
ENS Lyon
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Introduction

1 Introduction

A neural network (or more formally artificial neural network) is a mathematical model

or computational model inspired by the structure and functional aspects of biological neural

networks. It consists of an interconnected group of artificial neurons.

The original inspiration for the term Artificial Neural Network came from examination

of central nervous systems and their neurons, axons, dendrites and synapses which consti-

tute the processing elements of biological neural networks.

The first model of a neuron was presented in 1943 by W. Mc Culloch and W. Pitts, and

in 1958 Rossenblatt conceived the Perceptron. His work had big repercussion but in 1969

a violent critic by Minsky and Papert was published.

The work on neural network was slow down but John Hopfield convinced of the power

of neural network came out with his model in 1982 and boost research in this field. Hopfield

Network is a particular case of Neural Network. It is based on physics, inspired by spin

system.

This work is mainly based on the paper of J.Bruck : On the convergence properties of

Hopfield Model [1] and the chapter 13 of the book of R.Rojas : Neural Networks [2].
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Hopfield Network Elements

2 Hopfield Network Elements

Hopfield network consists of a set of interconnected neurons which update their activa-

tion values asynchronously. The activation values are binary, usually {-1,1}. The update of

a unit depends on the other units of the network and on itself. A unit i will be influence

by an other unit j with a certain weight wij , and have a threshold value.

So there is a constraint due to the other neurons and due the specific threshold of the

unit.

Update and parameters

The new activation value (state) of a neuron is compute, in discret time, by the function :

xi(t+ 1) = sign(
n∑
j=1

xj(t)wij − θi) (1)

or

X = sign(XW − T )

where X, W, T and the sign function are :

– X is the activation value of the n units/neurons : X =


x1

x2
...

xn



– W is the weight matrix : W =


w11 w12 . . . w1n

w21 w22 . . . w2n

...
. . .

...

wn1 . . . . . . wnn

 where wij can be interpreted

as the influence of neuron i over neuron j (and reciprocally)

– T is the threshold of each unit : T =


θ1

θ2
...

θn


– the sign function is define as :{

+1 if x ≥ 0

−1 otherwise

We can easily represent an Hopfield Network by a weighted undirected graph were :

– each unit is a vertex

– the weighted edge between each vertex is the weight, W is then useful as an adjacent
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Hopfield Network Elements

matrix.

For example, the graph 1 will correspond to :

X =

x1x2
x3

, W =

 0 −1 1

−1 0 −1

1 −1 0

, T =

−0.5

−0.5

−0.5

.

Figure 1: Example of a really simple Hopfield network

Usually, an Hopfield Network has a weight matrix symmetric, zero-diagonal (no loop,

a unit does not influence on itself). We will only consider that case in our study.
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Convergence

3 Convergence

Hopfield networks converges to a local state. The energy function of a Hopfield network

in a certain state is :

E1 := −1

2
XtWX + TXt = −1

2

n∑
i=1

n∑
j=1

wijxixj +

n∑
i=1

θixi (2)

E2 := −1

2
XtWX = −1

2

n∑
i=1

n∑
j=1

wijxixj (3)

E1 can be useful as a general energy function. More often, we use E2. E2 is equivalent to

E1.

In order to take into account the threshold of the units, we add a artificial unit which is

in the activation state 1. This unit is linked to the other with the value of their negative

threshold. In that case, the new weight matrix will be

WG =

(
W T

T t 0

)

Those energy functions are helpful to determinate the actual state of the network.

Proposition 3.0.1 A Hopfield network with n units and asynchronous dynamics which

starts from any given network state, eventually reaches a stable state at local minimum of

the energy function.

Proof: As the dynamic is asynchronous, only one unit is evaluated at each time. If the kth

unit is selected, there is two options :

1. k does not change state

2. k changes of state (−1→ 1 or 1→ −1)

In the first case, the energy function remains the same, E(t + 1) = E(t). Else, the energy

function changes, according to the new excitation value (x′k)of the kth unit. The difference

of energy of the system is given by :

E1(x)− E1(x
′) = (−

n∑
j=1

wkjxjxk + θkxk)− (−
n∑
j=1

wkjxjx
′
k + θkx

′
k)

Since wkk = 0, E1(x)− E1(x
′) = −(xk − x′k) ∗ (

n∑
j=1

wkjxj − θk) (4)
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3.1 Link to graph theory

The second term of this equation : (
∑n

j=1wkjxj−θk) is the excitation ek of the kth unit. The

unit changed its state, so the excitation has a different sign than xk and −x′k (according to

(1)). Therefore, (4) is positive, which implies that E(x) > E(x′) So the energy will decrease

for every change, and since there is only a finite number of possible states, the network

should reach a state where the energy cannot decrease more, it will be a stable state.

Of course the stable state is not unique but it is certain that the system will converge. The

final state will depend on the input, the initial state of the system.

3.1 Link to graph theory

Theoreme 3.1 [1] Let G=(V,E) a weighted and undirected graph with W being the matrix

of its edges weights. Then the minimal cut problem is equivalent to max Qg where X =

{−1, 1}n, and

Qg :=
1

2

n∑
i=1

n∑
j=1

wijxixj

Proof: It is clear than Qg = −E1. So finding the max of Qg is equivalent to finding the

min of E. Let assign a variable x to every node i ∈ V .

Let W+ denote the sum of the weights of edges in G with both end points equal to 1,

and let W−− and W+− denote the corresponding sums of the other two cases.

Qg = (W++ +W−− −W+−)

which also can be written as

Qg = (W++ +W−− +W+−)− 2W+−

Qg =
1

2
(

n∑
i=1

n∑
j=1

wij)− 2W+− (5)

The first term in (5) is constant (equals the sum of eights of edges in G ).

Hence, maximization of Qg is equivalent to minimization of W+−. This maximization

is actually a weight of a cut in G with V1 being the set of nodes in G that correspond to

the units that are equal to 1 and V2 being the set of nodes in G that correspond to the

units that are equal to −1.

The theorem 3.1 does not consider that in Hopfield Network, each unit as a threshold,

which determine if a unit gets sufficient impulsion to change state. When we take into
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3.2 Minimum cut problem

account the thresholds of the units of the network, we can also prove that finding a stable

state will be equivalent to the minimal cut problem.

Theoreme 3.2 Let N = (W,T ) be a network with W being a n*n symmetric zero diagonal

matrix.

Let G be a weighted graph with (n+1) nodes, with its weight matrix WG being

WG =

(
W T

T t 0

)

The problem of finding a state V for which E is a global minimum is equivalent to

minimum cut problem on the corresponding graph G.

Proof: The graph G contains n+1 nodes. The last node included is connected to the other

ones by weighted edges. Those edges has a weight wn+1,i = θi.

If the state of the node n+ 1 is constrained to −1,

E1 :=
1

2

n+1∑
i=1

n+1∑
j=1

wijxixj =
1

2

n∑
i=1

n∑
j=1

wijxixj −
n∑
i=1

θixi

And then we can apply the theorem 3.1.The cut is symmetric, Qg(X) = Qg(−X). The

minimal cut can also be obtained by interchanging V1 and V−1. And the additional node

can be set to 1.

3.2 Minimum cut problem

Definition A cut C = (S,T) is a partition of V of a graph G = (V, E). The cut-set of a

cut C = (S,T) is the set (u, v) ∈ E | u ∈ S, v ∈ T . If the edges are weighted, the value of

the cut is the sum of the weights of the edges in the cut set.

The minimal cut problem is : find the cut of smallest ”edge weight”. The weight inside

the set must be greater than the weights between. A cut is minimum if the size of the cut

is not larger than the size of any other cut.

The simplistic way to find the minimal cut in an undirected weighted graph is (from [1]) :

1) Start with a random assignment V ∈ {−1, 1}n

2)Chose a node i ∈ {1...n} randomly

3) Compare the sum of the weights of the edges which belong to the cut and incident at

node k with the sum of weight of the other edges which are incident at node k. Move node

k to the side of the cut which will result in a decrease in the weight of the cut. If there is

equality, place the node k in V1

4) Go to step 2 ...
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3.2 Minimum cut problem

Theoreme 3.3 Let N=(W,T) be a network with T=0 and W be a symmetric zero-diagonal

matrix. If N is operating asynchronously then it will always converge to a stable state.

Proof: As said before, we can consider the operation of N as the running of the algorithm

above, for the min cut in N. In each iteration, the value of the cut is non increasing (ties

are broken), thus the algorithm will always stop resulting in a cut whose weight is a local

minimum.

A small example

Figure 2: A small example

For example, here, for the node circled in red, the outside attraction is higher than the

inner attraction (out : 6, in : 3). So the node will change state (−1 → 1) and the size of

the cut will decrease (-3).
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Application of Hopfield Network :

4 Application of Hopfield Network :

Neuronal network such as Hopfield Network have diverse applications. Generally they

are used for :

– Associative memories : the network is able to memorize some states, patterns.

– Combinatorial optimization : if the problem is correctly modelled , the network can

give some minimum and some solution but can rarely find the optimal solution.

Generally Hopfield Network are used as a � black box � to calculate some output resulting

from a certain self-organization due to the network. One of the most common application

is the Hebbian learning.

4.1 Associative Memory :

4.1.1 Hebbian Learning

In the Hebbian learning, the weight of the matrix results from a unsupervised learning,

this learning type is a reinforcement learning. We consider that we can ”impress” patterns

to the network in order to recognize one of them even if they are given in input with a lot

of noise. The learning phase consists in learning different pattern in order to set the weight

of the edges. For each pattern, we can resume the learning phase as :

– if two unit has the same activation state ({1, 1} {−1,−1}), the strength of the

connexion is reinforce (wij increase)

– if two unit has opposite activation state ({−1, 1}), the strength of the connexion

decline.

With those kind of rule, W will store patterns and then allow the network to converge

to them. Unfortunately, in that case we can not predict the convergence to the right pattern

(the network will still converge but we cannot predict to which stable state).

Learning

The weight matrix is modified according to the m pattern we want to store. Those

pattern represent the stable state we hope to reach. The weights are modified, for example :

wij ′ = wij + εxixj (6)

(6) is iterated various time for each pattern. xi and xj represent the state of the units i

and j of the pattern being learned.

ε is a constant to prevent the connection to became to big or to small (for example :

ε = 1
m)

When m = 1, we always converge to the impress pattern.
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4.2 Combinatorial Problem

When m > 1, we can only hope to converge to a known pattern if the different patterns

are as orthogonal as possible (the different patterns have to be really different). If they are

quite related it is possible to have a mix of different pattern.

It has been shown that Hopfield network can only stock ' 0.14 ∗ n patterns (n being

the number of units in the network.

4.2 Combinatorial Problem

Hopfield Network can be use for combinatorial problem. If a problem can be written as

an isomorphic form of the energy function, the network will be able to find a local minimum

of the function but will not guaranty that the solution is optimal.

Usually, in those problems the state of the units are code as (0, 1). We will use this

notation, it makes easier the notations.

4.2.1 The travelling salesman

The Travelling Salesman Problem (TSP) is an NP-hard problem in combinatorial op-

timization. Given a list of cities and their pairwise distances, the task is to find a shortest

possible tour that visits each city exactly once. The path has to pass through n cities : S1,

S2,...Sn. Each city should only be visited once, the salesman has to return to his original

point of departure and the length of the path has to be minimal.

The network can be represented as :

1 2 . . . n

S1

S2
...

Sn

Where rows are the city and columns are the time. The units are the entry of the matrix.

We suppose that the (n+1) column is the first one to keep the cycle. Also only one 1 should

appears for each row and column because the salesman only visit a city once and cannot

visit two city during the same time step.

The distance between the city Si and the city Sj is dij . To find the shortest path, the

network will minimize the function :

Etsp =
1

2

n∑
i,j,k

dijxikxj,k+1︸ ︷︷ ︸
L

+
γ

2
(
n∑
j=1

(
n∑
i=1

xij − 1))2 +
n∑
i=1

(
n∑
j=1

xij − 1)2))︸ ︷︷ ︸
Condition

(7)
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4.2 Combinatorial Problem

The first part of the equation, L, is the total length of the trip. xi,k = 1 means that the

city Si was visited at time k(otherwise xi,k = 0), so if xik = 1 and xi,k+1 = 1 (Si visited at

time k and Sj visited at time k+1), the distance will be added to the length L.

The second part represent the condition : one time in each city.
∑n

i=1 xij − 1)2 will be

minimal (=0) if for every i (here city), the sum over j (here time) is 1, meaning that a city

can only be visited once.
∑n

j=1(
∑n

i=1 xij − 1)2 will be minimal if for every time (k=1...n),

the salesman only visit one city.

γ is a parameter. Unfortunately, there is no other choice than using � trial and error � to

determine the value we want to set. If γ is small, the condition will not be respected. If γ

is really big, the system will be constraint a lot and L will be hidden (so the minimization

of Etsp will not consider the distance between cities).

The weights between units becomes :wik,jk+1 = −dij + tik,jk+1 where

tik,jk+1 =

{
−γ if the units belong to the same column or row

0 otherwise

and the threshold should be set to −γ
2 .

The network will not be able to find the good path. But still, the solutions are approxi-

mation. If the number of cities is important (> 100), there is several minima so we cannot

prove if the solution given by the system is a good approximation.

4.2.2 Discussion about efficiency

When we try to resolve combinatorial problem, Hopfield network can help if we are

able to express the problem as an energy function (and the aim will be minimizing this

function).

However, as said before, the optimality is not guaranteed ( and really often minimization

will failed) and the system could � fall � into a local minima. But this kind of network still

remains useful because if a unit is considered as a small processor, neural networks can

offer high power of computation and parallelism ( thanks to the asynchronous update of

the network).

It is also possible to improve the result by adding noise to the network dynamics, and

hope that it will allow the system to jump the energy ladder.

Finally, an other solution is to increase the possible solutions, meaning that instead of

using a discrete network, we can consider a continuous one.
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The continuous model

5 The continuous model

In the continuous model, the different states of the units can take any real value between

[0, 1].

The dynamic remains asynchronous and the activation function is a sigmoid.

xi = s(ui) =
1

1 + e−ui
(8)

For each unit, xi once the excitation ui changes slowly as :

dui
dt

= γ(−ui +
n∑
j=1

wijs(uj))

and the new energy function is

E = −1

2

n∑
i=1

n∑
j=1

wijxixj +
n∑
i=1

∫ xi

0
s−1(x)dx

The convergence can be prove (for more information : [2])
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Conclusion

6 Conclusion

Hopfiel network was a breakthrough in neural network and gave a important dynamism

to neural network’s research. A lot of result are available and nowadays neural system are

used in computer science. Their ability to learn by example makes them very flexible. They

are also very well suited for real time systems because of their parallel architecture.

Still, there are also critics. A. K. Dewdney wrote in 1997 Although neural nets do solve

a few toy problems, their powers of computation are so limited that I am surprised anyone

takes them seriously as a general problem-solving tool. Of course, a big problem is that

neural network needs a lot of training to be efficient.

Nevertheless, they are used in many different ways : image processing, pattern matching,

data deconvolution....
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Appendix

Hopfield Application :

This list is not exhaustive and more applications and the references can be found in

Artificial Neural Systems of Patrick K.Simpson([3]) :

Combinatorial Optimization Applications

Image processing

Signal processing

Graph Coloring Coloring, Graph Flow and Graph Manipulation

ANS programming

Data deconvolution

Pattern Matching

Solving equations and Optimizing functions

Traveling Salesman, Scheduling and Resource Allocation
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