furthermore, the applications also can be classified accord-
ing to ”tie-break rule” which is related with the execution
of InitPartition. We have observed that some applications
like twin vertex calculation finish their partition refinement
procedures when the procedure InitPartition(P) is recalled
in second time. However, some applications such as Lex-
BFS execute the procedure of InitPartition(P) several times
to execute the procedure InitPartition(P) until the current
partition classes are congruent even single. Therefore the
”tie-break rule” is generated which focus on breaking the
recursive process.

6. CONCLUSIONS
We conclude that the partition refinement is a meaningful
technique in graph theory. It can be applied by different
applications for diverse strategies. It is composed by several
procedures: InitPartition(P), PivotSet(p = (x, χ)),InsertRight
(χ, χa, p) and AddPivot (χ, χa). For each process refine(P, S),
each new class χa = χ

⋂
S is removed from the class χ and

inserted next to the class χ in the partition P. According
to the data structure that all elements in E are stored in a



double chain list and the partition refinement is related with
the pointers which are used for the partition class χ ”touch”
its elements in L(E). Thus, it preserves the initial ordering
of elements. So it is used to resolve the problems in graphs,
such as twin vertex calculation, chordal graph recognition
and interval graph recognition.

In this paper, we introduce the different categories of parti-
tion refinement applications according to different citation.
We also present some classical partition refinement appli-
cations for graph problems such as twin vertex calculation
and Lex-BFS, the results are considerable with reasonable
running time. It implies that the partition refinement give
insights for graph problems.

Note the properties of the partition refinement, it is efficient
and simple to understanding. With respect its contributions
such as Lex-BFS, it is meaningful for graph calculations.

While the partition refinement is used for graph algorithms,
the element set E is usually the vertex set V, each class χ
implies the properties of the graph G and the pivots are
related with the adjacency lists. Additionally, the execu-
tion of the partition refinement application is based on the
inputting data. If the inputting data is subgraphs such as
clique as the element E, the algorithm is also accepted for
the calculation. Therefore, we conclude that the partition
refinement has a good prospective in the domain of graphs.

7. ACKNOWLEDGMENTS
8. ADDITIONAL AUTHORS
9. REFERENCES
[1] Graph Theory. Oxford University Press, 1986.

[2] G. S. L. D.J. Rose, R.Endre Tarjan. Algorithmic
aspects of vertex elemination on graphs. SIAM J.of
Comp., 5(2):266–283, June 1976.

[3] R. M. E.Dahlhaus, J.Gustedt. Efficient and practical
modular decomposition. Proc. 7th Ann ACM-SIAM
Symp., 1997.

[4] J. Hopcroft. An nlogn algorithm for minimizing states
in a finite automaton. In Theory of machines and
computations, pages 189–196. Academic Press, 1971.

[5] R. H. R. B. U. C. KD Devine, EG Boman. Parallel
hypergraph partitioning for scientific computing. 20th
International Parallel and Distributed Processing, 2006.

[6] C. P. Michel Habib and L. Viennot. A synthesis on
partition refinement: a useful routine for strings,
graphs, boolean matrices and automata. 15th annual
Symposium on Theoretical Aspects of Computer
Science, 1998.

[7] C. P. Michel Habib, Ross McConnell and L. Viennot.
Lex-bfs and partition refinement with applications to
transitive orientation, interval graph recognition and
consecutive ones testing. theoretical computer science,
2000.

[8] C. PAUL. Parcours en Largeur Lexicographique: un
algorithme de Partitionnement Application aux Graphes
et Generalisations. PhD thesis, UNIVERSIT
MONTPELLIER II, 1998.


