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ABSTRACT 

If ~ is a graph property, the general 
node(edge) deletion problem can be stated 
as follows: Find the minimum number of 
nodes(edges), whose deletion results in 
a subgraph satisfying property ~. In this 
paper we show that if ~ belongs to a rath- 
er broad class of properties (the class of 
properties that are hereditary on induced 
subgraphs) then the node-deletion problem 
is NP-complete, and the same is true for 
several restrictions of it. For the same 
class of properties, requi~ing the re- 
maining graph to be connected does not 
change the NP-complete status of the 
problem; moreover for a certain subclass, 
finding any "reasonable" approximation is 
also NP-complete. Edge-deletion problems 
seem to be less amenable to such general- 
izations. We show however that for 
several common properties (e.g. planar, 
outer-planar, line-graph, transitive di- 
graph) the edge-deletion problem is NP- 
complete. 

KEYWORDS¢ approximation, computational 
complexity, edge-deletion, graph, graph- 
property, hereditary, maximum subgraph, 
node-deletion, NP-complete, polynomial 
hierarchy. 

i. INTRODUCTION 

The general node(edge) deletion problem 
can be stated as follows: Given a graph 
or digraph G find a set of nodes(edges) 
of minimum cardinality, whose deletion 
results in a subgraph or subdigraph 
satisfying the property ~. (For the 
standard graph theory terminology the 
reader is referred to [H] or [Bg. 

Several of the well-studied poly- 
nomial graph-problems ~uch as the connect- 
ivity of a graph [EV, TI], the arc-delet- 
ion [K], the maximum matching and the b- 
matching problems led]), as well as NP- 
complete problems (such as the node cover, 
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the max clique, the feedback-node set, 
the feedback-arc set [K], and the simple 
max-cut problem [GJS]) can be formulated 
in an obvious way as node or edge delet- 
ion problems, specifying appropriately 
the property ~. Furthermore, Krishnamoo- 
rthy and Deo showed in a recent paper 
[KD] that the node-deletion problem for 
several other properties is also NP- 
complete. (For an exposition of NP- 
completeness, see [GJ]). 

Since Cook's introduction of the con- 
cept of NP-completeness, the list of 
NP-complete problems has expanded rapid- 
ly, with more and more individual problems 
from various areas being added to it [GJ] 
Sections 2 and 3 are concerned with node- 
deletion problems. Our aim is to show, 
how this set of similar problems (with 
properties , drawn from a certain large 
class of properties) can be treated in a 
systematic fashion in order to prove the 
NP-completeness of all the members of the 
set. (A similar approach was taken also 
independently by Lewis, Dobkin and Lipton 
in [LDL] and [L]. However our results are 
significantly more general than theirs.). 
In this paper we consider properties that 
are hereditary on induced subgraphs, i,e. 
if G is a graph (or digraph) with property 
~, then deletion of any node does not 
produce a graph violating ~. We call a 
property nontrivial if it is true for a 
single node and is not satisfied by all 
the graphs in a given input domain. 
clearly the node-deletion problem makes 
sense only for nontrivial properties. 
We will require ~ to be easy (i.e. in 
p ) at least to recognize (although our 
results are valid even if , cannot be 
recognized in nondeterministic 
polynomial time. In this case, the 'NP- 
complete' clause should be replaced by 
'NP-hard'). 

Now suppose that ~ is such a property 
and that there is an upper bound k on the 
order of graphs satisfying ~. Then the 
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corresponding node-deletion problem is 
polynomial in a trivial way: Given a 
graph G, examine all the (induced) sub- 
graphs of G of order up to k and find the 
one with the largest order that satisfies 
~. We call a property interesting (on 
some input domain) if there exists no such 
upper bound (for the graphs of the input 
domain), i.e. if there are arbitrarly 
large graphs satisfying n. 

In Section 2 we show that for any non- 
trivial and interesting graph - or 
digraph-property that is hereditary on 
induced subgraphs, the node-deletion 
problem is NP-complete. Moreover the 
restriction to planar graphs (or digraphs) 
and to acyclic digraphs (in case of digraph- 
properties) is also NP-complete. For the 
restriction to bipartite graphs there are 
few (in a way that is defined more precise- 
ly in Section 2) exceptions. For example 

the node cover problem is polynomfal (by 

Konig's theorem and the fact that the 
maximum matching is polynomial [Ed]). 
However we show that it is a unique 
exception among properties that are de- 
termined by the components. (We say that 
a property ~ is determined by th___ee compo- 
nents - resp. by the blocks - of a graph, 
if whenever the components - resp. the 
blocks - of a graph G satisfy n~ then G 
satisfies also ,). 

In these constructions the remaining 
graph after the deletion of a minimum 
number of nodes is often highly disconnect- 
ed. One may wish to require the remaining 
graph to be connected and might even hope 
that this task could be easier: For 
example Krishnamoorthy and Deo proved [KD] 
that the node-deletion problem for 

= 'nonseparable' is NP-complete. (If 
the resulting graph is disconnected they 
require that each of its components 
satisfies ~). In this case the require- 
ment for connectivity makes the problem 
very easy (linear): we can find the blocks 
of the graph IT2] and then determine the 
block with the maximum number of nodes. 

In Section 3 we study the effect of the 
inclusion of a connectivity requirement. 
We show that for the same class of proper- 
ties (hereditary~ nontrivial and interest- 
ing on connected graphs) the NP-complete- 
ness of the node-deletion problem is not 
affected. (In case of digraphs we take 
connectivity to mean what is usually call- 
ed weak connectivity, i.e. connectivity 
of the underlying undirected graph). More- 
over for properties that are determined by 
the blocks (i) Any nontrivial approxima- 

tion (with worst-case ratio 0(nl-e), for 

any e>0, with n the number of nodes) of 
the connected node-deletion problem is 
also NP-complete*, and (2) Determining 
whether the largest subgraphs satisfying 

P are connected or not is in 4 2 - 

[NPU co-NP], provided of course that 
NP M co-NP~ ~ 

The additional assumption, that n is 
determined by the blocks, is essential 
as exemplified by the property n = 'com- 
plete graph' (or ~ = 'star'). This node- 
deletion problem is equivalent to the 
node-cover problem, which has a poly- 
nomial 2-approximation. 

In Section 4 we turn to ~ edge-deletion 
problems~ which tend to be easier to 
solve (or harder to show NP-complete) 
than their node-deletion versions. Note 
for example the difference for ~ = 
'acyclic graph' (tree) or 'degree 
constrained'. We show the followlng 
problems to be NP-complete: (i) without 
cycles of specified length ~ or of any 
length < ~, (2) degree-constrained with 
maximum degree r > 2 and connected, (3) 
outerplanar, (4) planar~ (5) line-invert- 
ible~ (6) comparability graph, (7) 
bipartite (max-cut problem), (8) trans- 
itive digraph. For problems (5), (6), 
(7) we determine the best possible 
bounds on the node-degrees for which the 
problems remain NP-complete. 

A few words on notation: we use y (G) 
~resp. vC(G)) to denote the minimum 
number o~ nodes whose deletion results in 
a subgraph (resp. connected subgraph) of 
G that satisfies property ~. Usually 
when no ambiguity can arise, we drop the 
subscript ~. By S0(G) we denote the 

node-cover number of G, i.e. S0(G ) = 
yw(G), with ~ = ' independent set of 

nodes' 

2. THE NODE-DELETION PROBLEM FOR 
HEREDITARY PROPERTIES 

Theorem i. The node-deletion problem for 
nontrivial, interesting graph-properties 
that are hereditary on induced subgraphs 
is NP-complete. 

* For definitions concerning approxima- 
tion algorithms, see [J]. 

** Regarding the polynomial-time hierar- 
chy and in particular ~, see IS]. 

- 254 - 



Proof: 

For all m,n there is a number r(m,n) (the 
so-called Ramsey number), such that every 
graph with no fewer than r(m,n) nodes 
contains K or K . We claim that either 

• m a~l independent sets of all cllques or 
nodes (or both) satisfy ~. Suppose, to 
the contrary/ that there are m, n such 
that K m and K n do not satisfy W. Since 

is an interesting property, there is a 
graph satisfying ~, with more than r(m,n) 
nodes, and since ~ is hereditary on in- 
duced subgraphs either K or K has to 

m 
satisfy ~. Define a complementary proper- 
ty ~ as follows: a_graph G satisfies 
iff its complement G satisfies ~. Clearly 

satisfies also the assumptions of the 
theorem~ (since the complement of a sub- 
graph is a subgraph of the complement), 
and the two node-deletion problems are 
equivalent (if the input domain of graphs 
is unrestricted~ or at least closed under 
complementation). 

Suppose from now on without loss of 
generality that all independent sets of 
nodes satisfy n; otherwise consider the 
equivalent problem for ,. 

Let G be a graph with connected comp- 

onents GI,G2~...~G t. For each G.I take a 
cutpoint c. and sort the components of 
G. relativ~ to c. according to their 
i .i 

orders. This glves a sequence 

~. A < >, with nil i = nil'ni2'''''n . . . . .  
~3 i 

> n.. ~ and assume that c. is the cut- 
- i]i l 

point of G. that gives the lexicograph- 
ically smallest such ~.. (If G. is 

l 1 

biconnected, then c. is any node of it, 
l 

and a. = < n. >, where n. = iGil ) . Sort 
l l l . 

the sequences of e. 's accordlng to the 
1 

lexicographic ordering and let 

8G = < ~i' ~2'''''~t >' where 

~i > ~2 > ~3 "'" > st" 
E E 

The sequences 8 G induce a total or- 
dering R among the graphs. (We may 
however~ have~ 8 G = 8_ for two noniso- 
morphic graphs G and ~). Take J to be 
a least graph in this ordering that 
cannot be repeated arbitrarily many times 
without violating ~; i.e. there exists a 
number k > i, such that k independent 
copies of J (without any interconnecting 
edges) violate ~, k-i independent copies 
of J satisfy ~, and any number of in- 
dependent copies of every H with 

B H { 8j satisfies ~. (For example if ~ = 

complete p-partite graph, then J consists 
of a single edge and k = 2.) By non- 
triviallity of ~, there exists such a 
graph J, and furthermore, since all in- 
dependent sets of nodes satisfy ~, J has 
at least one component of order no less 
than 2. 

Let Jl,...,J~ be the components of J 
t 

sorted according to their ~. s, c. the 
cutpoint of Jl that gave =_~ J^ t~e large- l u 
st component of J. relative to Cl, J. and 

, I I 
J the graphs obtained from Jl and J 
respectively by deleting all nodes of J0 
except Cl, and d any node of J^ other 

• u 
than c I. (There exlsts such a node d 
since Jl' and consequently J0 too, has 
at leas~ 2 nodes). 

Now, given a graph G, input to the 
node cover problem, let G* consist of 
n.k independent copies of G, where n is 
the order of G. For each node u of G* 
create a copy of J' and attach it to u by 
identifying c I with u. Replace every 
edge (u,v) of G* by a copy of Jo' attached 
to u and v by its nodes c] and d. (see 
Fig. i). (It does not mat£er how we 
identify the nodes Cl,d with the nodes u 
and v). 

s 

~ To N 

Fig. i. 

Let G' be the resulting graph. 
We will show that ~o(G) ~ ~ <==> V (G') ~ nkA. 

i). Let V be a node cover for G, I Vl < ~. 
Delete V from each copy of G. Every 
connected component of the resulting sub- 
graph of G' is either (a) a component J. 
of J other than J1' or (b) a graph formed 
by taking one cop9 of Ji and several copies 
of J0' deleting either c I or d from each 
copy of J0 and attaching it by the other 
node (d or Cl) to node c I of the copy of 
Ji (see Fig. 2 for an example), or (c) 
Jl - J0 (with c I deleted), or (d) 

~ -{Cl,d) (or the connected components of 
em, in case that the corresponding 

deletions have disconnected them. However 
this does not affect our arguments, since 
as it will become obvious in a minute, 
the worst-case is when they are all 
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connected). Thus the remaining graph 
can be regarded as a subgraph of repeti- 
tions of the following graph J*: j* has 

t+ s-i components, if s is the number of 
graphs of the form (b) for the possible 
choices of the node (c I or d) deleted 

from each copy of J0: £hese are J2,J3..., 
Jt and the s graphs J[, i = i) ..., s 
of the form (b). For example, if J is 
the graph of Fig. 2a) and the maximum 
degree of G is 3, then J* is as shown 
in Fig. 2b. 

A graph J 
Fi@. 2a. 

For all i) the components of J~ relative 
to c I are (a) those of J1 except jn and 
(b) j~ with one of the nodes c ,d u 
deleted. Since each componentlof the 
second kind has order less than Ij01 ) the 
cutpoint c. gives an ~-sequence for J~ 
which is l~xicographically less than ~hat 

of Jl) and concequently ~j~ { ~Jl' for 

all i. 

D'j ~3"Z J--3 
The corresponding graph J* 

Fig. 2b. 

Therefore 8j, ~ 8j. (In our example 

8j = < <5,3>,<4,1>,<4>> and 

8 , = < <4,4,4,3>, <4)4)4)3>, <4,4,4,3>, 
<~,4,4,3>, <4,1>, <4>>.) 

By our choice of J) any number of in- 
dependent copies of J* satisfies ~) and 
by hereditariness the remaining graph does 
so too. Therefore y(G') < n.k.i. 

2). Suppose that ~o(G) > I,+i, and let V 

be a solution to the node-deletion prob- 
lem. Let m be the number of copies of 
G) from which G'-V contains J as an 
induced subgraph. Since k independent 
copies of J violate ~ and since , is 
hereditary on induced subgraphs, m < k. 
That is, from at least (n-l)k+l copies 
of G) G'-V does not contain J as an 
induced subgraph. Let G:i ' be such a copy 
of G and define V~ = [u6NiiV contains a 

l 
node from the copy of J' attached to 
v(possibly v itself) or a node from the 
copy of J0 that replaced and edge (v,u) 
with v < u (the ordering of nodes is 
arbitrary)]. Clearly IV~I S I V D N i 

Suppose that there is an edge (v)u) of 
G i such that v) u ~ V~. Then V does not 

1 
contain any node from the copies of J' 
attached to v and u) or from the copy 
of J0 that replaced (v,u) (since other- 
wise the smaller of v)u would belong 
to V~) consequently (see Fig. i) 
G: -IV N N.] contains J as an induced 
l l 

subgraph (regardless of how the nodes 
c. and d were identified to v and u). 
T~erefore V~ is a node cover for G. Thus 

i. 
V must contaln at least Z+I nodes from 
each of (n-l)k+l copies of G, i.e. 
IVI ~ [(n-l)k+l] (4+1) = nk6+Z+2+k(n-l-Z) 

~- v(G') > nk~, since n > ~+i. O 

Corollary i. The node deletion problem 
restricted to planar graphs for graph- 
properties that are hereditary on 
induced subgraphs) nontrivial and inter- 
esting on planar graphs is NP-complete. 

Proof: 

For every n, there is an r(n) (may take 
for example r(n) = 4n)) such that all 
planar graphs with r(n) or more nodes 
contain an independent set of n nodes. 
S~ince ~ is interesting on planar graphs, 
all independent sets of nodes satisfy ~. 
The node cover problem restricted to 
planar graphs is NP-complete [GJS]. Now 
note, that if the original graph G and 
the graph J defined in the proof of 
Theorem 1 are planar, and in addition 
the two attachment points c.,d of JA lie u 
on a common face in an embedding of it 
on the plane, then the resulting graph 
G' is also planar. Since , is nontrivial 
on planar graphs, we can carry through 
the proof of Theorem 1 and find such a 
planar graph J. Moreover we can choose 
node d to lie on a common face with c I. 

D 

Theorem 2. The node-deletion problem 
restricted to bipartite graphs for graph- 
properties that are hereditary on induced 
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subgraphs, nontrivial on bipartite graphs, 
and are satisfied by any independent set 
of edges is NP-complete. 

Proof: 

There are two cases to be considered. 

Case i. All graphs whose components are 
stars satisfy ~. Since ~ is nontrivial 
on bipartite graphs we can carry through 
the proof of Theorem 1 using as J the R- 
least bipartite graph satisfying the 
conditions stated there. Since all graphs 
whose components are stars satisfy n, Jl 
is not a star. (Note that the star SZ 
has ~-sequence ~S~ = < i,i~...,I>, 
and any connected graph H, with 

< ~ is itself a star Sr, with r ~ ~). 

Thus there is at least one more node in the 
same set with c. in a bipartition of J0" 

1 
If we choose as d any such node, the graph 
G' constructed in the proof of Theorem 1 
is bipartite. 

Case 2. Some graph all of whose components 
are stars does not satisfy ~. Then J is 
connected~ i.e. has only one component Jl 
and this is a star S.. Since all independ- 
ent sets of edges satisfy ~, i ~ 2. We 
distinguish two subcases depending on 
whether any number of independent copies 
of the graph shown in Fig. 3 satisfies 

or not. For these two subcases we 
apply two different reductions from the 
SAT-3 problem. (For a description of the 
reductions see [YI]) . 

4-z 

V 
Fig. 3. 

corollary 2.. with the exception of the node 
cover problem, the node-deletion problem 
restricted to bipartite graphs for graph- 
properties that are hereditary on induced 
subgraphs, nontrivial on bipartite graphs 
and determined by the components is NP- 
complete. 

If some independent set of edges does 
not satisfy ~, there are properties 
(besides ~O = 'independent set of nodes') 
for which the node-deletion problem be- 
comes polynomial when restricted to bi- 
partite graphs, and properties for which 
it remains NP-complete. For example 

consider ~ = 'complete bipartite' If 
G = (N,E) is a bipartite graph with 
N = S U T a bipartition of the node set, 
let E' = [(u,v) I uES, vET, (u,v) ~E~. 
Then it is easy to see that 7,(G) = min 

[~ (G), ~ (G')]. Rowever it can be shown 
[y~] that°if property ~E has as its only 
forbidden subgraph k+l independent edges, 
with k > 2, then the corresponding 
node-deletion problem remains NP-complete 
even when restricted to bipartite graphs. 

Co rpllary 3 [KD]. The node-deletion 
pEoblem for the following properties 
is NP-complete: n = i) planar, 2) outer- 
planar, 3) line-graph~ 4) chordal, 5) in- 
terval, 6) without cycles of specified 
length A, 7) without cycles of length 
< 4, 8) aegree-contrained with maximum 
degree r ~ I, 9) a cyclic (forest), I0) 
bipartite, ii) comparability graph, 12) 
complete bipartite. 

Furthermore the restriction to planar 
graphs for properties (2)-(12) and to 
bipartite graphs for properties (1)-(9) 
is also NP-complete. 

Regarding now digraph-properties note 
that the first argument used in the proof 
of Theorem 1 does not hold in the case 
of digraphs, i.e. it may be the case that 
neither ~ nor ~ is satisfied by an inde- 
pendent set of nodes. 

Theorem 3. The node-deletion problem 
for nontrivial, interesting digraph- 
properties that are hereditary on induced 
subgraphs is NP-complete. 

Proof: 

Using Ramsey's theorem we can show that 
for all PI~ P2' P3 there is a number 

r(Pl' P2' P3 ) such that all digraphs of 

order at least r(Pl, P2' P3 ) contain as 

an induced subgraph either an independent 
set of P1 nodes, or a complete symmetric 
(abbreviated c.s.) digraph on P9 nodes, 
or a complete antisymmetric transitive 
(abbreviated c.a.t.) digraph on P3 nodes. 
since w is interesting and hereditary 
on induced subgraphs, it is satisfied 
either (i) by all independent sets of 
nodes, or (ii) by all c.s. digraphs, or 
(iii) by all c.a.t, digraphs. The proof 
of Theorem 1 works for cases (i) and 
(ii) (in case (ii) the construction is 
carried out for ~). It remains therefore 
tO show the result for case (iii). 
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Let s be the largest number such that 
s independent c.a.t, digraphs of any order 
satisfy n, i.e. there exist numbers k. 

k2'" " " ' ks+l such that s+l independent' 

c.a.t, digraphs of order kl,... ,k +i 
violate ~. (There exists such a ~u~tber 
s if n is not satisfied by all independent 
sets of nodes, and s >__ i). Since ~ is 
hereditary on induced subgraphs there 
exists a number k such that s+l 
independent c.a.t, digraphs of order k 
violate ~ (We can take for example k = max 

{k l,k 2, .... ks+ 1 }). 

Given a graph G = (N,E), input to the 
node cover problem, with N = [ul,... ,u n] 
E = [el,... ,e ], let r = m. (k-l).n. Form 

, m , , 
a digraph D = (N ,E ) as follows: 
N' = {uij I 1 < i < n, 1 < j ! r] U 

{eij h I 1 < i _< m, 1 _< j _< r. 1 < h _< s-l] 

(If S = 1 there ~re no eij k nodes) and 

E' = ((ui~ , Ugh) I J < h, or (j = h and 

and i < g); (ui,Ug) .~E] U 

{ (eij h, efg h) I J < g or (j = g and i < f)}. 

Note that D' is formed by r copies of 
G, with every edge ef = (ui,u j) replaced 

by s+l independent nodes: 

[uig,Ujg] U [efg h I 1 ~ h ~ s-l} and the 

addition of some interconnecting edges. 

We claim that y(D') < r.~ < ;~ S0(G ) 
< ~. 

i). Let V be a node cover for G and V' 
the set of the r copies of V. D'-V' 
consists of s independent complete anti- 
symmetric transitive digraphs. The s-i 

of them have node set N h = [eij h I 

1 < i < m, 1 ~ j < r} and the s-th has 
node s~t N = [u.~ I 1 < i < n, 1 < j < r, 

. s 13 -- " -- --n -- 
u. ~ Vj. Since V is a noae cover, o 
two nodes of N are coples of adjacent 
nodes of G andStherefore <I~ > has the 

s 
above stated form. Thus, S0(G ) ~ Z 
y(D') < r.6. 

2). Suppose that So(G) > 2+1, and let 
V be a solution to %he n~de-deletion pro- 

blem. For an edge ef = (ui,u j) of G, 

let Kf = [g I Uig, Ujg, efgl,...,efg,s_l 

~V]. The nodes that replaced edge e_ in 
the copies of G with index in Kf, fo~m 
s+l independent complete antisymmetric 
transitive digraphs of order IKf!. By 
our choice of s and k and since n Is 

hereditary on induced subgraphs, we 
must have .IKfl < k-l, if D'-V is to 
satisfy ~. ~he~efore from at least r-m. 
(k-l) = (n-l)m(k-l) copies of G, there 
is at least one of the s+l nodes that 
replaced each edge of G deleted. Argu- 
ing as in the proof of Theorem 1 V must 
contain at least 6+1 nodes from each of 
these copies, i.e. IVl ~ (n-1)m(k-l) . 
(~+i) = m. (k-l) [n.t +n-(~+l)] - ~. 

v(G) > r.Z, since n > L+I. 

The proof of Corollary 1 is valid for 
digraph-properties too. Also the result 
of Theorem 2 can be extended to digraph- 
properties as well, although there are 
more subcases to be considered in case 2 
according to the orientations of the 
edges. 

Corollary 4. The node-deletion problem 
restricted to acyclic digraphs for di- 
graph-properties that are hereditary on 
induced subgraphs, nontrivial and inter- 
esting on acyclic digraphs is NP-complete. 

Proof: 

since ~ is interesting on acyclic 
digraphs we have to consider only cases 
(i) and (iii). For case (iii) the 
digraph D' constructed in the proof of 
Theorem 3 is clearly acyclic. For case 
(i), if in the construction of the proof 
of Theorem 1 J is acyclic and in the sub- 
stitution of eve~ edge (u,v), with 
u < v, by J , c I is identified with u and 
d with v, t~e digraph G' constructed 
there is also acyclic. (Recall that as 
we mentioned there, the way that the 
nodes c. and d of J0 are identified with 

I 
the endpoints of the edge is irrelevento). 
Since , is nontrivial on acyclic digraphs, 
j can be chosen as the R-least acyclic 
digraph satisfying the conditions stated 
in the proof of Theorem i. O 

corollary 5. The node-deletion problem 
for the following digraph-properties 
is NP-complete: n = i) acyclic (feedback- 
node set), 2) transitive, 3) symmetric, 
4) antisymmetric, 5) line-digraph, 6) 
with maximum outdegree r, 7) with maximum 
indegree r, 8) without cycles of length 
~, 9) without cycles of length ~ 6. 

Furthermore the restriction of all 
problems to planar digraphs, and the 
restriction of problems 2,3,5,6,7 
to acyclic digraphs is also NP-complete. 

3. INCLUSION OF A OONNECTIVITY REQUIRE- 
MENT. 

Theorem 4. The connected node-deletion 
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problem for graph-properties that are 
hereditary on induced (connected) graphs, 
nontrivial and interesting on connected 
graphs is NP-complete. 

Proof: 

It is easy to show that for all Z,n,m, 
there is a number r(t,n~m) such that all 
connected graphs of order at least 
r(t,n,m) contain as an induced subgraph 
either a star Si or a clique K n or a path 
P of length m. Since ~ is interesting 
m 

on-connected graphs and hereditary either 
all cliques, or all stars or all paths 
satisfy ~. 

Case I. All cliques satisfy ~. Then the 
construction of G' in Theorem 1 is carried 
out for ~. If V* is a node cover for G*, 
G'-V* is disconnected and consequently 
G'-V* is connected. 

Case 2. All stars satisfy ~. Define a 
property ~' as follows: A (not 
necessarily connected) graph G satisfies 
~' iff the graph G 1 formed by taking a 
new node and connecting it to all nodes 
of G satisfies ~. Clearly ~' is non- 
trivial, interesting, hereditary on 
induced subgraphs and is satisfied by 
any independent set of nodes. Apply the 
construction of Theorem 1 for ~'. From 
the resulting graph G' construct G" by 
taking a new node v and connecting it 
with an edge to all nodes of G'. We 
claim that yC(G") = ¥_.(G'). Obviously 
the graph fo~med by n~de v and any sub- 
graph of G' satisfying ~' is connected 
and satisfies ~, thus yC(G") < V~ (G'). 

For the other direction suppose that the 
optimal solution V to the (connected) 
node-deletion ~ problem contains node v. 
Then V must contain all the nodes from 
nk-i copies of G, if G"-V is to be 
connected. Thus I VI k (nk-l) n+l. Since 
y , (G') < nk~ 0(G) < nk(n-l)this is 
impossible. Therefore V does not contain 
node v and from the definition of ~', 

(G') ~ Y~CG"). Y~, 

Case 3. Some clique and some star do not 
satisfy ~. Then all paths have to satisy 
~. In this case we use a reduction from 
the SAT-3 problem. (see [Y2]), [] 

Corollary 1 (regarding the planar re- 
striction) is no more true if we in- 
clude a connectivity requirement. As an 
example consider ~ = 'star' (~ is clearly 
hereditary on connected induced subgraphs~ 
nontrivial and interesting on planar 

connected graphs). Given a planar graph 
G a maximum (induced) subgraph of G with 

consists of a node v and a maximum in- 
dependent set of its neighborhood F(v). 
Since G is planar, F(v) is outerplanar 
for each node v. Since the maximum in- 
dependent set of an outerplanar graph 
can be found in polymonial time, the same 
is true for y~(G). 

Theorem 4 can be extended to digraph- 
properties as well. To case 1 (all 
cliques satisfy ~) there correspond two 
cases:(li) all complete symmetric di- 
graphs satisfy ~, and (lii) all complete 
antisymmetric transitive digraphs satisfy 
~. In case (li) the proof is as in case 
1 of Theorem 4. In case (lii) the proof 
is as in case 2. To case 2 there corres- 
pond three cases according to the orien- 
tations Qf the edges of the stars(Fig. 4 
on!ast~ In all 3 cases the proof goes 
as in case 2 of Theorem 4. Finally if 
none of the previous cases is true then 
an infinite number of semipaths satisfies 
~. (A semi~th is a digraph whose under- 
lying graph is a path.) In this last 
case we need to know for each n at least 
one graph (for example a semipath) of 
order n satisfying ~ (or at least be able 
to generate such a graph in polynomial 
time). Under this last assumption we 
have : 

Theorem 5. The connected node-deletion 
problem for digraph-properties that are 
hereditary on induced (connected) sub- 
graphs, nontrivial and interesting on 
connected digraphs is NP-complete. 

Corollary 6. The connected node-deletion 
problem restricted to acyclic digraphs 
for digraph-properties that are hereditary 
on induced (connected) subgraphs, non- 
trivial and interesting on connected 
acyclic digraphs is NP-complete. 

From now on we will concentrate on 
properties that are determined by the 
blocks of a graph and will not distinguish 
between graph-and digraph-properties. For 
such a property W that is hereditary on 
induced subgraphs, the following are 
equivalent: 
(i) ~ is interesting on connected graphs 
(2) a single edge satisfies ~. 

Lemma 1 If ~ is determined by the blocks 
and is hereditary on induced subgraphs and 
there exists a forbidden biconnected sub- 
graph H 1 for ~ with an edge e, whose 
deletion results in a singly connected 
graph that satisfies w~ then (i) The 
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approximation of the connected node-de- 
letion problem n with worst-case ratio 
0(nl-6), for any ~ > 0, with n the number 
of nodes is NP-complete, (2) It is NP- 
hard to decide whether all largest in- 
duced subgraphs with property ~, of a 
given graph are connected. 

Proof: 

(i) The reduction is from the 
SAT-3 (satisfiability with 3 
literals per clause) problem. For each 
clause we form a part of the graph with one 
node corresponding to each literal, so 
that for each clause at most one such node 
can remain if the graph is to satisfy ~. 
Then we take a cutpoint c of H.-e and 

1 
connect it to all nodes corresponding to 
variables through copies of the one 
component of Hl-e relative to c and to the 
nodes corresponding to negations of varia- 
bles through copies of the other component 
of Hl-e relative to c. We add an edge 
between any two nodes that correspond to 
complemented literals. Let G 1 be a graph 
with m nodes satisfying property ~. Attach 
a copy of G 1 to all nodes of the previous 
construction that do not correspond to 
literals. For each clause connect a copy 
of G 1 to the rest of the graph by the 3 
nodes corresponding to the literals of 
the clause and let G be the resulting 
graph. If the input set of clauses is 
satisfiable vC(G) = 2P (with P the number 
of clauses) w~ereas if it is not satis- 
fiable 7 c > m. The result follows by 
taking m ~ an appropriately high (but 
constant for fixed 4) power of P. 

(2) If the set of clauses is satisfiable 
yC(G) = Y (G) = 2P and all subgraphs with 
p~operty ~ of G obtained by deleting that 
few nodes are connected. If the set is not 

satisfiable y~(G) < y~(G). [] 

If a forbidden subgraph H 1 as above does 
not exist, then we will have to connect 
complemented literals by a forbidden sub- 
graph. But then to get connectivity we 
will have to keep exactly one of these 

two nodes. 

Lemma 2. Given a set of clauses S = 
[C1,..,Cp] with variables Xl,...,x n and 

exactly 3 literals per clause, there is 

another set of clauses S' = [C~,...,C' 
with variables Xl,...,Xn,Xn+l,.. ,x r p' 

with r and p' linear in p~ and at most 
3 literals per clause, such that: (i) 
S is satisfiable iff S' is, (2) Each ~ 
variable, whose complement appears in S', 
occurs as many times as its complement~ 
(3) If S is satisfiable, then every satis- 

lying truth assighment for S' satisfies 
at most 2 literals in each clause. 
Furthermore there is such a truth assign- 
ment that satisfies all noncomplemented 
variables. (4) If S is not satisfiable, 
then every truth assignment for S' that 
satisfies all noncomplemented variables, 
satisfies 3 literals in some clause. 

Lemma 3: If ~ is nontrivial on connected 
graphs, determined by the blocks and 
hereditary on induced subgraphs and there 
exists a graph H 2 with at least 5 nodes, 
three of which are distinguished, such 
that (i) deletion of any distinguished 
node results in a graph satisfying ~, 
(ii) deletion of at most 2 distinguished 
nodes does not disconnect the graph, 
(iii) deletion of all 3 distinguished 
nodes disconnects the graph, then the 
approximation of the connected node- 
deletion problem ~ with worst-case ratio 
0(n l-t) is NP-complete. 

Theorem 6. If ~ is nontrivial and in- 
teresting on connected graphs, determined 
by the blocks and hereditary on induced 
subgraphs, then the approximation of the 
connected node-deletion problem ~ with 
worst-case ratio 0(n I-E) is NP-complete. 

Proof: 

By showing that for each property 
either Lemma 1 or Lemma 3 can be applied. 

O 

Lemma 4: If , is determined by the blocks 
of a graph and hereditary on induced sub- 
graphs and there exists a graph H 3 with 
at least 4 nodes, three of which are dis- 
tinguished, satisfying assumptions (i) 
and (ii) of Lemma 3 and (iii) H 3 does 
not satisfy ~, then it is NP- and co-NP- 
hard to decide whether all largest in- 
duced subgraphs with property ~ are 

connected. 

proof: 

We use reductions from the SAT-3 problem, 
where we assume that the input set of 
clauses consists of a clause containing 
a single variable x and a set S of clauses 
that is satisfiable. (Note that cook's 
original reduction for the satisfiability 
problem has exactly this form [C], if we 
take for example as x the variable that 
asserts that at the final time the Turing 
machine is in an accepting state). We 
apply the transformation of Lemma 2 to 
S and construct a graph J from the re- 
sulting set S' such that all maximum sub- 
graphs with ~ ~f J are connected, corres- 
pond to a satisfying truth assighment for 
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S' and keep all nodes corresponding to true 
literals. 

For the NP-hardness proof we form a 
graph as in Fig. 5 where c is a node con 
tained in all maximum subgraphs with 
of J and the node b is connected to all 
nodes of the 2 copies of J corresponding 
to x by copies of H 3. 

C 

d 

Fi~. 5. 

For the co-NP-hardness proof we form the 
graph of Fig. 6, where a, and b are 
distinguished nodes of H_, and b is 
connected to all nodes o~ J corresponding 
to ~ by copies of H 3. 

Fig. 6. 

Theorem 7. If ~ is nontrivial and inter- 
esting on connected graphs, determined by 
the blocks and hereditary on induced sub- 
graphs then it is NP-and co-NP hard to 
decide whether all largest induced sub- 
graphs satisfying property ~ are connect- 
ed. 

Proof~ 

We show that Lemma 4 is applicable, unless 
the triangle does not satisfy property ~. 
In this case the NP-hard part is covered 
by Lemma I, and we shall give a separate 
proof for the co-NP hard part. [] 

The above problem is easily seen to be 

in ~ (the set of languages recognizable 
. M 

in polynomial time deterministically by 
a query machine with oracle from NP; for 
the polynomial-time hierarchy see [S]) 
provided that ~ is in NP. Thus Theorem 7 
shows that NP ~ co-NP ==-> ~ ~ NP U co-NP. 
However this is not a peculzarity of the 
unrelativised polynomial hierarchy, i.e.: 

Proposition Relative to any set X, 

p,X 

p,X u 

Thus Theorem 7 gives a class of natural 
graph problems that testify to 

~ ~ ~ NP U co-NP, in case that NP- ~ co-NP. 
Another such problem is reported in 
[Le] . 

Corollary 7: The conclusions of Theorems 
6,7 hold for the following node-deletion 
problems: planar, outerplanar, bipartite, 
chordal, acyclic graph (tree)~ cactus, 
acyclic digraph, symmetric, antisymmet- 
ric digraph~ without cycles of specified 
length £, of g my length ~ 2.. 

4. EDGE-DELETION PROBLEMS 

Theorem 8. The following edge-deletion 
problems are NP-complete. 
(i) "without cycles of specified 

length ~", for any fixed £ ~ 3, 

(ii) for even £, the same problem 
restricted to bipartite graphs, 

(iii) "without any cycles of length 
6" restricted to bipartite 

graphs, for fixed £ ~ 4. 

Theorem 9. The edge-deletion "connected, 
with maximum degreer" problem is NP- 
complete, for any fixed r ~ 2. 

Theorem i0. The edge-deletion "outer- 
planar" problem is NP-complete. 

Theorem ii. The edge-deletion "planar" 
problem is NP-complete. 

Proofs: 

The reductions for the two last theorems 
are from the Hamiltonian path problem 
(with maximum degree 3 [GJS] for the 
planar case) and are based on counting 
arguments. We take two copies of the 
original graph and two new nodes that 
we connect to all the nodes of the 
original graphs. We show that if the 
original graph has a Hamiltonian path 
then the new graph contains a maximal 
outerplanar (resp. maximal planar minus 
one edge) subgraph. Conversely if there 
is such a subgraph then embedding it on 
the plane andusing properties of maximal 
outerplanar (resp. planar) graphs we can 
exhibit a Hamiltonian path of the origin- 
al graph. 
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Theorem ii has been independently shown 
by Geldmacher and Liu. 

In the next theorems we use a restrict- 
ed version of the SAT-3 problem. 

Lemma 5: The SAT-3 problem is NP-complete 
even when each variable appears 3 times. 
The requirements of the lemma are in a sen- 
se the best possible, since if each vari- 
able appears at most twice then theclauses 
are trivially satisfiable (assuming that 
each clause contains 2 or more literals). 
Lemma 5 appears to be useful in proving 
the NP-completeness of restricted 
problems. For example from it (rather 
from the transformation used) and Karp's 
reduction of the SAT-3 problem to the 
node cover problem [K], follows a result 
of [GJS]: that the node cover problem on 
graphs with maximum degree 3 is NP-comple- 
te. We use it to determine the best 
possible bounds on the node degrees for 
the next three theorems. 

Theorem 12: The edge-deletion 'line 
invertible' graph problem on graphs with 
maximum degree 4 is NP-complete. 

Proof: 

Given a set of clauses CI,...,C with 
variables XI,...,X - as in LemmaP5 con- 
S "n truct the ~ollowlng graph G = (V,E). 

V = [ai,bill S i ~ n] U {dijiX i occurs 

in Cj} U. [eiji Xi occurs in Cj} U 

[d' i, e~i 1 ~ i ~ n] U [Cjll ~ j ~ p] U 

{C'jlCj has 2 literals] 

E = [(ai,bi)il S i ~ n] U [(ai,dij), 

(ai,eik), (d~, dij), (e~, eik) i 

dij~eik E V] U {(dij , Cj), (eij,Cj) ' 

(dij'die), (eij, eie) i j ~ e; dij , die , 

eij, eie E V~ U {(Cj, C~) I C[ E V] 
3 3 " 

For example if C 1 = Xl V X 2 V X3' C 2 

X2 V X3, C3 = X1 V X 2 V X 3. the graph 

G is an in Fig. 7. We show that G has a 
line-invertible subgraph obtained by 
deleting r edges, where r is the total 
number of literal-occurences iff the 
clauses are satisfiable. In our example 
the set of edges that are deleted 
corresponding to the truth assignment 

X 1 = i, X 2 = 0, X 3 = i, is shown with 

heavy lines in the figure. 

l 
e 3 

Fig. 7 

Remarks: 

(i) The restriction of the maximum 
degree to 4 in the Theorem 12 is 
best possible, i.e. for graphs with 
maximum degree 3 the problem can be 
solved in Dolynomial time. The 
algorithm consists in applying 
successive transformations to the 
input graph (keeping the maximum 
degree 3) until a graph without 
triagles results. Then the problem 
is reducible to the line-cover 
problem. 

(2) If a connectivity requirement is 
included, then the best bound can 
be brought down to 3. 

Theorem 13. The edge-deletion "bipartite" 
(simple max-cut) problem on cubic graphs 
is NP-complete. The proof uses Lemmas 2 
and 5 (rather the transformations em- 
ployed there). The 'NP-completeness of 
the simple max-cut problem (without the 
restriction on the degrees) was shown in 
[GJS], where there was also mentioned 
the open status of the problem on graphs 
with restricted maximum degree. The 
NP-completeness of the weighted version 
(i.e. with the edges having weights) was 
first shown in Karp's paper [K]. 

Theorem 14. The edge-deletion 'com- 
parability graph' problem is NP-complete, 
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even on cubic graphs. 

Theorem 15. The edge-deletion 'trans- 

itive-digraph' problem is NP-complete. 

For the proof of the two last theorems we 
first modity the construction of Theorem 
13 to get a graph without triangles and 
then reduce the simple max-cut problem to 
them. 

Finally we note that for all the above 
properties the edge deletion problem re- 

mains NP-complete if we conclude a 

connectivity requirement. 

5. CONCLUSIONS 

In Sections 2 and 3 we saw how a set of 
similar problems - the node-deletion 

problems - can be attacked in a systematic 
way to prove the NP-completeness of all 

the members of the set. It would be inter- 
esting to find other classes of problems 
for which a similar result holds. In 
particular it would be nice if the same 
kind of techniques could be applied to 

the edge-deletion problems (of course 

for an appropriately restricted class of 

properties). Unfortunately we suspect 

that this is not the case-the reductions 
we found for the properties considered in 

Section 4 do not seem to fall into a pa- 

ttern. A class of problems which seems 

more likely to be amenable to such a 
treatment is the class of polynomial and 

integer divisibility problems [PI,P2], 
where most of the NP-completeness proofs 
employ similar reductions. 

Regarding the class of node-deletion 
problems two questions suggest them- 

selves: i) How much can we expand the 
class of properties for which the 
problem remains NP-complete, 2) the 

reduction schemes we described in 
Section 2 show that the node-deletion 
problem (without the connectivity 
requirement) has at least as rich a 
structure (in the combinatorial sense- 

see also [ADP]) as the node cover problem. 
It is an immediate corollary of the 
proofs that any E-approximate algorithm 

for any of the node-deletion problems 
could be used to derive an E-approximate 
algorithm for the node cover problem. 
What can we say in the other direction, 

and what are the interrelationships 
among the various problems in the class 
with respect to their combinatorial 
structure? This is very interesting, in 
view of the fact that there is for 
example no known approximation algorithm 

with bounded worst-case ratio for the 

feedback-node set (or any other problem 

of the class), whereas the node cover 
problem can be easily approximated with- 
in ratio 2, but also because it would 
shed more light into the nature of 
NP-complete problems from the combinator- 
ial point of view and into their be- 

haviour with respect to approximation 
algorithms. 
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