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Abstract. Hierarchical decompositions of graphs are interesting for algo-
rithmic purposes. There are several types of hierarchical decompositions.
Tree decompositions are the best known ones. On graphs of tree-width at
most k, i.e., that have tree decompositions of width at most k, where k is
fixed, every decision or optimization problem expressible in monadic second-
order logic has a linear algorithm. We prove that this is also the case for
graphs of clique-width at most k, where this complexity measure is asso-
ciated with hierarchical decompositions of another type, and where logical
formulas are no longer allowed to use edge set quantifications. We develop
applications to several classes of graphs that include cographs and are, like
cographs, defined by forbidding subgraphs with “too many” induced paths
with four vertices.
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1 Introduction

The class of Ps-sparse graphs was introduced by Hoang in his doctoral dissertation
[Hoa85], as the class of graphs for which every set of five vertices induces at most
one Py (by a P4 we mean a path on four vertices). This class contains the class
of Ps-reducible graphs introduced by Jamison and Olariu in [JO89], as the class of
graphs for which no vertex belongs to more than one induced P,. These two classes
contain the class of cographs, and have been studied intensively in the recent years.
Such a study is motivated by the practical applications of these classes in areas such
as scheduling, clustering and computational semantics. In [JO89] and in [JO92b] a
unique tree presentation is proposed for the classes of Ps-reducible and P,-sparse
graphs respectively. These tree presentations are used later in [JO95a] and in [JO92a]
to develop O(|V| + |E|) time recognition algorithms for these classes. In [JO95b)
O(|V] + |E|) time algorithms are proposed for solving five optimization problems
on the class of P,-sparse graphs: maximum size clique, maximum size stable set,
minimum coloring, minimum covering by cliques, and minimum fill-in. If the tree
presentation of the P,-sparse graph is also given as input, then the running time of
these algorithms is just O(|V|) independently of the number of edges in the graph.
Jamison and Olariu conclude their paper with

Problem 1 [JO95b]. Find other optimization problems which can be solved in
linear time on the class of P,s-sparse graphs.

Giakoumakis and Vanherpe in [GV97] took up this line of research. They used the
modular decomposition of a graph, to obtain O(|V| + | F|) time algorithms for the
maximum weight clique and for the maximum weight stable set problems in the case
of P,-sparse graphs, for the optimal weighted coloring and for the minimum weight
clique cover problems in the case of P,-reducible graphs. If the modular decompo-
sition of the graph is given as input, then the running time of these algorithms is
just O(|V)).

Giakoumakis and Vanherpe also introduced in [GV97] the classes of extended
P,-sparse and extended Pi-reducible graphs, and showed how to extend their results
to these two classes of graphs, with minimal additional work.

Babel and Olariu introduced in [BO95] the class of (q,t) graphs. A (q,t) graph
is a graph in which no set with at most ¢ vertices is allowed to induce more than ¢
distinct Py’s. Clearly, it is assumed that ¢ > 4. The class of (¢, ¢ —4) graphs extends
the class of Py-sparse graphs. In particular (5, 1) graphs are exactly the Ps-sparse
graphs and (4, 0) graphs are exactly the cographs.

Rusu, cf. [GRT97], introduced the class of Ps-tidy graphs which extends the
class of extended Ps-sparse graphs. Let G be a graph and X be an induced Ps. A
vertex v outside X is a partner of X if X and v together induce two P,’s. A graph
is P4-tidy if any induced P4 has at most one partner.

In Section 3 we show that a wide class of decision and optimization problems
on the class of Py-sparse graphs is solvable in time O(|V| + |E|) or in time O(|V])
assuming that the modular decomposition of the graph is given as input. These
problems are characterized by their expressibility in certain variations of Monadic
Second Order Logic, M SOL(7 ,) (for decision problems) or LinEM SOL(r ) (for
optimization problems), the study of which was initiated by B. Courcelle and others
in a sequence of papers [Cou90, Cou91, Cou94b, Cou95, Cou96, CM93, ALSI1].
Roughly speaking, M SOL(r;) is Monadic Second Order Logic with quantification
over subsets of vertices, but not of edges; M SOL(7 ;) is the extension of M SOL(m)
by unary predicates representing labels attached to the vertices. LinEM SOL(m )
is the extension of M SOL(r ) which allows to search for sets of vertices which are
optimal with respect to some linear evaluation function. The precise definitions will
be given in Section 2. A typical MSOL(ry) decision problem is k-colorability for



fixed k. The maximum weight clique and the maximum weight stable set problems
are LinEMSOL(7 ,) definable. The optimal (weighted) coloring problem is not
LinEM SOL(t ;) definable, cf. [Lau93].

A labeled graph is a graph with labels associated with its vertices, such that each
vertex has exactly one label. A p-graph is a simple undirected loop-free labeled
graph with vertex labels in {1,2,... p}. An unlabeled graph is considered as a
1-graph. In Section 3 we show that:

Theorem 2. Let p be a fized integer. Every LinEM SOL(t ) problem on the class
of Ps-sparse p-graphs can be solved in time O(|V| + |E|) and the corresponding
algorithm can be derived constructively from its LinEM SOL(m p) definition. If the
modular decomposition of the graph is given as input then the running time of the

algorithm is O(|V]).

Note that Theorem 2 also holds for any subclass of the class of Ps-sparse graphs,
such as the classes of Ps-reducible graphs and cographs.

For example, in the terminology and numbering of [GJ79], all the following
problems are LinEM SOL(7 ,) definable. So we have:

Corollary 3. The following problems can be solved in linear time on the class of
Py-sparse p-graphs (and any of its subclasses): vertexr cover [GT1], dominating set
[GT2], domatic number for fized k [GT3], k-colorability for fired k [GT4], partition
into cliques for fivred k [GT15], clique [GT19], independent set [GT20] and induced
path [GT23].

In Section 3 we prove Theorem 2 using M SO L-translation schemes and their
induced transductions. The idea is to present a graph G by a tree built over some of
its subgraphs (and called its modular decomposition) and to transfer the considered
optimization problems on G into optimization problems on its modular decompo-
sition. Since the modular decompositions of P,-sparse graphs can be formalized as
labeled partial 2-trees and can be constructed in linear time, and since Lin EM SOL
optimization problems have linear algorithms on partial 2-trees (cf. [ALS91, CM93]),
we obtain a proof of Theorem 2. The basic tool is here the M SOL definable trans-
lation scheme, permitting a reduction of the optimization problems from graphs to
their modular decompositions, while preserving the Lin EM SOL expressibility. Us-
ing similar arguments Theorem 2 can be extended to the classes of (¢, ¢ —4) graphs
and P,-tidy graphs. It is proved in [EHPR96] that the so called uniformly non-
primitive 2-structures which are certain directed graphs with labeled edges, have
polynomial decision algorithms for problems expressible in M SOL without edge
set quantifications. Cographs are isomorphic to a subclass of this class. The proof
method is the one we use for Theorem 2.

In Section 4 we extend Theorem 2 to the class of graphs of bounded clique-
width, first introduced by Courcelle et al. [CER93]. We recall the notions of graph
operations and clique-width presented in [CO99].

We shall use three types of graph operations on p-graphs denoted @, n; ;, and
pi—;. Informally, G1 @ G is the disjoint union of the p-graphs G; and G, 1; ;(G)
is the p-graph obtained by adding to GG undirected edges connecting all vertices
labeled ¢ to all the vertices labeled j in G, and p;—;(G) is the p-graph obtained
by changing all the 7z labels to j labels in G. A formal definition of these graph
operations is given in Section 4.1.

With every p-graph G one can associate an algebraic expression built using
operations of the three types mentioned above which defines G. We call such an ex-
pression a k-expression defining G, if all the labels in the expression are in {1, ..., k}.
Clearly k is greater than or equal to p. Also, for every p-graph G, there is an n-
expression which defines GG, where n is the number of vertices of G. Let C(k) be



the class of p-graphs which can be defined by k-expressions. The clique-width of a
p-graph G, denoted cwd(G), is defined by: cwd(G) = Min{k : G € C(k)}.
With these definitions we show:

Theorem 4. Let C be a class of p-graphs of clique-width at most k (i.e., C C C(k))
such that there is a (known) O(f(|E|,|V|)) algorithm, which for each p-graph G
in C, constructs a k-expression defining it. Then every LinEM SOL(r ) problem
on C can be solved in time O(f(|E|,|V|)). A corresponding algorithm can be effec-
twvely constructed from the logical formula describing the problem, and the parsing
algorithm for the class.

In the statement of Theorem 4 we must assume that we know an efficient pars-
ing algorithm, because none is known for C(k) in general (there exist polynomial
algorithms in special cases). Theorem 4 applies to any class of graphs of bounded
clique-width for which an efficient parsing algorithm exists. There are many such
classes. For example, the cliques, the cographs, and any class of graphs of treewidth
at most k. We show that:

Proposition5. (q,q—4) graphs and Ps-tidy graphs have clique-width at most q and
4 respectively, and for each (q,q—4) (Pa-tidy) graph G, a q-expression (4-expression)
defining it can be constructed in O(|V|+ |E|) time.

From Theorem 4 and Proposition 5, we get a second proof of Theorem 2. This proof
is based on graph operations and clique-width, and constructs algorithms for solving
LinEM SOL(1 ) problems on Ps-sparse graphs, different from those constructed
by the first proof of Theorem 2 mentioned above. Although Theorem 4 subsumes
Theorem 2, we give a specific proof of Theorem 2 because it is more direct, hopefully
usable 1n other similar situations, and does not use the machinery of the Feferman-
Vaught theorem used in the proof of Theorem 4. Theorem 4 is interesting by its
generality. Sections 3 and 4 can be read independently.

Courcelle and Mosbah [CM93] also considered the logics MSOL(7y) and
EMSOL(7 ;) (mentioned above, but with quantifications over subsets of edges al-
lowed). They showed that Theorem 2 can be extended also for all the EM SOL(7 )
optimization problems on each class of graphs of tree width at most k. However,
our next result shows that this extension cannot be done for Py-tidy, (¢,q9 — 4),
P,-sparse, cographs and all graph classes which contain the cliques, provided that
P £ NP.

For (edge-)labeled graphs this is easy to see, since every graph can be presented
as a labeled clique with exactly the original edges labeled with a specific label. But
it is also true for unlabeled graphs, provided that P # NP on unary languages.
We denote by Py (NP;) the class of languages over one letter (also called tally
languages), which are in P (NP). In Section 5 we show that:

Theorem 6. If P; # NP then there is an MSOL(r;) definable decision problem
over the class of cliques which is not solvable in polynomial time.

An extended abstract of this paper was presented in [CMR98].

2 Background

2.1 Graphs as logical structures

In what follows, we will use the term graph for finite nonempty undirected graphs
without self loops or multiple edges. We will use the term labeled graph for graphs
having labels which are associated with their vertices such that each vertex has
exactly one label. A p-graph is a labeled graph with (vertex) labels in {1,2,...,p}.



An unlabeled graph G will be considered as a 1-graph such that all the vertices of
G are labeled by 1.

The following are the two most common (labeled) graph presentations, for logically
oriented work:

Definition 7 (The vocabularies 7 and 7 ). We denote by 7 the vocabulary
{E} consisting of one binary relation symbol E. For a graph G, we denote by G(m1)
the presentation of G as a logical structure (V, E'), where V is the domain of the
logical structure which consists of the set of vertices of G and E is the binary relation
corresponding to the adjacency matrix of G.

We denote by 7y , the vocabulary: F,Uy,...,U,, where p is any fixed integer. For
a p-graph G, we denote by G(m p) the presentation of G as a logical structure
(V,E,Ui,...,Up), where V and E are the same as above, and Uy, ..., U, are the
unary predicates corresponding to the labels of the vertices of G.

Note that we use a vocabulary 7 ,, for expressing properties of labeled graphs in
general. Such properties make no reference to labels larger than p, that may exist
in the considered graph.

Remark. Certain structures of type 7, do not represent p-graphs. Either because
the predicates U; do not form a partition of the domain, or because E is not sym-
metric or both. A first order formula can express that a given structure actually
represents a p-graph. We will only consider 7y, structures representing p-graphs
without any further notice.

Definition8 (The vocabularies 7 and 7 ). We denote by 7 the vocabulary
{R, Pg, Py} consisting of one binary relation symbol R, and two unary relation
symbols Pg, Py. For a graph GG, we denote by G(72) the presentation of G as a log-
ical structure (VU E, R, Pg, Py), where the domain of the logical structure consists
of the set of vertices and edges of G, R is a binary relation, such that (e,v) is in
R if and only if v is a vertex of G which is incident with the edge e of G, and Py
(resp. Pg) is a unary predicate such that v (resp. €) is in Py (resp. Pg) if and only
if v (resp. e) is a vertex ( resp. an edge) of G.

We denote by 7, the vocabulary: {R, Pg, Pv,U1,...,Up}, where p is any fixed
integer. For an edge- and vertex-labeled graph G, we denote by G(m p) the presen-
tation of G as a logical structure (V U E, R, Pg, Py, Ui, ...,Up), where R, Pg, Py
are as above, and Uy, ..., U, are the unary predicates corresponding to the labels
of the vertices and edges of G.

2.2 Monadic Second Order Logic decision and optimization problems

We recall that Second Order Logic (SOL) is like first order logic, but allows also vari-
ables and quantification over relation variables of various but fixed arities. Monadic
Second Order Logic (M SOL) is the sub-logic of SOL where relation symbols are
restricted to be unary. More details on the definition of M SOL can be found in
[Cou97, EF95, Pap94]. For a set variable X and a first order variable u, we denote
by X (u) the atomic formula indicating that u € X.

Graphs are a special case of finite structures. Therefore, before concentrating on
graphs, we start with the following definitions and facts concerning finite struc-
tures. In what follows we will be concerned only with finite structures, therefore
whenever we use the term structure we mean finite structure. Let 7 denote any
vocabulary consisting of a finite set of relation symbols, and let K be any class of
r-structures. We denote by Str(r) the class of all -structures.

Definition9 (M SOL(7) decision problem over K). We say that a decision
problem is an MSOL(7T) decision problem over K, if it can be expressed in the



following form: Given a 7-structure A € K does A |= ¢ hold? where ¢ is a closed
MSOL formula over 7. Note that ¢ and K are not part of the problem instance,
which consists just of A. In the case that the class K consists of all 7-structures,
K = Str(r), we will say that a problem which can be stated as above is an M SOL(r)
decision problem.

Ezample 1. The 3-colorability problem is an MSOL(r) problem, since it can be
stated as follows: Given a graph G, presented as a logical structure G(r), does

G(71) |E ¢ hold? where ¢ is the closed MSOL(r ) formula defined by:
v = 3AX1, X9, X3(Partition(X1, Xa, X3) AIndSet(X1) AIndSet(X2) A IndSet(X3))
where Partition(X1, X2, X3) is defined by:

Partition(X1, X2, X3) = Yu(X1(v) V Xa(v) V X3(v))A
—Ju((X1(u) A Xa(u)) V(X1 (u) A X3(u))V
(X2 (u) A X3(u)))

and Indset(X) is defined by:

Indset(X) = Vu, v((X(u) A X(v)) — - E(u,v))

Let f1, fa, ..., fm be m function symbols for some fixed integer m. For a set variable
Xi and an assignment z we use |2(X;)|; as a short notation for: 3, ., fj(a). We
denote by |A| the cardinality of a finite set A.

Definition10 (LinEM SOL(7) optimization problems over K). We say that
an optimization problem P is a LinEMSOL(T) optimization problem over K, if
it can be expressed in the following form: Given a r-structure A € K, and m
evaluation functions fi, ..., f, associating integer values to the elements of A, find
an assignment z to the free variables in # such that:

> ailx(Xa)ly=oept{ Y ayld (X))l (A2 E (X, X0}
1<i<l 1<i<l
1<j<m 1<ji<m

where 6 is an M SOL(r) formula having free set variables X1, ..., X;, opt is either
Min or Maz, and {a;; : 1 < i <!, 1 < j < m} are any integers. Since the
coefficients a;; can be negative we shall only deal with Max: a minimization is

obtained from a maximization with negated coefficients. Note that 6(X1,..., X;), K
and the constants {a;;} are not part of the problem instance, which consists just of
A and the evaluation functions fi,..., fm.

For any assignment z to the free variables of # which satisfies the above condition,
we say that z realizes a solution to the problem P on A with evaluation functions
fl: ) fm -

In the case that the class K consists of all the 7-structures, K = Str(7), we denote a
LinEM SOL(7) optimization problem over K shortly as a Lin EM SO L(7) problem.
Note that the syntax of every LinEM SOL(7) problem is completely defined by 7,
6(X1,...,Xi), the constants {a;;} and m.

Ezample 2. The maximum weight clique problem 1is to find for a given graph G,
with weights assigned to its vertices, a clique C' of G such that the total weight of
the vertices of C' is maximum. This problem is a LinEM SOL(ry) problem since
it can be expressed as follows: Given a graph G presented as a m-structure, G(m)
and one evaluation function f; associating integer weight values to the vertices of
G(m), find an assignment z to the free set variable Xy in 6 such that:

|2(X1)h = Maz{|'(X1)]1 : (G(n), ) E6(X1)}



where 6(X1) is defined by:
6(X1) = Vu,v((X1(v) A X1(u) Au #v) — E(u,v))

Remark. Every MSOL(7) decision problem can be expressed also as a
LinEM SOL(T)) optimization problem. Thus, in the sequel we will be concerned
only with LinEM SOL(7) optimization problems.

2.3 MSOL translation schemes and transductions

In this section we define the notion of translation scheme. The idea is to define a new
structure over vocabulary ¢ from a given structure over vocabulary 7 by means of a
finite set of logical formulas ¢, ¥1, . . ., ¥ over 7. The formula ¢ defines the domain
of the new structure and each relation R; of arity k of the new structure is defined
by the formula ; with k free variables. This notion is called “interpretatoin” but
we prefer the word “translation” to focus on the syntactic nature of the definiton.
The classical definition for First Order Logic (see [EF95]) is addapted for M SOL.

Definition11 (Translation scheme ®). Let 7 and ¢ be two vocabularies, let
0 = {R1,...,Rn} and let p(R;) be the arity of R;. Let & = {p,91,...,%m) be
MSOL formulas over 7. We say that @ is well formed for ¢ over 7 if ¢ has one
free first order variable and no free set variables, and for 1 < i < m, each ¥; has
p(R;) free first order variables and no free set variables. Such a @ = (p, 1, ..., ¥m)
is called a 7-o-translation scheme. If ¢ is true and each ; is quantifier free, @ is
called quantifier free.

In the following text we denote a 7-o-translation scheme shortly as a translation
scheme if 7 and o are clear from the context. With a translation scheme @ one can
naturally associate a (partial) function @* from r-structures to o-structures. This
function is called a transduction from 7-structures to o-structures. For more general

cases see [Cou94a, Cou97, Mak97, EO97].

Definition 12 (The induced transduction ¢*). Let A be a 7-structure, @ be a
T-o-translation scheme and let A be the domain of .A. The structure .Ag is defined
as follows:

(i) The domain of Ag is the set Ag ={a € A: A= p(a)}
(i1) The interpretation of R; in Ag is the set

Ap(Ry) = {a € AF™ - A i(a)}
Note that Ag is a o-structure of cardinality at most |A|.
(iii) The partial function @* : Str(r) — Str(o) is defined by &*(A) = Ag. Note

that @*(.A) is defined if and only if A |= Jzp(x). In particular, if @ is quantifier
free then @* is a total function.

With a translation scheme @ we can also naturally associate a function @' from
M SOL(o)-formulas to M SOL(7)-formulas. This function is called the backwards
translation associated with @.

Definition13 (The backwards translation ). Let 6 be an MSOL(0)-
formula and let @ be a T-o-translation scheme . The formula g is defined inductively
as follows:

(i) For @ of the form z; = 23, 0 is defined as 21 = 22 A p(21) A @(22).
(i1) For R; € o and 6 of the form R;(z1,...,2m), 04 is defined as ¢;(z1,...,2m) A

Nip(@:).



(iii) For a set variable U and a first order variable y, if 6 is U(y), then g is U(y) A
©(y). Note that in our notation U (y) is the same as y € U.

(iv) For the boolean connectives the translation distributes, i.e. if # is of the form
(61 V 03) then 65 is defined as (61, V 02,) and if 6 is =6 then fg is —61,, and
similarly for A.

(v) For the existential quantifier of first order variables, we use relativization, i.e. if
6 is of the form Jyf;, then g is defined as Fy(p(y) A b1,).

(vi) For the existential quantifier of a set variable U the translation distributes, i.e.,
if 8 is of the form 3U#; then g is defined as U (61,,).

(vii) The function @' : MSOL(c) — M SOL(7) is defined by ®*(0) = 04 A0, where
0, is the relativization of the free set variables in 0, say X1,..., X;, defined by:

bo= N\ Yu(Xi() = o).

1<i<l
If Phi is quantifier free then (since 6, is logically equivalent to true) @ () = 0.

From Definition 13 it follows that:

Observation 14. For each translation scheme @, () € MSOL provided 6 €
MSOL. If & is quantifier free then ®!(0) has the same quantifier depth as 6.

The following fundamental property of translation schemes follows from the above
definitions.

Theorem 15 ([EF95]). Let & = (¢,%1,...,¥m) be a T-o-translation scheme, A
a T-structure such that ®*(A) is defined, and let O(vy,...,vn, X1,...,X;) be an
MSOL(o)-formula having n free first order variables vy, ..., v, andl free set vari-
ables X1,...,X; . Then for every assignment z to the free variables of 6 such that
for every element a = z(v;) A |E ¢(a), 1 <i< n, and for every element b € z(Xj;)
AE ¢(b), 1 <j <, we have that:

(A, 2) =P O)(v1,. .., vn, X1, .., X)) <= (D (A), 2) EO(v1, ..., vn, X1,..., X)1).

With a translation scheme @ we can also naturally associate a function #2 from
LinEM SOL(o) problems to LinEM SOL(t) problems.

Definition16 (The backwards translation 2). Let P be a LinEM SOL(c)
optimization problem given by o, the M SOL(o) formula #(X1, ..., X;) having free
set variables X1, ..., X;, the (possibly negative) constants {a;; } and m (the number
of evaluation functions). Let @ be a 7-o-translation scheme.

(i) The optimization problem Pg is defined by 7, the MSOL(r) formula
®'(0(X1,...,X;)) having free set variables X1,..., X; (the same as of §), the
constants {a;;} and m (the number of evaluation functions).

(ii) The function @2 : LinEM SOL(c) — LinEM SOL(7) is defined by ®2(P) =
Pg.

Theorem 17. Let P be a LinEMSOL(c) optimization problem, let & =
(¢,41, ..., ¥m) be a T-o-translation scheme, and let A be a T-structure such that
@*(A) is defined. Then an assignment z realizes a solution to the problem &2 (P)
on A with evaluation functions f1, ..., fm if and only if z realizes a solution to the
problem P on ®*(A) with evaluation functions fi,..., fm restricted to the domain

of &*(A).



Proof: Let (X1,..., X;) be the MSOL(o) formula used in the definition of P, and
let z be an assignment which realizes a solution to the problem 2 (P) on A with
evaluation functions fi,..., f,. Then the following condition holds:

2 aija(X)] = Maz{ 3] aij|2' (Xi)j : (A 2y E M O) (X, ..., Xi)}

By the above condition it follows that for every element a € z(X;), 1 < i < [,
A E ¢(a). Thus, from Theorem 15:

Maz{ Y ayl/(X:)]; (A.2) ESO)(X1,.... X)) =
1<i<l

I<j<m

Maz{ S ayl"(Xi)|; - (8*(A), 2) = 0(X1, ..., X1)}
1<i<l
I<j<m

Hence, z realizes a solution to the problem P on ¢*(A) with evaluation functions
fi,..., fm restricted to the domain of *(A). The other direction follows by a similar
argument. O

2.4 The modular decomposition of Ps-sparse graphs

A set M of vertices of a graph G is called a module of G if every vertex outside M
is either adjacent to all vertices in M or to none of them. A module M 1s called
strong, if for any module My either M N M; = (), or one module contains the other.
The modular decomposition of a graph G is based on a tree denoted by T(G). The
nodes of T(G) are (in one-to-one correspondence with) the strong modules of G
and a module M is descendant of module M’ in T(G) iff M C M'. Consequently
the leaves of T'(GG) are the vertices of G and the strong module corresponding to a
node of T(G) consists of all leaves of T'(G) that are descendants of that node. Each
internal node 1s labeled by P, S, or N, as explained in Proposition 18. It can be
shown that T'(G) is unique up to isomorphism. More details on how the tree T(G)
is constructed can be found in [GV97, BM83, CH94].

Let h be an internal node of T(G). We denote by M (h) the module corresponding
to h which consists of the set of vertices of G of the subtree of T(G) rooted at h.
Let {hq,...,h,} be the set of sons of A in T(G). We denote by G(h) = (V (h), E(h))
the representative graph of the module M (h) defined by: V(h) = {h1,...,hy} and

E(h) = {(hs, hj) | Fu,v(u € M(h;) Av e M(h;) A (u,v) € E)}.

Note that by the definition of a module, if a vertex of M (h;) is adjacent to a vertex
of M(h;) then every vertex of M (h;) will be adjacent to every vertex of M (h;).

The modular decomposition M (G) of G is the pair consisting of T'(G) and the
mapping that associates with each node h of T'(G) the graph G/(h) (which is actually
isomorphic to a subgraph of G).

It is clear that G' can be reconstructed from M (G). In particular, the vertices
of G are the leaves of T(G) and there is an edge between z and y iff  and y have
ancestors h and A’ which are sons of a same node k, and such that A and A’ are
linked by an edge in F(k). This definition is expressible by a translation scheme
taking as input 7(G) augmented with the edges of E(h) for each internal node h.

From the construction of T(G) it follows that:

Proposition18. Let G be any graph and let h be an internal node of T(G). If
G(h) is a complete graph then h is labeled S, if G(h) is edgeless then h is labeled
P, otherwise h s labeled N.



Recall that the neighborhood Neigh(v) of a vertex v of G is defined as the set of
vertices of G adjacent to v, i.e.: Neigh(v) = {u|(u,v) € E}.

Definition 19 (Prime spider). A graph G is a prime spider if the vertex set of
G can be partitioned into sets D, K and R such that:

(i) D is a stable set (i.e., no two vertices in D are adjacent), K is a clique and
|D| = |K|> 2.
(i1) R contains at most one vertex, i.e. |[R| < 1, and if R contains one vertex say

r, then r is adjacent to all the vertices in K and is not adjacent to any of the
vertices in D.

(iii) There exists a bijection f between D and K such that either Neigh(z) = {f(z)}
for all vertices z in D or else Neigh(z) = K — {f(z)} for all vertices z in D.

The triple (D, K, R) is called the spider partition of G.

Note that the edge-complement of a prime spider is also a prime spider. The fol-

lowing proposition is from [GV97] based on [JO92b]:

Proposition20. Let G be a Py-sparse graph and let h be an internal N-node of
T(G). Then G(h) is isomorphic to a prime spider.

The following proposition is from [GRT97]:

Proposition21 (Giakoumakis, Roussel and Thuillier). Let G be a Pi-tidy
graph and let h be an internal N-node of T(G). Then G(h) is either isomorphic
to a prime spider, to a cycle of five vertices Cs, to a path of five vertices Ps, or to
the edge-complement of a path of five vertices Ps.

The following proposition is from [BO95]:

Proposition22 (Babel and Olariu). Let G be a (q,q —4) graph and let h be an
internal N-node of T(G). Then G(h) is either isomorphic to a prime spider, or to
a graph with at most q vertices.

3 Linear algorithms for optimization problems on P;-sparse
graphs

Our concern in this section is to reduce an optimization problem on a Pj-sparse
graph G to one (of same logical structure) on M (G), efficiently solvable. We need
thus an efficient presentation of modular decompositions of Ps-sparse graphs. A
first obvious presentation, is to take T'(G) and to add the edges of the sets E(h)
(perhaps with a special marking to distinguish them from those of T'(().) However,
these graphs will have too many edges. Our objective is to obtain graphs with ”few
edges”, viz. partial k-trees. For the notion of partial k-tree see, e.g. [Bod98].

If a node h of T(G) is an S-node, we mark it as such, and we omit the edges
linking its sons. The marking will indicate the existence of the missing edges, and
will be used by a translation scheme which translates M(G) into G. If G(h) is
a prime spider, we present it by some colors and very few edges as indicated in
the next definition. We will consider P4-sparse p-graphs i.e, Ps-sparse graphs with
vertices labeled in 1,...,p.

Definition 23 (The 2-tree modular decomposition of G: 2-tree(G)). Let
G be a Py-sparse p-graph. We denote by 2-tree(G) the 2-tree modular decomposition
of G constructed from 7'(G) by adding more edges and labels to T(G) according to
the following rule:
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— Let h be an N-node of G, let G(h) be the representative graph of h which is
isomorphic to a prime spider by Proposition 20 and let (D, K, R) be the spider
partition of G(h). Then:

e For every vertex z in D add to T(G) the edge: (z, f(z)), where f is the
bijection from D to K defined in Definition 19.

o If Neigh(z) = {f(z)} for all vertices z in D mark the N-node h of T(G) as
a red N-node. Otherwise, mark i as a black N-node.

e For every vertex z in D add a yellow label to x. For every vertex y in K
add a blue label to y. For the one vertex r in R (if it exists) add a white
label to r.

It is easy to see that:
Fact 24. For every Py-sparse p-graph G, 2-tree(G ) is a partial 2-tree.

Let G be a p-graph. Recall that the vocabulary 7 , consists of a binary relation
symbol £ and a finite set of unary predicate symbols Uy,...,U,, used to label
the vertices of the p-graph. In order to present the 2-tree(G) as a logical struc-
ture we shall use the vocabulary 71 ;410 which has p 4 10 unary predicate symbols
Ui,...,Upt10 such that Uy,...,U, are used to label the leaves of T'(G) in the
same way as the vertices of the p-graph G, and Upyi...Up410, are denoted by
PT‘OOta Pleaf7 PS7 PP7 PN1 Pred7 Pblaclm Pblue7 Pyellow and Pwhitey respectively.
The meaning of the last ten unary predicates mentioned above is as follows:

— Proot(2) is true if and only if z is the root of 2-tree(G). Note that using this
predicate we can express that u is an ancestor of v in T'(G) or vice versa although
T(G) is presented as an undirected graph over the vocabulary 1 p410.

— Peas(z) is true if and only if  is a leaf of the tree T(G).

— Ps(z) (resp. Pp(z), Pn(z)) is true if and only if 2 is an S-node (resp. P-node,
N-node) of the tree T(G).

— Prea(z) (resp. Poiack (), Poiue(), Pyetiow (), Puhite(z)) is true if and only if
is marked red (resp. black, blue, yellow, white) in 2-tree(G).

Remark. Some vertices may satisfy more than one of the ten unary predicates de-
fined above. Hence, a graph presented over 7j p410 may have vertices with more
than one label. Since we require that labeled graphs have at most one label for
each vertex, we can easily extend 7y 410 by adding more unary predicates, such
that each vertex will have at most one label. For simplicity we do not specify this
extension of 7y py10.

Theorem 25. Let p be any integer. There exists a translation scheme @1 such that
for every Pa-sparse p-graph G we have §; (2-tree(G) (1 p410)) = G(T1,p).

Note that = denotes isomorphism of logical structures. Theorem 25 states that
there exists a M SOL translation scheme which reconstructs the original Ps-sparse
graph G from its partial 2-tree presentation. The proof follows immediately from
the definition of 2-tree(G).

Proposition26. Let G = (V, E) be any Ps-sparse p-graph. Then 2-tree(G) can be
constructed in O(|V| + |E|) time.

Proof: Let G be a Py-sparse p-graph. In [GV97] it is shown how to construct T(G)
in O(|V] + |F]) time. From definition 23 it is easy to see that 2-tree(G) can be
constructed from T(G) in time linear in the number of nodes of T(G). But since
the number of nodes of T(G) is O(|V]) (as proved in [Spi92]), we get that the total
construction of 2-tree(G) takes O(|V| + |E|) time. O
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The following theorem is from [Cou90, CM93, ALS91] using the linear time algo-
rithm (cf. [Bod96]) for constructing tree-decompositions of partial k-trees.

Theorem 27. Let p and k be fized integers. Every LinEMSOL(m ) optimiza-
tion problem on the class of partial k-trees can be solved in O(|V]) time and the
corresponding algorithm can be derived constructively from its LinEM SOL(m p)
definition.

Theorem 27 holds also for the richer logical languages based on 7. Note that
Theorem 27 has two different proofs, one of [Cou90, CM93] and the other of
[ALS91], which construct different algorithms for solving LinEM SOL(m ,) (and
also LinEM SOL(73 ,)) problems on the class of partial k-trees. We will show that:

Theorem 2. Let p be a fized integer. Every LinEMSOL(t ,) problem on the
class of Py-sparse p-graphs can be solved in time O(|V |+ |E|) and the corresponding
algorithm can be derived constructively from its LinEM SOL(m p) definition. If the
modular decomposition of the graph is given as input then the running time of the

algorithm is O(|V]).

Proof: Let P be a LinEM SOL(m p) optimization problem on the class of P,-sparse
p-graphs which is expressed as follows: Given a P,-sparse p-graph G presented over
T1,p, and m evaluation functions fi, ..., fi, find an assignment z to the free variables
in @ such that:

> ailz2(Xa)lj = Max{ 30 ayld (X)) 1 (G(rip) 2 E (X, X))}
1<i<l 1<i<l
1<j<m 1<ji<m

where 6 is an M SOL(r ) formula having free set variables X1,..., X;, and {a;; :
1 <<, 1< j<m}are (possibly negative) integers. Recall that for an assignment
z as above we say that it realizes a solution to the problem P on G with evaluation
functions f1,..., fm.

We will solve the problem P in O(|V| + | E|) time by the following algorithm:

(i) Check whether the input p-graph G is a Py-sparse graph using the algorithm of
[GVIT7]. If G is not a Ps-sparse graph stop with a “not legal input” answer.

(i1) Construct 2-tree(G) and present it over 7 ,410.

(iii) Use the algorithm of [CM93] or the algorithm of [ALS91] (Theorem 27), to find
an assignment z to the free variables in @g (#) which realizes a solution to the
problem @lA(P) on 2-tree(GG) with evaluation functions fi,..., fm. By Theo-
rem 25 @1 (2-tree(G)(m1 p+10)) = G(m1p). Hence, from Theorem 17 it follows
that z also realizes a solution to the problem P on G with evaluation functions

fi,o o fm-

Step (i) can be done in O(|V|+|E|) time as established in [GV97], and by Proposition
26 step (ii) can be done in O(|V| 4+ |E|) time. By Fact 24 and Theorem 27 step (iii)
can be done in O(|V]) time, since the number of nodes and edges in 2-tree(G) is
O(]V]). Hence the running time of the algorithm is O(|V| + |F]). If the modular
decomposition T(G) of G is given as an input then the running time of the algorithm
is O(|V]), since step (i) is given as input and step (ii) can be done in O(|V]) time.

O
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4 Linear algorithms for optimization problems on graphs of
bounded clique-width

4.1 Graph operations and clique-width

P
and V NV’ =@ (if this is not the case then replace H with a disjoint copy of H)

we denote by G @ H, the disjoint union of G and H such that:

For p-graphs G, H such that G = (V,E,V4,...,V,,) and H = (V' E"\V{,...,V])

GoH=(VUV ,EUE ViUV, ... V,UV).

For a p-graph G as above we denote by n; ;(G), where i # j, the p-graph obtained
by connecting all the vertices labeled 7 to all the vertices labeled j in GG. Formally:

7i;(G)=(V,E'",Vi,...,V,) , where
E'= EUu{(u,v) :ueV;, veV,}l
For a p-graph G as above we denote by p;_;(G) the renaming of ¢ into j in G, i # j,

such that:
pisi(G) =(V,E,V{,..., V), where

>P

Vi=0,V]=V;UV;, and V] =V, for q#i,j.

These graph operations have been introduced in [CER93] for characterizing graph
grammars. For every vertex v of a graph G and i € {1,...,p}, we denote by i(v)
the p-graph consisting of one vertex v labeled by .

Ezxample 3. A clique with four vertices u, v, w, z can be expressed as:

p2—1(N1,2(2(u) ® p2s1(m1,2(2(v) ® pa1(m2(1(w) @ 2(2)))))))-
Note the “temporary use” of the label 2.

With every p-graph G one can associate an algebraic expression built using opera-
tions of the three types mentioned above which defines G. We call such an expression
a k-expression defining G, if all the labels in the expression are in {1, ..., k}. Clearly
k > p. Also, for every p-graph G, there is an n-expression which defines G, where n
is the number of vertices of G.

Definition 28 (Clique-width). Let C(k) be the class of p-graphs which can be de-
fined by k-expressions. The clique-width of a p-graph G, denoted cwd(G), is defined
by: cwd(G) = Min{k : G € C(k)}.

The clique-width is a complexity measure on graphs somewhat similar to treewidth,
which yields efficient graph algorithms provided the graph is given with its k-
expression (for fixed k). A related notion has been introduced by Wanke [Wan94] in
connection with graph grammars. C(1) is the class of edgeless graphs. The graphs in
C(2) are exactly the cographs, cf. [CO99]. They are definable from isolated vertices
by @, and the product ® defined as:

G® H = pasi(m2(G D pis2(H))).
Trees have clique-width at most 3 (cf. [CO99]).

Problem 29. Find a characterization of graphs of clique width at most &,k > 3.
Do there exist polynomial time algorithms for recognizing the classes

C(k), k> 47

A polynomial time algorithm for recognizing the class C(3) is presented in [CHLRR].
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Lemma 30. A p-graph with underlying unlabeled graph of clique—width at most k
has clique—width at most p x k.

Proof:[Sketch]. Let ¢ be a k-expression for the underlying unlabeled graph. Let ¢(v)
denote the label in {1,...,p} of vertex v. A label 7 used in the subexpression i(v) of
t is replaced by (7, ¢(v)). Of course pairs (i, j) can be coded as integer labels between
1 and p * k in such a way that labels 1,...,p correspond to pairs (1,1),....,(1,p).
The additional information ¢(v) can be maintained in the edge creations (i.e., 1
operations) and label renamings (i.e., p operations). Thus an edge creation will be
replaced by p * p edge creations, in order to handle the additional labels. a

4.2 P4-tidy graphs are of cwd < 4 and (gq,q — 4) graphs are of cwd < g

Let G and H be two disjoint graphs and let v be a vertex of G. We denote by
G[H /v] the graph K obtained by the substitution in G of H for v. Formally, V(K) =
V(G)UV(H) — {v}, and

E(K)= E(H)U{e:e€ E(G) and e is not incident with v} U
{(u,w):u € V(H), we€ V(G) and w is adjacent to v in G}.

Proposition31. For all disjoint graphs G,H, and for every verter v of G,
cwd(G[H/v]) = Maz{cwd(G), cwd(H)}.

Proof: Let ¢ = Maz{cwd(G),cwd(H)} and let h and g be g-expressions defining
H and G respectively. Since H is an unlabeled graph, it can be considered as a 1-
graph such that all vertices of H are labeled by 1. Hence the g-expression A finally
renames all labels into 1. The g-expression g must contain a unique subexpression
of the form i(v) corresponding to the initial label of v in the construction of G. By
induction on the structure of g, it can be shown that the ¢-expression obtained by
replacing in g the subexpression i(v) by the g-expression p;;(h) defines G[H/v].
We have shown that cwd(G[H /v]) < q.

If cwd(G[H/v]) < ¢ then there is a gi-expression f defining G[H /v], where ¢1 < q.
From f we can extract a gi-expression for G by taking all the vertices of V(G) —{v}
in f and taking one vertex of f corresponding to a vertex of H (chosen arbitrarily)
and omitting all the other vertices occurring in f. Here by omitting a vertex u from
an expression ¢ we mean: replace i(u) in ¢ with §§ then replace every p(f)) and every
n(f) sub-expression of ¢ with @), and finally replace a sub-expression of ¢ of the form
Oty orty &0 with ¢y,

Likewise we can extract from f a gi-expression for H by taking only the vertices of
f corresponding to vertices of H and omitting all the other vertices. It follows that
Maz{cwd(G),cwd(H)} = ¢1 < ¢, a contradiction. a

Recall that for any graph G, we denote by T'(G) the tree obtained by the modular
decomposition of GG, and for each internal node h of T(G) we denote by G(h) the
representative graph of h defined in Section 2.4.

Proposition32. For every graph G, cwd(G) = Maz{cwd(H) : H is a represen-
tative graph of an internal node h in the modular decomposition of G'}.

Proof: Using vertex substitutions we can build an expression which defines GG, by
the following procedure. Let r be the root of T(G) and let R denote the singleton
having one vertex r. Start by the expression R[G(r)/r], substituting the represen-
tative graph G(r) for the single vertex r of R. Then scan T(G) in pre-order and
whenever an internal node h is reached substitute K[G(h)/h] for h, where K is the
graph defined by the sequence of substitutions made so far. From the definitions
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of modular decomposition and representative graphs, it follows that the expression
constructed by the above procedure defines the graph G, as a sequence of substi-
tutions starting from the singleton R. The claim follows from Proposition 31, since
cwd(R) = 1 and all the graphs substituted in the expression constructed above are
representative graphs of internal nodes appearing in T'(G). a

Proposition33. For every prime spider G, cwd(G) < 4.

Proof: Let G be a prime spider and let (D, K, R) be the spider partition of G. Let
D=A{dy,...,dn}, K ={ki1,...,kn} and let R = {r}. By the definition of a prime
spider either Neigh(d;) = k; or Neigh(d;) = K — {k;}, for 1 < i < m. In what
follows we assume that Neigh(d;) = K —{k;}, for 1 < ¢ < m, (the other case can be
handled similarly). For 1 < i < m, let #; be the expression defined by the following
inductive definition:

(i) t1 = 2(k1) @ 1(d4)
ti = p3as1(pasa(n2,4(n1 a(n2,3(3(di) ® 4(ks) B ti21)))).

Let 2 < i < m, let D; = {dy,...,d;} and let K; = {k1,...,k;}. We show by
induction on ¢ that the expression ¢; defines the 2-graph which is the subgraph of
G induced by D; U K;, such that all the vertices in I); are labeled by 1 and all the
vertices in K; are labeled by 2. The claim trivially holds for ¢ = 2. Assume that the
claim holds for ¢ = j — 1, ¢; is constructed from ¢;_; by adding the two vertices d;
and k;, labeling them by 3 and 4 respectively, and then adding edges as follows:

— Add edges between all the vertices labeled 3 to all the vertices labeled 2. This
will add edges connecting d; to all the vertices in K;_;, which by the inductive
hypothesis all have label 2.

— Add edges between all the vertices labeled 4 to all the vertices labeled 1. This
will add edges connecting k; to all the vertices in D;_;, which by the inductive
hypothesis all have label 1.

— Add edges between all the vertices labeled 4 to all the vertices labeled 2. This
will add edges connecting k; to all the vertices in K;_;, which by the inductive
hypothesis all have label 2.

Then as a last step all the vertices labeled by 4 (i.e., k;) are relabeled with 2 and
all the vertices labeled by 3 (i.e., d;) are relabeled with 1. Clearly, all the vertices
of D; are labeled with 1 and all the vertices of K; are labeled with 2. By the
inductive hypothesis t;_; defines the subgraph of G induced by D;_; U K;_;. Since
the subgraph of G induced by D; U K; can be obtained from the subgraph of ¢
induced by D;_;UKj;_1, by adding edges according to the above rules, we conclude
that the claim holds also for 7 = j. Hence the expression t,, defines the subgraph of
G induced by D U K. G can be obtained from its subgraph induced by DU K by
adding the vertex r and connecting it to all the vertices in K. This can be done by
the following expression g:

9= p21(p3s1(n233(r) ©tm)))

The claim of the proposition follows since g is a 4-expression which defines G. O

Proposition 5. (¢,q9 — 4) graphs and Ps-tidy graphs have clique-width at most q
and 4 respectively, and for each (q,q — 4) (Pa-tidy) graph G, a q-expression (4-
expression) defining it can be constructed in O(|V|+ |E|) time.
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Proof: We prove the proposition for Py-tidy graphs. The proof for (¢, ¢ —4) graphs
is along the same lines using Proposition 22 instead of Proposition 21. Let G be a
P,-tidy graph and let T(G) be the tree obtained by the modular decomposition of
G. By Proposition 32, in order to show that cwd(G) < 4 it suffices to show that
for each internal node h of T'(G), cwd(G(h)) < 4, where G(h) is the representative
graph of h in T(G). If h is a P-node (S-node) then G(h) is an edgeless graph (a
clique), and has clique-width equal to 1 (2). If A is an N-node then by Proposition
21 G(h) is either a prime spider, a cycle of five vertices C, a path of five vertices
Ps or its complement Ps. Since Cj, Ps, and Ps have cwd < 4, and prime spiders
have cwd < 4 by Proposition 33, we have shown that cwd(G) < 4. A 4-expression
defining GG can be constructed in linear time as follows:

(i) Construct the modular decomposition of G, T'(G) in time O(|V|+|E|) as shown
in [GV9T].

(i1) From the modular decomposition T'((G) construct an expression consisting of a
sequence of vertex substitutions which defines GG, as follows from the proof of
Proposition 32. Since the number of vertices in T(G) is O(|V]) (as proved in
[Spi92]), this step can be done in time O(|V] + | E]).

(iii) Convert the expression of vertex substitutions obtained in the previous step,
to a 4-expression for GG as follows from Proposition 31. This step can be done
in time O(|V| + | E]), since each graph H used in the substitutions is either an
edgeless graph, a clique, a Cs cycle, a Ps path, its complement Ps, or a prime
spider for which a 4-expression can be constructed in time O(|V(H)|+ |E(H)|)
as can be shown easily for the first five cases and as shown in the proof of
Proposition 33 for the case of prime spiders.

4.3 The Feferman-Vaught Theorem

In the proof of Theorem 4 we shall use a version of the Feferman-Vaught Theorem,
[FV59] adapted to M SOL. Tt is not clear who observed first that this adaptation to
MSOL is true, but it is already in [Lau68, She75] and follows from [Fef57, Ehr61].
For a good exposition, cf. [Gur79, Gur85].

We review some notation from [CM93].

Definition 34. Let A be a 7-structure, let A be the domain of A and let ¢ be a
M SOL(r)-formula with free set variables X1, ..., X,,. We denote by sat(A, ¢) the
set of n-tuples of subsets of A for which ¢ holds in A. Formally:

sat(A, o) ={(D1,...,Dn): D; CA (A, D1,...,Dp) = p(X1,...,Xn)}
The following is a special case of a classical result, for example see [EF95].

Lemma 35. Let p,h and n be fired non-negative integers. Then there are finitely
many M SOL(m ,)-formulas with free variables in {X1,..., Xn} of quantifier depth
< h in the language expressing properties of p-graphs, up to tautological equivalence.

Lemma 36. For each p, each operation f € {p;;,mi;: 4,7 € {1,...,p}, i # j}
over p-graphs can be expressed by a quantifier free translation scheme @, i.e., ®* = f.
Hence, for every MSOL(m p) formula 8, and for every p-graph G presented over
Tl,p:

sat(f(G), 0) = sat(G, D4 ().

Proof: Immediate from the definitions of p;,;, and n; ; and Theorem 15. i
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For any set D we denote by P(D) the power set of D, i.e., the set of all subsets
of D. Let F, F be two subsets of D such that ENF = §, let A C P(F)", and let
B C P(F)™ (we call such A and B separated). We define ARB by:

ARB={(D;UD,,....D,UD,.): (Dy,...,D,) €A, (D},...,D.) € B)}.

Theorem 37 (Feferman-Vaught for M SOL). For each P
and for every MSOL(m p) formula 0 with free variables X, ..., X,, two lists of
MSOL(m ) formulas ¢1,...,¢m and 1, ... ¢y can be constructed such that all
the formulas have the same free variables as 8 and have quantifier depth no larger
than the quantifier depth of 8, and for every two p-graphs G and H presented over
T p such that V(G) NV (H) = 0,

sat(G @ H,0) = U sat(G, ;) Rsat(H, ;).
1<i<m

Proof: Immediate reformulation of the result by Feferman-Vaught as discussed in
[Gur85]. The result can also be proved directly using pebble games for MSOL. O

A more sophisticated construction where the union is disjoint can be derived as in
Lemma 2.4 of [CM93] but is not needed here.

4.4 The linear time algorithms
The main ideas for proving Theorem 4 are as follows:

(i) If G is a graph defined by a k-expression g, then the set sat(G,¢) can be
computed by induction on the structure of g, with the help of auxiliary sets
sat(G', ), for finitely many formulas ¢, and finitely many graphs G’ where the
graphs G’ are defined by subexpressions of g. Here we use the Feferman-Vaught
Theorem (see Theorem 37) and Lemma 36.

(i1) A value h(sat(G,¢)) can be computed by the same induction on g, where h is
a homomorphism (in some sense as defined below).

(i) LinEMSOL(7 ,) problems fall in the framework of computing h(sat(G, ¢)) for
well-chosen functions h.

Let G be a graph, let fi,..., fin be m evaluation functions associating integer
values to the vertices of G, let Dy,..., D; C V(G) and let

h(Di,....Di)= S ay|Dil;
1<i<l
1<j<m

where {a;; : 1 <1<, 1<j<m} are any integers, and |D;|; (see Section 2.2) is
a short notation for 3~ .. fi(a). For A C P(V(G)), let

Maz_h(A) = Maz{h(Dy,...,D;): (D1,...,D;) € A}
It is clear that for separated A and B
Maz_h(ARB) = Maz_h(A) + Maxz_h(B) (1)
and for general A and B:
Maz_h(AU B) = Max{Maz_h(A), Max_h(B)}. (2)
From Definition 10 it follows that a Lin EM SOL(m ,) optimization problem over a

class of graphs K can be formulated as the computation of Maz_h(sat(G,8)) for a
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given graph G € K presented over 7 p, for fixed p, where 6 is a fixed M SOL(m )
formula.

For each k-expression g we denote by Tree(g) the labeled tree corresponding
to g. The leaves of Tree(g) are the singletons in g (the basic graphs) labeled by
their initial label from {1,..., k}, and the internal nodes of Tree(g) correspond to
the operations appearing in g. For each internal node z of Tree(g), we denote by
Graph(z) the k-graph defined by the k-expression corresponding to the subtree of
Tree(g) rooted at .

We are now ready to prove Theorem 4, which we restate for convenience.

Theorem 4. Let C be a class of p-graphs of clique-width at most k, C C C(k),
such that there is a (known) O(f(|E|,|V|)) algorithm, which for each p-graph G in
C, constructs a k-expression defining it. Then every LinEM SOL(m ,) problem on
C can be solved in time O(f(|E|,|V|)). A corresponding algorithm can be effectively
constructed from the logical formula describing the problem, and the parsing algo-
rithm for the class.

Proof: Let P be a LinEMSOL(m p) optimization problem over a class of p-
graphs C C C(k). As mentioned above P can be formulated as the computation
of Max_h(sat(G,0)) for a given p-graph G € C presented over 7 p. Since G € C
there is a k-expression g which defines G. By Lemma 36 and Theorem 37, the
computation of Maz_h(sat(G,0)) can be done as follows:

(i) Traverse T'ree(g) from top to bottom starting from the root assigning formulas
to the internal nodes of the tree according to the following rules:
(i.a) Assign to the root the formula 6.
(i.b) Let @1, ..., ¢ be the formulas assigned to an internal node by this process.
If x corresponds to a unary operation of the form: p;_,; or n;; then use
Lemma 36 to obtain formulas ¢/, ..., ¢}, such that for 1 <i </,

sat(Graph(z), ¢;) = sat(Graph(y), ¢})

where y is the son of z in Tree(g). Assign all these formulas to y.

Otherwise z corresponds to the binary operation @. In this case use Theorem
37 to obtain 2/ lists of formulas ¢} ;,..., ¢} ., and ¥ 4, ..., ¥; ., for 1 <
1 <[, such that:

sat(Graph(z), ¢;) = U sat(Graph(u), gogyj)&sat(Graph(v), 1/)27]»),
1<j<m; (3)

where u and v are the two sons of z in T'ree(g). Assign all the ¢} ; formulas
to u and all the ¢; ; formulas to v.

(i1) Traverse T'ree(g) from bottom to top and, at each node z and for each formula
¢ assigned to z by the previous step, compute Maz_h(sat(Graph(z),¢)) as
follows:

— If z is a leaf compute Maxz_h(sat(Graph(z),¢)) directly.

— If x corresponds to a unary operation,
set Max_h(sat(Graph(z),¢)) = Maxz_h(sat(Graph(y),¢’)),
where y is the son of z, and ¢’ is the formula assigned to y by the previous
step.

— If z corresponds to the binary operation @ then using equations (1)- (3)
compute Maz_h(sat(Graph(z), ¢)) from the two lists of
values: Maz_h(sat(Graph(u), ¢})), Maz_h(sat(Graph(v), %)),
for 1 < j <'m, where u and v are the sons of z in Tree(g) and ¢} and ¢} are
the lists of formulas assigned to u and v by the previous step, respectively.
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Also at each node z and each formula ¢ assigned to z keep one tuple of
sat(Graph(z), ¢) having the value Max_h(sat(Graph(z),¢)).

The correctness of the above procedure follows from Lemma 36 and Theorem 37.

For the complexity, the total time for handling the input graph G is O(f(|V], |E]))
for constructing the k-expression g plus the total time for applying the above pro-
cedure. First note that the size of the tree Tree(g) is O(f(|V],|E])). In step (i) of
the above process the number of formulas assigned to each node is bounded by a
constant (which does not depend on the size of the input graph G) since by Lemma
36, Theorem 37 and Observation 14 all these formulas are of quantifier depth no
larger than the quantifier depth of 8, and by Lemma 35 the number of such formulas
is bounded (up to tautological equivalence) by a constant which depends just on
the size of § and k. Hence, in step (ii) the computation done at each node by the
above procedure is bounded by a constant (with the uniform cost measure), and
the total time of the above procedure is bounded by O(f(|V],|E])). Note that if =
is a leaf then G'raph(z) is a singleton, which implies that Maz_h(sat(Graph(z), ¢))
can be computed in a time that does not depend on the size of the input graph G,
i.e., in constant time. Therefore the total complexity of handling the input graph

Gis O(f(IVI IED) + O(IV]) = O(F(IV], [E)). o

Remark. Every k-expression for a graph G = (V| E) can be transformed into a
k-expression defining G of size O(|V]). This transformation can be done in linear
time by a tree transducer. Typically it will remove some redundancies or useless
operation symbols (like a renaming p;_,; operation when there is no vertex labeled
i). (In these complexity considerations, k is fixed). Thus we could assume in the
above proof that the size of Tree(g) is O(|V]).

5 Results that do not extend to M SOL(,)

In this section we will show that Theorems 2 and 4 do not hold when
LinMSOL(7 ) isreplaced by M SOL(73). Clearly, if these theorems do not hold for
MSOL(7;) they do not hold either for its extensions: M SOL(m ), LinM SOL(m),
and LinMSOL(7, ). We will prove Theorem 6 but to do that we will need the
following definitions and theorem due to [Fag74]. We denote by 73 the empty vo-
cabulary, and we denote by SET the class of finite structures over 73. We denote by
SOL? the formulasin SOL in which there are no function symbols, and the relation
symbols are restricted to be either unary or binary. Recall that P; (NP;) denotes
the class of languages over one letter (also called tally languages), which are in P
(NP). Note that P = NP implies P; = NPy, but the other direction is not known.
Note also that P; = NP, iff EXPTIME = NEXPTIME (cf. [Boo74, Har83]).

Definition 38 (Spectrum, BIN).

(i) Let S be a set of structures over 7. S is a spectrum, if there exists a formula
@ of the form X, X5, ..., Xjo, such that o is first order, X1, X, ..., X; are the
only free variables of o, and for every finite structure A over 73, A € S if and
only if ¢ holds in A. In this case we say that the spectrum S is definable by the
formula .

(i1) We denote by BIN the set of all spectra definable by formulas using only one
binary predicate symbol which presents a graph relation, i.e., a relation which
is irreflexive and symmetric. In other words a spectrum S is in BIN if it can
be defined by a formula ¢ of the form Qo , where o is first order, such that @
is the only free variable in o, and @ is a binary predicate symbol presenting a
graph relation.
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(iii) Let us observe that BIN is included in Py iff for every spectrum S in BIN
there exists a polynomial time deterministic Turing machine M, such that given
an integer n presented as a string in unary notation as an input (i.e., the length
of the input is n and not log(n)), M accepts n if and only if the structure in
SET having n elements isin S.

The following theorem is due to [Fag74]:
Theorem 39. P, = NP if and only if BIN C Py.
We are now ready to prove Theorem 6 which we restate here for convenience.

Theorem 6. If Py # NPy then there is an M SOL(r2) definable decision prob-
lem over the class of cliques which 1s not solvable in polynomial time.

Proof: Let A be a structure in SET. We denote by K 4 the clique corresponding
to A, such that the number of elements in the domain of A equals the number of
vertices of the clique K 4.

Recall (cf. Definition 8) that R(¢,z) holds if and only if the vertex z is incident
on the edge t. Let ¢ be an SOL?(ry) sentence. We denote by ¢! the M SOL(r)
sentence which is constructed from ¢ by replacing every sub-formula U (z, y) where
U is a binary relation symbol by the formula:

(U () A R(t, z) A R(t, y)).

Since in a clique all the edges between all pairs of vertices exist, each pair of vertices
(z,y) can be identified by the unique edge t, incident to both z and y. Therefore,
quantification over pairs of vertices in cliques can be replaced by quantification over
edges, as indicated by the above formula which replaces the binary relation symbol
U(z,y). Therefore, for every structure A in SET and every SOL?(7y) sentence ¢:

AE ¢ <= Ka(m) Izgoﬁ.

Assuming that, over the class of cliques every M .SOL(72)-definable decision problem
can be solved in polynomial time, we get that BIN C P;. For, let S be a spectrum
in BIN, then there is an SOL?(ry) sentence ¢ which defines S. By our assumption
on the cliques, there 1s a Turing machine M which given an integer n in unary
presentation decides, in time bounded by a polynomial in n, whether K, (r) = ¢!.
Hence, by the above equality, the machine M decides in polynomial time in n
whether A |= ¢, where n is the number of elements in A. Tt follows that S € P4, and
hence that BIN C P;. By Theorem 39 this implies that P; = NP, a contradiction.

O

Question40. Can we still prove Theorem 6 if we replace the condition P1 # NP,
by the condition P # NP ?
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