
Chip-firing games on directed graphs

Anders Björner
Department of Mathematics,
Royal Institute of Technology
S-100 44 Stockholm, Sweden

László Lovász
Department of Computer Science,
Eötvös Loránd University,
Budapest, Hungary H-1088
and
Princeton University, Princeton, NJ 08544

(Revised, July 1992)

Abstract. We consider the following (solitary) game: each node of a directed graph
contains a pile of chips. A move consists of selecting a node with at least as many chips as
its outdegree, and sending one chip along each outgoing edge to its neighbors. We extend
to directed graphs several results on the undirected version obtained earlier by the authors,
P. Shor, and G. Tardos, and we discuss some new topics such as periodicity, reachability
and probabilistic aspects.

Among the new results specifically concerning digraphs, we relate the length of the
shortest period of an infinite game to the length of the longest terminating game, and also
to the access time of random walks on the same graph. These questions involve a study
of the Laplace operator for directed graphs. We show that for many graphs, in particular
for undirected graphs, the problem whether a given position of the chips can be reached
from the initial position is polynomial time solvable.

Finally, we show how the basic properties of the “probabilistic abacus” can be derived
from our results.

0. Introduction

Let G be a directed graph and let us place a pile of chips on each node of G. We
are allowed to change this arrangement of chips as follows: we select a node which has at
least as many chips as its outdegree, and move one chip along each outgoing edge to the

1

neighbor at the other end. We call this step firing this node. We can repeat this as long
as we find some node that can be fired. A (finite or infinite) sequence of firings is called a
chip-firing game. The sequence of points fired is called the record of the game.

There are a number of natural questions to ask: will this procedure be finite or infinite?
If finite, how long can it last? If infinite, how soon can it cycle? What role is played by
the choices that are made? How can one determine if a given distribution of chips can be
transformed into another given one by firings?

Chip-firing games were introduced, independently, at least twice. This is not counting
the relation to general Petri nets, of which they are (untypical) special cases, or the obvious
similarity with neural nets, which remains unexplored.

Engel [7,8] considered a chip-firing procedure he called the “probabilistic abacus”, as
a method of determining the absorbtion probabilities and access times of certain Markov
chains by combinatorial means. As we shall show in Section 6, the probabilistic abacus
may be viewed as a special case of chip firing in our sense, and its basic properties are easy
to derive in this setting.

Spencer [20] introduced a diffusion-like process on the line as a tool in analyzing a cer-
tain “balancing” game. His process may be viewed as chip firing on a very long undirected
path. Anderson, Lovász, Shor, Spencer, É. Tardos and Winograd [3] studied the process
in greater detail, and observed, among other things, the key property of independence of
the length of the game, and of the final position, from the special choices made during the
process. The procedure was extended from paths to general graphs by Björner, Lovász
and Shor [4], who especially studied the undirected case. G. Tardos [21] proved that if
an undirected game terminates at all, then it terminates in a polynomial number of steps,
while Eriksson [10] showed that a terminating directed game can be exponentially long.

The analysis of chip-firing games in this paper relies on two components. One is the
formal language approach developed in [4]: The records of all possible chip-firing games
from a given initial position give a language with rather strong exchange properties. The
other is the analysis of the Laplace operator of the directed graph, and its close connections
with chip firings and random walks on the graph. The connection with the Laplace operator
in the undirected case was already observed in straightforward since the Laplace operator
is not symmetric any more and we loose its spectral decomposition as a tool. As an
application of these methods, we show that a terminating game on a strongly connected
graph is not longer than a polynomial in its size times the length of the period of a periodic
game. This in a sense extends Tardos’s theorem to the directed case.

We describe an algorithm to decide if one position of chips can be transformed into
another given position by a sequence of firings. The algorithm is polynomial in the case of
undirected graphs without multiple edges, but exponential in general. The analysis also
implies that if a position on an undirected graph without multiple edges can be transformed
into another one, then it can be so transformed by a polynomial number of moves. This
does not remain true for directed graphs.

Chip-firing games are special cases of so called “vector addition systems” (defined
in Section 1), and some of our results can be generalized to this setting. In particular,
the reachability algorithm for chip positions (Section 5) improves some instances of the
decidability result of Kosaraju [14] and Mayr [15] for vector addition systems.

2

A different kind of chip-firing game, motivated by probabilistic and algebraic consider-
ations, has recently been introduced by Diaconis and Fulton [6]. A common generalization
of the game described here and that of Diaconis and Fulton appears in Eriksson [9].

We are grateful to N. Alon and P. Diaconis for helpful comments on an early draft of
this paper, and to a referee for suggesting improvements.

Preliminaries. All graphs we consider are finite and directed. Loops and multiple edges
are allowed. An undirected graph is identified with the directed graph obtained by re-
placing each edge between nodes i and j by a pair of oppositely directed edges between i
and j.

For a digraph (directed graph) G = (V, E) we let n = |V | and m = |E|. We denote
by d+(k) and d−(k) the outdegree and indegree of the node k, respectively (where the
digraph G = (V,E) is fixed), and by di,j the number of edges from i to j. Thus, d+(k) =∑

j dk,j , d−(k) =
∑

i di,k, and di,i is the number of loops at node i. Finally, we let
D = maxk∈V d+(k). Clearly, D ≤ m; and if G lacks multiple edges then D ≤ n.

For every vector v ∈ IRV , we denote

|v| =
∑

k∈V

|vk| and ‖v‖ =
∑

k∈V

d+(k)|vk|.

A digraph is eulerian if d+(k) = d−(k) for every node k. Every undirected graph is
eulerian, and we shall see that many of the results (but not all of the methods) extend
from the undirected to the eulerian case without any change.

A directed graph is strongly connected if there is a directed path from i to j, for
every ordered pair of nodes i and j. A connected eulerian graph is strongly connected. A
general digraph has a uniquely induced partition into strongly connected components. A
strongly connected component which is not connected to the outside by any edge leaving
the component will be called a sink component.

1. Chip firing, vector addition systems, and exchange languages

The following basic fact about chip-firing games was established in [4, Theorem 2.1
and Remark 3.4].

1.1 Theorem Given a directed graph G, and an initial distribution of chips, either every
legal game can be continued indefinitely, or every legal game terminates after the same
number of moves with the same final position. The number of times a given node is fired
is the same in every legal game.

The original proof was based on a formal language interpretation of chip-firing games.
This approach will be reviewed in this section, since we will make substantial use of it
again in this paper.

3

A simpler and more direct proof was found by Eriksson [9]. Eriksson actually proves
a more general version of Theorem 1.1, where only the outdegree and the number of loops
at each node are fixed in advance (so that one knows when a firing is legal and how many
chips should then be moved), and where each time a node has been fired the graph may be
freely redrawn within the given outdegree constraints. We will not use this added degree
of generality in this paper, but remark that it might be of interest for the study of Markov
chains with non-stationary transition probabilities.

Let V be a finite set. A language over V is any set of finite strings (or words) formed
by elements of V . A subword of a word α is any string obtained by deleting letters from α
arbitrarily. We denote by |α| the length of the word α and by [α] the score of α, i.e., the
vector a ∈ ZZV

+ whose i-th entry is the number of times letter i occurs in α. We denote by
|a| the `1-norm (sum of absolute values of entries) of the vector a. Thus |[α]| = |α|.

A word in a language is called basic if it is not the beginning section of any other
word.

A language L is called left-hereditary if whenever it contains a string, it contains all
beginning sections of the string. The language is called permutable if whenever α, β ∈ L,
[α] = [β], and αx ∈ L for some x ∈ V , we also have βx ∈ L. Finally, we say that L is
locally free if whenever αx ∈ L and αy ∈ L for two distinct elements x, y ∈ V , we also have
αxy ∈ L.

Locally free permutable left-hereditary languages have many nice properties. The
following proposition summarizes some of the results from Section 2 of [4].

1.2 Proposition Let L be a locally free permutable left-hereditary language. Then:

(i) If α, β ∈ L then there exists a subword α′ of α such that βα′ ∈ L and [βα′] is the
entry-wise maximum of [α] and [β].

(ii) If there is a basic word then the language is finite.

(iii) Every basic word has the same score (in particular, the same length).

(iv) If L is finite then two words α, β ∈ L have [α] = [β] if and only if

{γ : αγ ∈ L} = {γ : βγ ∈ L}.

Property (i), called the strong exchange property, expresses that the game is an anti-
matroid with repetition; for a discussion of this connection, see [4] or [5].

The following lemma, whose proof is trivial and omitted (see [4, Lemma 2.4]), shows
that these general results can be applied to chip-firing games.

1.3 Lemma. The records of legal games on a digraph starting from a fixed initial position
form a locally free permutable left-hereditary language.

It is clear that the score of a word in this language determines the position reached
by the corresponding game, and that such a word is basic if and only if that position is
terminal. Therefore Theorem 1.1 is a direct consequence of Proposition 1.2.

4

We will later need to consider some related languages associated with digraphs. For a
language L over alphabet V , and for a vector a ∈ ZZV

+, let L[a] denote the set of those words
in L that contain letter i at most ai times. It is straightforward to verify the following.

1.4 Lemma. If L is a locally free permutable left-hereditary language then so is L[a].
In connection with chip-firing games this means that the convergence property ex-

pressed by Theorem 1.1 remains valid if there is a capacity ai ∈ ZZ+∪{∞} associated with
each node i, and node i is allowed to be fired at most ai times in any legal game.

We conclude this section with describing a more general construction leading to locally
free permutable left-hereditary languages. This leads to discussing a real-valued version of
the chip-firing game.

Let C be a convex cone in IRn (with apex in 0), and let V be a finite set of vectors in
IRn. Let b be any fixed vector in C. Let L be the set of all sequences v1 . . . vk of vectors in
V for which b + v1 + . . . + vi ∈ C for every 1 ≤ i ≤ k. We call (C, V, b) a vector addition
system and L a vector addition language. Vector addition systems were introduced by
Karp and Miller [11] with the further requirement that b and the vectors in V have integer
components and that C is the first orthant of IRn. We will call such vector addition systems
integral. They are also known as “general Petri nets”, see Reisig [17] or Reutenauer [18].

It is obvious that every vector addition language is left-hereditary and permutable,
but in general not locally free. However, let us assume that the following holds:

(∗) for every facet aT x ≥ 0 of C, there exists at most one vector v ∈ V with aT v < 0.

1.5 Proposition If V and C have property (∗), then the vector addition language defined
by them starting at any b ∈ C is locally free.

Proof. Let v1 . . . vku ∈ L and v1 . . . vkw ∈ L. Assume that v1 . . . vkuw /∈ L, then we must
have that b+v1+. . .+vk+u+w /∈ C. So there exists a facet aT x ≥ 0 of C which is violated
by b+v1 + . . .+vk +u+w. But since this facet is satisfied by both b+v1 + . . .+vk +u and
b+v1+. . .+vk+w, we must have aT u < 0 and aT w < 0, which contradicts assumption (∗).

Any chip-firing language on a loop-free digraph is a special case of an integral vector
addition language, where C is the non-negative orthant in IRV , and for every node i we
take the vector vi defined by

(vi)j =
{

di,j , if j 6= i,

− d+(i), if j = i.

Clearly this vector system satisfies (∗).
The definition of a vector addition language and of property (∗) can easily be general-

ized so that chip-firing languages of digraphs with loops are special cases and Proposition 1.5
remains valid. We leave the details to the reader.

We now describe the real-valued analogue of the chip-firing game, which can be called
the mass-firing game. Here we have a fixed underlying digraph G with at most one edge

5

from i to j, for every pair of nodes i and j, and a fixed weight function (i, j) ∈ E 7→ di,j ∈
IR+. As initial position we have a real mass distribution on the nodes p : V → IR+. If
pi ≥ d+(i) =

∑
di,j then it is legal to fire node i, meaning that a new position is created

by removing d+(i) from the mass at i and adding di,j to the mass of each neighbor j.
A game is played by successive choices of legal moves. Propositions 1.2 and 1.5 show
that the IR-valued mass-firing game satisfies the basic convergence property expressed by
Theorem 1.1.

A ZZ-valued mass-firing game is clearly equivalent to our chip-firing game: just replace
each weighted edge di,j ∈ ZZ+ by that many parallel edges from i to j, and each mass
pi ∈ ZZ+ by that many chips. A CQ-valued mass-firing game is equivalent to a ZZ-valued one
by scaling. However, IR-valued mass-firing games are truly more general than chip-firing
games. The reason that we have chosen to remain in the ZZ-valued setting in this paper
is (in addition to the intuitive appeal of the chips model) that the analysis of periodicity,
which plays an important role here, would otherwise be more complicated. The IR-valued
mass-firing games might be of interest for the study of Markov chains with irrational
transition probabilities.

2. Finite termination

Let us recall from [4] the following facts about chip-firing games on undirected graphs,
which are very helpful in distinguishing finite and infinite games in the undirected case:
(i) [4] if a game is infinite, then every node gets fired infinitely often; (ii) [20] if a game is
finite, then there is a node that is never fired. Now, (i) extends to digraphs in the following
form without any difficulty. See Proposition 4.4 and Corollary 4.5 for an extension of (ii).

2.1 Lemma. In every infinite game on a digraph, every node in some sink component is
fired infinitely often.

Proof. If there is an edge from k to j, and node k is fired infinitely many times then
so is j (otherwise an infinite number of chips would build up on j after it has stopped
firing). Hence, if k is fired infinitely often then so are all nodes reachable from k. Since
some node k must be fired infinitely often and some sink component is reachable from k,
this completes the proof.

It should be observed that a sink (a node k with d+(k) = 0) according to the rules
can be fired at any time. This gives a degenerate firing which does not affect the current
position. It is often natural to view sinks as absorbing nodes that can never be fired, and
this can easily be achieved in our model by attaching sufficiently many loops to them.

Given a graph, we may ask: what is the minimum number of chips that allows an
infinite game? What is the maximum number of chips that allows a finite game? In [4]
it was shown that for an undirected graph with n nodes and m (undirected) edges, more
than 2m− n chips guarantee that the game is infinite; fewer than m chips guarantee that
the game is finite; and for every number N of chips with m ≤ N ≤ 2m−n, there are initial
positions that lead to an infinite game and initial positions that lead to a finite game.

6

For directed graphs, one of the above questions can still be answered trivially: if G
is a directed graph with n nodes and m edges, and we have N > m − n chips, then the
game is infinite (there is always a node that can be fired, by the pidgeon hole principle),
and N ≤ m− n chips can be placed so that the game terminates in 0 steps.

We don’t know how to determine the minimum number of chips allowing an infinite
game on a general digraph. This is not a function just of the number of nodes and edges,
even if the graph is eulerian. Consider a circuit of length n with doubled edges having
symmetric orientation. By the “undirected” result, it takes n chips to make an infinite
game. But if we reverse the orientation of half of the edges so that we get an oriented
circuit with every edge doubled, then 2 chips placed on the same node start an infinite
game.

The following bound can, however, be obtained.

2.2 Theorem. Let G be a strongly connected digraph and let h denote the maximum
number of edge-disjoint directed cycles in G. Then any game with fewer than h chips is
finite.

(Note that for the undirected case, this gives the exact result.)

Proof. The proof extends an idea of Tardos [21]. Let C1, . . . , Ch be a maximum family
of edge-disjoint directed cycles. While playing the game, let each cycle “capture” the chip
that first uses any of its edges; from then on, this chip has to move along the edges of the
cycle. This does not conflict with the game: when we fire a node, we make sure that those
chips which are captured should move along the right edges, and this is possible since the
cycles are edge-disjoint.

Now, by N < h there will be a cycle that does not capture any chip. This means that
the nodes of that cycle are never fired; but by Lemma 2.1, this means that the game is
finite.

A version of Theorem 2.2 for general digraphs is obtained by letting h be maximal
such that every sink component of G has h edge-disjoint directed cycles.

3. The directed Laplace operator and random walks

Let G = (V, E) be a directed graph and let L ∈ IRV×V be the matrix defined by

Lij =
{

dj,i, if i 6= j,

− d+(i) + di,i, if i = j.

We call L the Laplacian of the digraph G. Note that LT 1 = 0, so L is singular. If G is
eulerian then also L1= 0.

The Laplace operator of an undirected graph has received a considerable amount of
attention in connection with the study of expansion properties of graphs and the related
mixing properties of random walks on them, see e.g. Alon [2]. The directed case is less
studied.

7

For the analysis of the periodic properties of chip firing games in the next section we
will need a description of the null space of L, i.e., the space of all v ∈ IRV such that Lv = 0.
We will show that this space has a basis of non-negative vectors whose supports are the
sink components of G. For instance, if G is acyclic then the null space of L is precisely the
set of all vectors supported by sink nodes.

3.1 Proposition. Suppose that G = (V,E) has k sink components S1, . . . , Sk. Then there
exist vectors v1, . . . , vk ∈ ZZV such that

(i) {v1, . . . , vk} is a basis of the null space of the Laplacian of G,

(ii) (vi)j > 0 for j ∈ Si, and (vi)j = 0 for j /∈ Si,

(iii) (vi)j = 1 for all j ∈ Si, if Si is eulerian.

Proof. First assume that G is strongly connected. If D is the maximum outdegree of G,
then L+DI is a non-negative irreducible matrix, which has an all-positive left eigenvector
1 with eigenvalue D. Hence, by the Perron-Frobenius Theorem (see e.g. Minc [16]), D
is the largest eigenvalue of L + DI. Again, by the Perron-Frobenius Theorem, the right
eigensubspace of L+DI belonging to D is one-dimensional and spanned by an all-positive
eigenvector. But this eigensubspace is just the null space of L. Hence L has rank n−1 and
its null space is spanned by an all-positive vector, which (after scaling) can be assumed to
have integer components. In particular, if G is a connected eulerian digraph then the null
space of L consists of the vectors t1, t ∈ IR.

For a general digraph G we claim that no vector v with Lv = 0 can have a non-zero
entry outside the sink components. Assume that this is not so, and let T+ 6= ∅ [resp. T−]
be the set of nodes with positive [resp. negative] entry in V \(S1∪ . . .∪Sk), for some vector
v in the null space. Consider the equation

∑

j∈V

dj,ivj = d+(i)vi

(which is equivalent to Lv = 0), and sum it for all i ∈ T+:

∑

i∈T+

d+(i)vi =
∑

i∈T+

∑

j∈V

dj,ivj =
∑

j∈V

vj

∑

i∈T+

dj,i. (3.1)

On the right hand side it sufficies to sum over j ∈ T+ ∪ T−, since for j /∈ T+ ∪ T− either
vj = 0 or else j is contained in a sink component and there is no edge from j to i ∈ T+.
So we obtain ∑

j∈V

vj

∑

i∈T+

dj,i =
∑

j∈T+

vjd (j, T+) +
∑

j∈T−
vjd (j, T+),

where d(A, B) is the number of edges with tail in A and head in B. On the left hand side
we obtain ∑

i∈T+

d+(i)vi =
∑

i∈T+

vid (i, T+) +
∑

i∈T+

vid (i, V \T+),

8

and hence equation (3.1) implies

∑

j∈T−
vjd (j, T+) =

∑

i∈T+

vid (i, V \T+).

Here the left hand side is non-positive and the right hand side is non-negative, so they
must both be equal to zero. But this implies that d (i, V \T+) = 0 for every i ∈ T+, and
hence T+ contains a sink component, which contradicts its definition.

Since no edge connects two distinct sink components, the restriction of any vector in
the null space of L to any sink component is in the null space of the Laplacian of that
component. This component null space is, as we already showed, one-dimensional and
spanned by an all-positive vector. Let v1, . . . , vk be all-positive vectors spanning the null
spaces of the Laplacians of the sink components S1, . . . , Sk. To make them uniquely de-
fined, it will be convenient to scale the vi so that they have integral coordinates with no
common divisor. Abusing notation, we extend the vector vi outside Si by adding 0 en-
tries so that it becomes an element of ZZV . The family {v1, . . . , vk} now verifies all claims.

Remark: For a general non-negative matrix M with largest eigenvalue E, the Perron-
Frobenius Theorem [16] gives the existence of some non-negative right eigenvector associ-
ated with E. The proof method used for Proposition 3.1 can be adapted to show that if 1
is a left E-eigenvector, then there is a basis of the right eigensubspace of M belonging to
E that consists of non-negative vectors with pairwise disjoint supports.

There is an intrinsic connection between the Laplacian and random walks on digraphs.
We discuss this connection here not only because random walks are dynamic processes in-
timately linked to chip firing, but also because techniques from the theory of random walks
will be used in proving the bound in Proposition 3.6 below. For general facts concerning
discrete stationary Markov chains, see e.g. Kemeny and Snell [12] or Kemperman [13].

A random walk on a digraph G is a Markov chain y0, y1, . . . , assuming values from
V (G), so that given the value of yt, the probability that yt+1 = u is proportional to the
number of edges connecting yt to u. (We assume that d+(i) > 0 for every node i.) We
shall not go into the theory of random walks, which is particularly well developed in the
case of undirected graphs; we shall restrict ourselves to a trivial and a slightly less trivial
connection with the Laplacian.

A stationary distribution of the random walk on G is a probability distribution on
V (G) such that if yt has this distribution then so does yt+1. The following lemma is a
straightforward reformulation of this definition.

3.2 Lemma. A probability distribution (qi : i ∈ V (G)) is stationary if and only if the
vector x defined by xi = qi/d+(i) satisfies Lx = 0.

In particular, if G is a strongly connected digraph then there is a unique stationary
distribution on G, namely qi = d+(i) · xi, where x is the unique positive solution of the

9

equations Lx = 0, ‖x‖ = 1. Note that qi > 0 for all nodes i. If G is eulerian then
substitution shows that this unique vector is defined by xi = 1/m, and so qi = d+(i)/m,
where m is the total number of edges.

The access time (or, first passage time) acc(i, j) of node j from node i is the expected
number of steps in a random walk starting at i before it hits j. We denote by acc(G) the
maximum access time between any two nodes. If G is strongly connected then this number
is finite. In fact, the following upper bound can be derived by extending an old argument
of Aleliunas, Karp, Lipton, Lovász and Rackoff [1]:

3.3 Proposition. Let G be a strongly connected digraph with stationary distribution q.
Let i and j be two nodes connected by a directed path i = i0, i1, . . . , ih = j. Then

acc(i, j) ≤
(

h−1∑
r=0

d+(ir)
qir

)
− h.

Proof. Let e1 = i0i1, . . . , eh = ih−1ih be the successive edges of the given path. Consider
a random walk. Assume that we have to wait τ1 steps to see it pass the edge e1; after that,
we have to wait τ2 steps to see it pass the edge e2, etc. So after τ1 + . . . + τh steps, the
walk will be at node j, and hence E(τ1 + . . . + τh) is an upper bound on the access time.

By linearity of expectations, E(τ1 + . . . + τh) = E(τ1) + . . . + E(τh). It therefore
suffices to show that

E(τr+1) ≤ d+(ir)
qir

− 1.

We show this for r = 0. If d+(i) = 1 then clearly E(τ1) = 1, and qi0 ≤ qi1 implies that
qi = qi0 ≤ 1/2. Set d = d+(i) > 1 and q = qi. Starting from i, let E(k) denote the
expected number of steps we have to make before seeing i again, if we start through one
of the edges from i to k. Then (1/d)

∑
k di,kE(k) is the expected number of steps starting

from i until we return, which is clearly 1/q (see [12, Theorem 4.4.5]). Hence the expected
number of steps before return, given that we don’t start through e1, is

1
d− 1

[∑

k

di,kE(k)− E(i1)

]
≤ d

d− 1
1
q
− 2

d− 1
=

d− 2q

(d− 1)q
.

Now the probability that we will pass through e1 after the t-th visit is (1/d)
(
1− (1/d)

)t,
and hence the expected time for passing through e1 is at most

∞∑
t=0

1
d

(
1− 1

d

)t (
t

d− 2q

(d− 1)q
+ 1

)
=

d

q
− 1.

This proves the assertion.

3.4 Corollary. acc(G) ≤ ‖(1/qk)‖.

10

Proof.

acc(i, j) ≤
h−1∑
r=0

d+(ir)
qir

≤
∑

k∈V

d+(k)
qk

= ‖
(

1
qk

)
‖.

The next lemma expresses another connection between the access time and the Lapla-
cian.

3.5 Lemma. Let G be a strongly connected digraph and i, j ∈ V (G). Then there exists a
vector w ∈ IRV such that

Lw = ej − ei, w ≥ 0, wj = 0, (3.2)

and
acc(i, j) = ‖w‖

(Note that conditions (3.2), and in fact even the weaker conditions

Lw = ej − ei, min
k

wk = 0,

determine w uniquely.)

Proof. Let uk denote the expected number of times a random walk starting at node i
leaves node k before hitting node j. (In particular, we have uj = 0.) Then for every node
r 6= i, j we have ∑

k

dk,r uk/d+(k) = ur,

since uk/d+(k) is the expected number of times the random walk passes through any one
particular edge from k to r. For r = i and r = j we are off by exactly one at the beginning
and at the end, respectively, and hence

∑

k

dk,i uk/d+(k) = ui − 1,
∑

k

dk,j uk/d+(k) = uj + 1 = 1.

Hence wi = ui/d+(i) satisfies Lw = ej − ei, and trivially w ≥ 0 and wj = 0. Moreover,
‖w‖ =

∑
k uk is the expected number of steps a random walk starting at i makes before it

hits j, i.e., the access time.

Now we formulate the result, needed in the next section, for which this detour through
random walks was made.

3.6 Proposition. Let G be a strongly connected digraph and let w ∈ IRV with mink wk = 0.
Then

‖w‖ ≤ 1
2
|Lw| acc(G).

11

Proof. Let V + = {i : (Lw)i > 0} and V − = {i : (Lw)i < 0}. Write Lw =∑
j∈V +,i∈V − βij(ej − ei), with βij ≥ 0. This is clearly possible since

∑
i(Lw)i = 0. Let

w(ij) ∈ IRV be the unique solution of

Lw(ij) = ej − ei, w(ij) ≥ 0, , w
(ij)
j = 0,

and let w′ =
∑

j∈V +,i∈V − βijw
(ij). Then L(w′ − w) = 0, whence w′ − w = αv for some

strictly positive vector v, by Proposition 3.1. So, w′−w is either all-positive, or all-negative,
or zero. Since mink wk = 0 and w′ ≥ 0, this implies that w ≤ w′. Hence

‖w‖ ≤ ‖w′‖ =
∑

i,j

βij‖w(ij)‖ =
∑

i,j

βij acc(i, j)

≤

∑

i,j

βij


 acc(G) =

1
2
|Lw| acc(G).

4. Period length and game length

Let G = (V, E) be a digraph with Laplacian L. A vector v ∈ IRV is called a period
vector for G if it is non-negative, integral, and Lv = 0. The name comes from the obser-
vation that if v is a period vector in a chip-firing game on G, and every node i is fired vi

times, then the beginning and ending positions are the same. Such a game can therefore be
repeated any number of times. A period vector is primitive if its entries have no non-trivial
common divisor.

The discussion in connection with Proposition 3.1 implies the following.

4.1 Proposition. (i) Every strongly connected digraph G has a unique primitive period
vector vG. It is strictly positive, and all period vectors are of the form tvG, t = 1, 2,

(ii) If G is connected eulerian, then vG = 1.
(iii) In general, the period vectors of a digraph are exactly the vectors of the form∑k

i=1 λivi, λi ∈ ZZ+, where v1, . . . , vk are the primitive period vectors of the sink compo-
nents.

We call |vG| the period length per(G) of the strongly connected digraph G. We extend
this definition to all digraphs by defining per(G) as the sum of per(H) over all strongly
connected components H of G. For instance, if all strongly connected components of G
are eulerian then per(G) = n.

It follows from Lemma 3.2 that for the stationary distribution q on a strongly con-
nected digraph G and v = vG:

qi =
d+(i)vi

‖v‖ . (4.1)

12

Corollary 3.4 implies that

acc(G) ≤
∑

k

d+(k)
qk

= ‖v‖
∑

k

1/vk ≤ n‖v‖, (4.2)

and hence:

4.2 Proposition. For every strongly connected digraph,

acc(G) ≤ nD per(G).

(We suspect that the quotient nD we loose here is far too generous.)
Our aim in this section is to relate the period length of G to the maximal length of a

finite game playable on G. For this we will first derive a crucial combinatorial property of
the game language, which will also be important for the proof of Theorem 5.1.

4.3 Lemma. Let v be a period vector of the digraph G, and let α be a legal chip-firing
game (from some initial distribution). Let α′ be the subword obtained by deleting the first
vi occurences of node i in α for all i (if i occurs fewer then vi times, we delete all of its
occurences). Then α′ is a legal game.

Proof. Let α = x1 . . . xm and α′ = xi1 . . . xik
. We may assume (by induction) that

xi1 . . . xik−1 is legal. Let y = xik
. In game α, y has c ≥ d+(y) chips on it after the first

ik − 1 moves; let us see how this number compares with the number of chips on node y
after k − 1 moves in game α′. We have deleted v(y) occurences of y before the current
one, so y was fired v(y) fewer times, which leaves (d+(y)− dy,y)v(y) more chips on y. But
its neighbors have also been fired less often, so y receives fewer chips from them. More
exactly, from each node u, if y received a(u) chips from u after ik − 1 moves in the game
α then it receives max{0, a(u)− du,yv(u)} chips after k − 1 moves in the game α′. This is
a loss of min{du,yv(u), a(u)}. Hence the number of chips on y after the first k − 1 moves
in game α′ is

c+(d+(y)−dy,y)v(y)−
∑

u:u 6=y

min{du,yv(u), a(u)} ≥ c+d+(y)v(y)−
∑

u

du,yv(u) = c ≥ d+(y)

(by the definition of a period vector). Hence α′ is legal.

Let us call a non-negative vector a ∈ IRV reduced, if for every period vector v, there
exists a node i with ai < vi.

4.4 Proposition. Every score vector of a finite game is reduced.

Proof. Assume α is a legal game with non-reduced score vector a. Then Lemma 4.3 gives
a legal game α′ with score vector a− v for some period vector v. Now, by Proposition 1.2,
α′ can be augmented from α to a legal game α′β with the same score as α. So α′ and α′β

13

lead to the same position (since [β] = v is a period vector), and hence α′ββ . . . is a legal
infinite game. Also α and α′β lead to the same position (having the same score), so also
αββ . . . is a legal infinite game.

Since eulerian graphs have period vector 1, the following generalization of Tardos’
result for undirected graphs can be deduced.

4.5 Corollary. If a game on an eulerian graph is finite then there is a node that is never
fired.

For every strongly connected digraph G, we have introduced two parameters: the
access time acc(G) and the period length per(G). Both in some sense measure the speed
of a certain “diffusion” process. A further such parameter is the game length game(G),
the maximum length of any finite game on the graph. For an undirected graph, the period
length is n, the access time is O(n3), while (by Tardos’s theorem) the game length is O(n4).

We are going to show that the game length exceeds the period length by at most
a polynomial factor, thereby extending Tardos’s theorem to directed graphs (up to the
degree of the polynomial). We conjecture that a reverse such inequality also holds.

4.6 Lemma. Let G be a strongly connected digraph with primitive period vector v, and let
a be a reduced non-negative vector. Then

‖a‖ ≤ (1 +
n

2
|La|)‖v‖.

Proof. By the definition of reducedness, there exists a number 0 ≤ λ < 1 such that
mink ak − λvk = 0. Hence by Proposition 3.6,

‖a− λv‖ ≤ 1
2
|L(a− λv)| acc(G).

Now here L(a− λv) = La, by the definition of the period vector, so using (4.2) we get

‖a‖ ≤ λ‖v‖+
1
2
|La| acc(G) ≤ ‖v‖+

1
2
|La|n‖v‖.

4.7 Lemma. Let a be the score vector of a game with N chips on a digraph G. If a is
reduced, then |a| < 2nND per(G).

Proof. Let p and q be the initial and final positions of the game. Then |La| = |q−p| ≤ 2N ,
since |p| = |q| = N . By Lemma 4.6, if G is strongly connected then

|a| ≤ ‖a‖ ≤ (1 + nN)‖v‖ < 2nND per(G). (4.3)

We will derive a similar bound for all digraphs. For each strongly connected component
H of G, let aH be the restriction of the vector a to the positions in H. So |aH | is the

14

number of firings in that component. We may assume that if a component H1 can be
reached from a component H2 on a directed path, then we execute all firings in H2 before
firing anything in H1: firing a node of H1 never helps in H2.

If H is a sink component, then

|aH | < 2nND per(H) (4.4)

follows from (4.3). If H is not a sink component, then H has a non-empty set U of nodes
which are connected to some node outside H. Now, any time a node in U is fired, at least
one chip is lost from H forever, so nodes in U can be fired at most N times. All firings in
H form a game in H (the chips sent out from a node u ∈ U are considered to be left on
u). Hence we can estimate |aH | similarly as in Lemma 4.6: let vH be the primitive period
vector of H, and λ ≥ 0 such that mink∈H(ak − λ(vH)k) = 0. Then by our observation
about the elements of U , we have λ ≤ N . By Propositions 3.6 and 4.2,

‖aH − λvH‖ ≤ 1
2
|LH(aH − λvH)| acc(H) =

1
2
|LH(aH)| acc(H) ≤ NnD per(H),

and hence

|aH | ≤ ‖aH‖ ≤ ‖aH − λvH‖+ λ‖vH‖ ≤ nND per(H) + ND per(H) < 2nND per(H).
(4.5)

Summing (4.4) or (4.5) over all strongly connected components, we obtain (4.3) for an
arbitrary digraph.

4.8 Theorem. For every directed graph,

game(G) ≤ 2nmD per(G).

Proof. Let us consider a finite game of maximal length and with score vector a. By
Proposition 4.4 the vector a is reduced, and it was noted in Section 2 that N ≤ m − n.
Hence Lemma 4.7 gives: game(G) = |a| < 2n(m− n)D per(G).

4.9 Corollary. If every strongly connected component of G is eulerian then

game(G) ≤ 2n2mD,

and if furthermore G has no multiple edges then

game(G) ≤ 2n5.

15

We have seen two basic relations between the three “diffusion” parameters we consid-
ered:

acc(G) ≤ nD per(G) and game(G) ≤ 2nmD per(G).

Is there any other relation of this nature?
The access time can be much smaller than the other two quantities. Consider a 2-

connected undirected graph G and orient one edge (leave the rest two-way). Then one
can argue that the access time remains polynomial; on the other hand, the example of
Eriksson [10] is of this type (see Figure 1), and for it the game length and period length
are exponentially large.

We do not know if the game length can ever be substantially smaller than the period
length. As mentioned, per(G) can be exponentially large. However, the following bound
limits the size of per(G), and hence also of the other two parameters.

4.10 Proposition. For every digraph,

per(G) < (2D)n−1.

Proof. Assume first that G is strongly connected. Since rankL = n − 1 we can find
a non-zero minor of size (n − 1) × (n − 1), say the minor Li,j obtained by deleting row
i and column j from L. The vector u = (u1, . . . , un) defined by uk = (−1)i+kLi,k is
integral, non-zero, and satisfies Lu = 0, and is therefore (up to sign) a period vector.
Furthermore, by Hadamard’s inequality (|det(A)| is at most the product of the lengths of
the column vectors of A) each component of u has magnitude less than (

√
2D)n−1. Hence,

per (G) < n(
√

2D)n−1 < (2D)n−1.
The general case is obtained by summing the inequality over all strongly connected

components of G.

5. Reachability of positions

Our purpose here is to prove the following decidability result. As will be discussed
at the end of the section, this is a special case of a class of decision problems whose
decidability is known from the work of Kosaraju [14] and Mayr [15]. However, the nature
of our algorithm and the complexity bounds obtained are new.

5.1 Theorem. Given two positions p and q of N chips on a directed graph G, it is
decidable in O(n2D2 per(G) log[nND per(G)]) time whether q can be reached from p via
a sequence of chip firings.

To describe an instance of the problem we need n2 log(D + 1) + 2n log(N + 1) bits,
where the first term describes the digraph G and the second term the two positions p and
q. So except for the factors of D2 and per(G), the running time is polynomial in the input
length. Note that, by Proposition 4.10, log(D per(G)) ≤ n log(2D).

16

5.2 Lemma. Suppose that some chip-firing game leads from position p to q. Then among
the score vectors of such games there is a unique one which is reduced.

Proof. By Lemma 4.3, if there is any legal game leading from p to q, then there is one
for which the score vector a is reduced. This vector a satisfies

La = q − p, (5.1)

as does the score vector of any game leading from p to q.
We show that this reduced score vector is unique. For, let a1 and a2 be two reduced

non-negative integer solutions of (5.1). Then L(a1− a2) = 0, so by Proposition 3.1 we can
write a1−a2 =

∑
i λivi, where the vi are primitive period vectors for the sink components.

By reducedness, we have |λi| < 1; but the λi are integers since a1 − a2 is integral and vi

is primitive. Hence λi = 0 for all i, i.e., a1 = a2.

The following is a consequence of Lemmas 4.7 and 5.2.

5.3 Lemma. If some chip-firing game leads from position p to q, then q can be reached
from p with fewer than 2nND per(G) firings.

Proof of Theorem 5.1. We can determine the reduced score vector a of a (possible)
game leading from p to q by solving (5.1) and also computing the period vectors of G.
By subtracting or adding appropriate multiples of them to a, we may assume that a is
reduced. If no reduced a is obtained this way we conclude that q is not reachable from p.

We want to decide whether a is the score vector of a legal game with beginning position
p, since this is the case if and only if q is reachable from p. Let L denote the language
consisting of all legal games from beginning position p, and L[a] the sublanguage consisting
of all words in L that use letter i at most ai times. By Lemma 1.4, L[a] is also a locally
free permutable hereditary language, which implies that its maximal words can be found
“greedily”, i.e. without backtracking.

Now L[a] has rank at most |a| and it has rank |a| if and only if a itself is the score
vector of a legal game beginning at p. So finding any maximal word in L[a] tells us whether
a is the score of any legal game starting at p. Such a word can be found in at most |a|
steps by successive firing of legal vertices.

We will be a bit careful, however, in finding this word since our upper bound on
|a| contains the factor N , the number of chips, and this may be arbitrarily large. Note,
however, that if N is large then we can carry out many firings simultaneously. Let, at
any stage of the game, âi denote the number of times node i has to be fired later on
(equivalently, ai − âi is the number of times i has been fired). Let Ni denote the number
of chips on node i at that stage. We call a node with âi = 0 frozen, and we denote by N̂
the number of chips on unfrozen nodes. We can take off the chips from the frozen nodes
and get, by Lemma 4.7 that the remaining number of firings is

|â| < 2nDN̂ per(G).

Now there is an unfrozen node, say node i, containing at least N̂/n chips. If Ni ≥ âid
+(i),

then we can fire i simultaneously âi times, and thereby freeze it. Otherwise, we can fire

17

node i simultaneously [Ni/d+(i)] times, and reduce |â|, the remaining number of firings,
by at least

Ni

d+(i)
≥ N̂

nD
>

|â|
2n2D2 per(G)

.

So the remaining number of firings is reduced by a factor of 1− 1/(2n2D2 per(G)).
Now, the number of steps in which a new node is frozen is at most n. If there are

t + 1 steps of the other kind, then

|a|
(

1− 1
2n2D2 per(G)

)t

≥ 1,

which implies that

t < 2n2D2 per(G) log |a| < 2n2D2 per(G) log(2nND per(G)).

Since this expression dominates the number of steps needed for computing the reduced
score vector a, which is O(n3), the proof is complete.

5.4 Corollary. Given two positions p and q of chips on an eulerian directed graph without
multiple edges (e.g. a simple undirected graph), it is polynomial time decidable whether q
can be reached from p.

We suspect that for a general digraph, the reachability problem is NP-hard (or perhaps
even harder: we don’t see that it would be either in NP or co-NP).

One can, of course, state the reachability problem for vector addition systems: given
a vector addition language L, as defined in Section 1, and a vector a ∈ C, is there a
sequence v1 . . . vk ∈ L such that b + v1 + · · · + vk = a? This is a well-known problem,
which was shown by Kosaraju [14] and Mayr [15] (see also [18, Ch. 5]) to be decidable
for every integral vector addition system. The computational complexity of such decision
procedures was left open by them. Our results can be extended to vector addition systems
with property (∗); we omit the details.

6. The “Probabilistic Abacus”

Consider a directed graph G with h sink nodes t1, . . . , th, and a further specified
non-sink node s. Let us assume that there are no other sink components. We start a
random walk at s; this terminates when it reaches one of t1, . . . , th. We are interested
in the probability pi that it terminates at sink ti, and in the access time acc(s, ti). The
probability pi can, of course, be computed using the theory of Markov chains and basic
linear algebra; and an elaborate theory exists for computing the access (or passage) time,
see Kemeny and Snell [12] or Kemperman [13]. We now want to discuss a combinatorial
procedure for these tasks, which exhibits a further connection between chip firing and
random walks.

18

The “probabilistic abacus”, due to A. Engel [7,8], is a chip-firing procedure on G,
in which the terminal nodes t1, . . . , th are never allowed to be fired (this can be achieved
in our usual game model by attaching sufficiently many loops to them). We start with
placing d+(k) − 1 chips on each non-sink node k. We call this the “critical position”; no
node can be fired. Now place an additional chip on s and play the chip firing game until
it terminates. Call this the first phase. If it terminates with the critical position on the
non-sink nodes, stop; otherwise, feed a new chip to s and play the game until it terminates;
call this the second phase, etc. We go on like this as long as the critical position does not
reappear on the non-sink nodes; if it does then we stop.

6.1 Theorem. (i) The probabilistic abacus terminates after at most Dn−h phases.
(ii) The number of phases can grow exponentially with n.

Assume that we needed M phases, and that a is the score vector of a complete run of
the probabilistic abacus. Let Mj be the number of chips on sink tj at termination. Clearly,∑h

j=1 Mj = M .

6.2 Theorem. (Engel [7,8]) (i) pj = Mj/M , for j = 1, . . . , h.
(ii) If h = 1, then acc(s, t1) = ‖a‖/M .

Although the finite termination of the probabilistic abacus is necessary for its per-
formance, there seems to be no previously available proof for this property. As we will
show, it follows rather easily from Theorem 1.1. Engel [8] writes: “We have proved all our
claims with one exception: We have not shown that the critical load always recurs. For
this conjecture we have only the strong evidence of about 1000 examples.” At the end of
the same paper there is a “Note added in proof” announcing that L. Scheller has found
a proof of the critical load conjecture. The note mentions a main idea of Scheller’s proof
(the “freezing” of chips) which is also one of the key ingredients of our proof below. A
proof was also independently found by Rimányi [19], at about the same time as ours. We
have not been able to find a complete proof published by L. Scheller or by anyone else.

While one run of the probabilistic abacus simultaneously computes the absorbtion
probabilities at all the sinks t1, . . . , th by part (i) of Theorem 6.2, part (ii) shows that a
separate run is needed for each sink (with the others deleted) to compute the access times.
One way to speed up the performance of the probabilistic abacus is to use simultaneous
firings, as we did in the proof of Theorem 5.1 (if node k has d+(k)q+r chips and r < d+(k)
then move q chips at once along each edge leaving k). This is actually the firing rule given
by Engel. While this speed-up will somewhat shorten each phase, it does not affect the
total number of phases. One can also ask how long an individul phase of the abacus
can be. For this we point to the general bound given by Theorem 4.8. It follows from
Theorems 4.8, 4.10 and 6.1 that a complete run of the probabilistic abacus has at most
2nmD per(G)Dn−h ≤ n2(2D2)n firings.

Proof of Theorem 6.1 (i). The existence of sinks t1, . . . , th that may not be fired, and
the absence of other sink components, shows by Lemma 2.1 that every chip game on G
is finite. In particular, every phase of the probabilistic abacus is finite. The terminating
position of each phase has at most d+(k)− 1 chips on each non-sink node k, so there are
at most Dn−h such positions. Therefore, after at most Dn−h phases some terminating

19

position q on the non-sink nodes must reappear. Suppose that it takes M phases to play
from the first appearance of q to the second. (Note that by Theorem 1.1 the sequence of
these terminating positions is predetermined and independent of how each phase is played.)

We now construct a new graph G′ from G by creating a new node r and joining it to
s by a directed edge. Place M chips on r and d+(k)− 1 chips on each “old” non-sink node
k. Then the first M phases of the abacus can be mimicked as a single chip game on G′,
governed by the rule that r is fired only when necessary. Call this Game 1.

But we can also play a chip game on G′ from the given position as follows: we “freeze”
d+(k) − 1 − q(k) of the chips on each “old” node k, and then mimic with the remaining
chips the M phases that lead from the first appearance of the position q to the second.
Call this Game 2. By construction, Game 2 terminates with the critical position on the
non-sink nodes and with no chips on node r. Therefore by Theorem 1.1 the same is true
about Game 1. But this means that the critical position will reappear after M phases of
the probabilistic abacus.

Proof of Theorem 6.2. For part (i) we want to view the whole run of the probabilistic
abacus as one period of a single chip firing game. For this, enlarge G to a new graph G′′

by creating a new node r, connect r to s by a directed edge and connect each tj to r by a
directed edge. The initial position on G′′ will be the critical position on the “old” non-sink
nodes and one single chip on r. If we play according to the rule: (i) only fire r if we must,
(ii) fire each tj whenever we can, then we will exactly imitate the probabilistic abacus.
When after M phases the critical position returns, we have completed one period of the
game on G′′. Furthermore, the number of times tj was fired is the same as the number
Mj of chips accumulating on tj in the probabilistic abacus. So the numbers Mj are the
tj-entries of a period vector for the strongly connected digraph G′′.

It is easy to relate random walks on G to random walks on G′′: whenever a random
walk on G terminates, it goes on in G′′ by returning to r and then to s, and starting again.
Hence (by doing this for very long) we see that the pj are proportional to the probabilities
of the nodes tj in the stationary distribution of the random walk on G′′. By (4.1) these
are proportional to the corresponding entries of any period vector, and hence to the Mj .
This proves part (i).

In the situation of part (ii) there is only one sink t = t1. In addition to the critical
position, place M extra chips on node s. Then the whole run of the probabilistic abacus
can be seen as a single game on G with score vector a. This game results in the net
transport of the M extra chips from s to t, so La = M(et− es). Therefore by Lemma 3.5:
acc(s, t) = ‖a‖/M . (For this lemma, G is supposed to be strongly connected. This can

be arranged by adding a directed edge from t to s, which is otherwise harmless.)

Proof of Theorem 6.1 (ii). Consider the digraph G in Figure 1 with n + 1 nodes, n
even. Removal of the sink t leaves a subgraph G′, which has been studied by Eriksson [10].
Eriksson showed that an exponentially long chips game can be played on G′, and the idea
here is to use his analysis to show that the probabilistic abacus on G has exponentially
many phases.

20

Figure 1. The graph G, |V | = n + 1.

All edges of G are bidirected, except for the edges su0 and st. Chips distributions on
G will be denoted by sequences of the type (xs; . . . , xu−2 , xu−1 , xu0 , xu1 , xu2 , . . . ; xt), where
xk is the number of chips on node k. Note that d+(s) = n, d+(u0) = 2, and d+(ui) = 3 for
all i 6= 0.

We will now describe a few moves of the first phase of the probabilistic abacus on G:
Start: critical position (n− 1; . . . , 2, 2, 1, 2, 2, . . . ; 0)
Add one chip to s and fire (0; . . . , 3, 3, 2, 3, 3, . . . ; 1)
Fire each ui once (n− 2; . . . , 2, 2, 2, 2, 2, . . . ; 1)
Fire the ui’s clockwise, (2n− 4; . . . , 1, 2, 0, 2, 1, . . . ; 1)

beginning and ending with u0

Fire s (n− 4; . . . , 2, 3, 1, 3, 2, . . . ; 2)
Fire the ui’s clockwise, (2n− 6; . . . , 1, 2, 1, 2, 1, . . . ; 2)

beginning with u1 and ending with u0

The position on the subgraph G′ at this stage is called P1 by Eriksson [10]. From
here on we continue playing in the manner described by him, with the additional rule that
whenever s should be fired but has too few chips (due to the loss of chips to t) then new
chips may be added to s to make its firing legal. Of course, each time a new chip is added a
new phase of the probabilistic abacus on G is started. Eriksson shows that this procedure
will end with the critical position on G′. Adding one more chip to s (one more phase) we
get back the critical position on the non-sink nodes of G, and Eriksson’s construction is
such that it cannot have reappeared before.

The number of phases of the complete run of the abacus just described is equal to
the number of new chips fed to s, which is equal to the number of chips on the sink t at
termination, which is in turn equal to the number of times node s was fired. The number
of firings of s from P1 to termination in the abacus on G is by construction equal to the
number of firings of s from P1 to termination in Eriksson’s game on G′. In both cases
there are 2 additional firings (to reach P1), so the number of firings of s can be computed
for Eriksson’s game on G′ instead of for the abacus on G. This will be done with a method
that parallels Eriksson’s computation of the total number of firings on G′.

21

Let Pk be the position on G′ with 2 chips on nodes ui for i = ±1,±2, . . . ,±k, one chip
on all other ui’s and 2n− 4− 2k chips on s. Eriksson describes how to play from Pk−1 to
Pk, k = 1, 2, . . . , until the final (critical) position P(n−2)/2 is reached. If bk is the number
of firings of s when going from Pk−1 to Pk, then b1 = 2 and bk = 2bk−1 +

∑k−2
i=1 bi, k ≥ 2.

Hence, the total number of firings of s when going from P0 to Pk, call it ck = b1 + · · ·+ bk,
satisfies the linear recursion

ck − 3ck−1 + ck−2 = 0 , c0 = 0, c1 = 2,

which has solution
ck =

2√
5

(τ2k − τ−2k) , k ≥ 0,

where τ = (1 +
√

5)/2. Therefore, the number of times s is fired when going from P0 to
P(n−2)/2, which equals the number of phases of the probabilistic abacus on G, is

c(n−2)/2 =
2√
5

(τn−2 − τ2−n) ∼ 2√
5
τn−2.

22

References

1. R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. W. Rackoff, Random walks,
universal travelling sequences, and the complexity of maze problem, Proc. 20th Ann.
Symp. on Foundations of Computer Science, pp. 218–223, 1979.

2. N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986), 83–96.
3. R. J. Anderson, L. Lovász, P. W. Shor, J. Spencer, É. Tardos, and S. Winograd, Disks,

balls, and walls: analysis of a combinatorial game, Amer. Math. Monthly 96 (1989),
481-493.

4. A. Björner, L. Lovász, and P. W. Shor, Chip-firing games on graphs. European J.
Comb. 12 (1991), 283–291.

5. A. Björner and G. M. Ziegler, Introduction to greedoids, in: Matroid Applications (N.
White, ed.), Cambridge Univ. Press, Cambridge, pp. 284–357, 1992.

6. P. Diaconis and W. Fulton, A growth model, a game, an algebra, Lagrange inversion,
and characteristic classes, preprint, 1991.

7. A. Engel, The probabilistic abacus, Educ. Stud. in Math. 6 (1975), 1–22.
8. A. Engel, Why does the probabilistic abacus work? Educ. Stud. in Math. 7 (1976),

59–69.
9. K. Eriksson, A game of chips and cards, preprint, 1990.

10. K. Eriksson, No polynomial bound for the chip-firing game on directed graphs, Proc.
Amer. Math. Soc. 112 (1991), 1203–1205.

11. R. M. Karp and R. E. Miller, Parallel program schemata, J. Computer & System Sci.
3 (1969), 147–195.

12. J. G. Kemeny and J. L. Snell, Finite Markov Chains , Van Nostrand, Princeton, NJ,
1960.

13. J. H. B. Kemperman, The passage problem for a stationary Markov chain, Univ. of
Chicago Press, Chicago, 1961.

14. S. R. Kosaraju, Decidability of reachability in vector addition systems, Proc. 14th
Ann. ACM Symp. on Theory of Computing, pp. 267–281, 1982.

15. E. W. Mayr, An algorithm for the general Petri net reachability problem, SIAM J.
Comput. 13 (1984), 441–460.

16. H. Minc, Nonnegative matrices, J. Wiley & Sons, New York, 1988.
17. W. Reisig, Petri Nets: An Introduction, Springer-Verlag, New York, 1985.
18. C. Reutenauer, Aspects mathématiques des réseaux de Petri, Masson, Paris, 1988.
19. R. Rimányi, unpublished manuscript, 1988.
20. J. Spencer, Balancing vectors in the max norm, Combinatorica 6 (1986), 55–66.
21. G. Tardos, Polynomial bound for a chip firing game on graphs, SIAM J. Discrete

Math. 1 (1988), 397–398.

23

