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The main treasure that Paul Erdős has left us is his collection of problems,
most of which are still open today. These problems are seeds that Paul sowed
and watered by giving numerous talks at meetings big and small, near and far.
In the past, his problems have spawned many areas in graph theory and beyond
(e.g., in number theory, probability, geometry, algorithms and complexity the-
ory). Solutions or partial solutions to Erdős problems usually lead to further
questions, often in new directions. These problems provide inspiration and serve
as a common focus for all graph theorists. Through the problems, the legacy
of Paul Erdős continues (particularly if solving one of these problems results in
creating three new problems, for example.)

There is a huge literature of almost 1500 papers written by Erdős and his
(more than 460) collaborators. Paul wrote many problem papers, some of which
appeared in various (really hard-to-find) proceedings. Here is an attempt to
collect and organize these problems in the area of graph theory. The list here
is by no means complete or exhaustive. Our goal is to state the problems,
locate the sources, and provide the references related to these problems. We
will include the earliest and latest known references without covering the entire
history of the problems because of space limitations. (The most up-to-date list
of Erdős’ papers can be found in [65]; an electronic file is maintained by Jerry
Grossman at grossman@oakland.edu.) There are many survey papers on the
impact of Paul’s work, e.g., see those in the books: “A Tribute to Paul Erdős”
[84], “Combinatorics, Paul Erdős is Eighty”, Volumes 1 and 2 [83], and “The
Mathematics of Paul Erdős”, Volumes I and II [81].

To honestly follow the unique style of Paul Erdős, we will mention the fact
that Erdős often offered monetary awards for solutions to a number of his fa-
vorite problems. In November 1996, a committee of Erdős’ friends decided no
more such awards will be given in Erdős’ name. However, the author, with the
help of Ron Graham, will honor future claims on the problems in this paper,
provided the requirements previously set by Paul are satisfied (e.g., proofs have
been verified and published in recognized journals).

∗To appear in Journal of Graph Theory c 1997 John Wiley and Sons, Inc.
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Throughout this paper, the constants c, c′, c1, c2, . . . and extremal functions
f(n), f(n, k), f(n, k, r, t), g(n), . . . are used extensively, although within the con-
text of each problem, the notation is consistent. We interpret graph theory in
the broad sense, for example, including hypergraphs and infinite graphs.

Ramsey theory

For two graphsG and H , let r(G,H) denote the smallest integerm satisfying
the property that if the edges of the complete graph Km are colored in blue and
red, then there is either a subgraph isomorphic to G with all blue edges or a
subgraph isomorphic to H with all red edges 1. The classical Ramsey numbers
are those for the complete graphs and are denoted by r(s, t) = r(Ks,Kt).

Classical Ramsey numbers

In 1935, Erdős and Szekeres [135] gave an upper bound for the Ramsey
number r(s, t). In 1947, Erdős [90] used probabilistic methods to establish a
lower bound for r(n, n). The following results play an essential role in laying the
foundations for both Ramsey theory and combinatorial probabilistic methods:

(1 + o(1))
1

e
√

2
n2n/2 < r(n, n) ≤

(
2n− 2
n− 1

)
(1)

In the past fifty years, relatively little progress has been made. The current best
lower bound and upper bound are due to Spencer [209] and Thomason [211],
respectively.

(1 + o(1))
√

2
e
n2n/2 < r(n, n) < n−1/2+c/

√
log n

(
2n− 2
n− 1

)

(1) Conjecture, 1947 ($100)
The following limit exists:

lim
n→∞ r(n, n)1/n = c

(2) Problem, 1947 ($250)
Determine the value of the limit c above (if it exists).

By (1), the limit, if it exists, is between
√

2 and 4. The proof for the lower
bound in (1) is by the probabilistic method.

(3) A problem on explicit constructions ($100)
Give a constructive proof for

r(n, n) > (1 + c)n

for some constant c > 0. The best known constructive lower bound
nc log n/ log log n is due to Frankl and Wilson [144].

1In this paper, by a graph we mean a simple loopless graph, unless otherwise specified.
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(4) Conjecture, 1947
For fixed l,

r(k, l) >
kl−1

(log k)cl

for a suitable constant cl > 0 and k sufficiently large.

For r(3, n), Kim [163] recently used a complicated probabilistic argument
to prove the following lower bound for r(3, n) which is of the same order as
the upper bound previously established by Ajtai, Komlós and Szemerédi
[2]:

c1n
2

logn
< r(3, n) <

c2n
2

logn
.

(5) It would be of interest to have an asymptotic formula for r(3, n).

For r(4, n) the best lower bound is c(n/ logn)5/2 due to Spencer [207] and
the upper bound is c′n3/ log2 n, proved by Ajtai, Komlós and Szemerédi
[2].

(6) Problem $250 (see [78])
Prove or disprove that

r(4, n) >
n3

logc n

for n sufficiently large.

(7) Conjecture (proposed by Burr and Erdős [80])

r(n+ 1, n) > (1 + c)r(n, n)

for some fixed c > 0.

(8) Conjecture (proposed by Erdős and Sós [80])

r(n+ 1, 3) − r(n, 3) → ∞

In particular, prove or disprove

(9)

r(n+ 1, 3) − r(n, 3)
n

→ 0.

Graph Ramsey numbers

(10) A conjecture on Ramsey number for bounded degree graphs
(proposed by Burr and Erdős [35])

For every graph H on n vertices in which every subgraph has minimum
degree ≤ c,

r(H,H) ≤ c′n
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where the constant c′ depends only on c.

We remark that Chvátal, Rödl, Szemerédi and Trotter [57] proved that for
graphs with bounded maximum degree, the Ramsey number grows linearly
with the size of the graph. An extension of this result was obtained by
Chen and Schelp [44] by showing that the bounded degree condition can
be replaced by a somewhat weaker requirement. In particular, they proved
that the Ramsey number for a planar graph on n vertices is bounded above
by cn. Rödl and Thomas [194], generalizing results in [44], showed that
graphs with bounded genus have linear Ramsey numbers.

(11) Conjecture (proposed by Erdős and Graham [102])
If G has

(
n
2

)
edges for n ≥ 4, then

r(G,G) ≤ r(n, n).

(12) More generally, if G has
(
n
2

)
+ t edges, then

r(G,G) ≤ r(H,H)

where H denotes the graph formed by connecting a new vertex to t of the
vertices of a Kn and t ≤ n.

(13) Problem [72]
Is it true that if a graph G has e edges, then

r(G,G) < 2ce1/2

for some constant c?

(14) A problem on n-chromatic graphs [82]
Let H denote an n-chromatic graph. Is it true that

r(H,H) > (1 − ε)nr(n, n)

holds for any 0 < ε < 1 provided n is large enough?

(15) Problem [82]
Prove that there is some ε > 0 so that for all n and all H of chromatic
number n,

r(H,H)
r(n, n)

> ε.

This is a modified version of an old conjecture r(H,H) ≥ r(n, n) (see [28])
which, however, has a counterexample for n = 4 given by Faudree and
McKay [138] who showed r(W,W ) = 17 for the pentagonal wheel W .

(16) Conjecture [63]
For some ε > 0,

r(C4,Kn) = o(n2−ε).
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It is known that

c(
n

logn
)2 > r(C4,Kn) > c(

n

logn
)3/2

where the lower bound is proved by probabilistic methods [207] and the
upper bound is due to Szemerédi (unpublished, also see [95]).

(17) Problem (proposed by Erdős, Faudree, Rousseau and Schelp [95])
Is it true that

r(Cm,Kn) = (m− 1)(n− 1) + 1

if m ≥ n > 3?

The answer is affirmative if m ≥ n2 − 2 (see [27, 139]).

(18) Problem (proposed by Burr, Erdős, Faudree, Rousseau and Schelp [37])
Determine r(C4,K1,n).

It is known that

n+ �√n	 + 1 ≥ r(C4,K1,n) ≥ n+
√
n− 6n11/40

where the upper bound can be easily derived from the Turán number of C4

and the lower bound can be found in [37]. Füredi can show (unpublished)
that r(C4,K1,n) = n+ �√n	 holds infinitely often.

(19) Conjecture (proposed by Burr, Erdős, Faudree, Rousseau and Schelp [37])
If G is fixed and n is sufficiently large, then r(G, T ) ≤ r(G,K1,n−1) for
every tree T on n vertices.

(20) A Ramsey problem for n-cubes (proposed by Burr and Erdős [35])
Let Qn denote the n-cube on 2n vertices and n2n−1 edges. Prove that

r(Qn, Qn) ≤ c2n.

Beck [18] showed that r(Qn, Qn) ≤ c2n2
.

(21) Linear Ramsey bounds
(proposed by Burr, Erdős, Faudree, Rousseau and Schelp [37])
Suppose a graph G satisfies the property that every subgraph of G on p
vertices has at most 2p− 3 edges. Is it true that

r(G,G) ≤ cn?

In general, the problem of interest is to characterize graphs whose Ramsey
number r(G,G) is linear.

Alon showed [6] that if no two vertices of degree exceeding two are adjacent
in a graph G, then the Ramsey number of G is linear.
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(22) Graphs with linear Ramsey bounds
(proposed by Burr, Erdős, Faudree, Rousseau and Schelp [37])
For a graph G, where G is Q3, K3,3 or H5 (formed by adding two vertex-
disjoint chords to C5), is it true that

r(G,H) ≤ cn

for any graph H with n vertices?

Multi-colored Ramsey numbers

For graphs Gi, i = 1, . . . , k, let r(G1, . . . , Gk) denote the smallest integer m
satisfying the property that if the edges of the complete graph Km are colored
in k colors, then for some i, 1 ≤ i ≤ k, there is a subgraph isomorphic to Gi

with all edges in the i-th color. We denote r(n1, . . . , nk) = r(Kn1 , . . . ,Knk
).

(23) Conjecture ($250, a very old problem of Erdős’)
Determine

lim
k→∞

(r(3, . . . , 3︸ ︷︷ ︸
k

))1/k.

This problem goes back essentially to Schur [200] who proved

r(3, . . . , 3︸ ︷︷ ︸
k

) < e k!

It is known [45] that r(3, . . . , 3︸ ︷︷ ︸
k

) is supermultiplicative so that the above

limit exists.

(24) Problem ($100) Is the limit above finite or not?

Any improvement for small values of k will give a better general lower
bound. The current best lower bound is (321)1/5 using the 5-colored
construction given by Exoo [134].

(25) A coloring problem for cycles (proposed by Erdős and Graham [80])
Show that

lim
k→∞

r(

k︷ ︸︸ ︷
C2n+1, . . . , C2n+1)

r(3, . . . , 3︸ ︷︷ ︸
k

)
= 0

This problem is open even for n = 2.

(26) A problem on three cycles (proposed by Bondy and Erdős [80])

r(Cn, Cn, Cn) ≤ 4n− 3.

For odd n, if the above inequality is true, it is the best possible. Recently,
QLuczak (personal communication) showed that r(Cn, Cn, Cn) ≤ 4n+o(n).
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Size Ramsey numbers

The size Ramsey number r̂(G) is the least integer m for which there exists
a graph H with m edges so that in any 2-coloring of the edges of H , there is
always a monochromatic copy of G in H .

(27) A size Ramsey problem for bounded degree graphs
(proposed by Beck and Erdős [189])
For a graph G on n vertices with bounded degree, prove or disprove that

r̂(G) ≤ cn.

The case for paths was proved by Beck [19] and the case for cycles was
proved by Haxell, Kohayakawa, and QLuczak [162]. Friedman and Pip-
penger [145] settled the case for any bounded degree tree.

(28) A size Ramsey problem
(proposed by Burr, Erdős, Faudree, Rousseau and Schelp [36])
For F1 = ∪s

i=1K1,ni and F2 = ∪t
i=1K1,mi , prove that

r̂(F1, F2) =
s+t∑
k=2

lk

where lk = max{ni +mj − 1 : i+ j = k}.
It was proved in [36] that

r̂(sK1,n, tK1,m) = (m+ n− 1)(s+ t− 1).

Induced Ramsey theory

The induced Ramsey number r∗(G) is the least integer m for which there
exists a graph H with m vertices so that in any 2-coloring of the edges of H ,
there is always an induced monochromatic copy of G in H . The existence of
r∗(G) was proved independently by Deuber [60], Erdős, Hajnal and Pósa [111],
and Rödl [193].

(29) Problem (proposed by Erdős and Rödl [77])
If G has n vertices, is it true that

r∗(G) < cn

for some absolute constant c?

This holds for a bipartite graph [193]. QLuczak and Rödl [183] showed
that a graph on n vertices with bounded degree has its induced Ramsey
number bounded by a polynomial in n, confirming a conjecture of Trotter.
Suppose G has k vertices and H has t ≥ k vertices. Kohayakawa, Prömel,
and Rödl [166] proved that the induced Ramsey number r∗(G,H) satisfies
the following bound:

r∗(G,H) ≤ tck log q
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where q denotes the chromatic number of H and c is some absolute con-
stant. This implies

r∗(G) < ncn log n.

Extremal graph theory

Turán numbers

For a graph H , let t(n,H) denote the Turán number of H , which is the
largest integer m such that there is a graph G on n vertices and m edges which
does not contain H as a graph.

(30) A conjecture on the Turán number for complete bipartite graphs
Prove that

t(n,Kr,r) > cn2−1/r

where c is a constant depending on r (but independent of n). An upper
bound for t(n,Kr,r) of the same order was proved by Kővári, Sós and
Turán [170] and Erdős independently. This long standing problem is well
known as the problem of Zarankiewicz, first considered by Zarankiewicz
[216] in 1951. However, it is included in the favorite problems of Erdős
[79], who proposed many variations of this problem. The above conjecture
is true for r = 2 and 3 (see [124]) and unsolved for r ≥ 4. The lower bound
of t(n,Kr,r) > cn2−2/(r+1) can be proved by probabilistic methods [131].
Recently, Kollár, Rónyai and Szabó [167] showed that t(n,Kr,s) > cn2−1/r

if r ≥ 4 and s ≥ r! + 1.

(31) A conjecture on the Turán number for bipartite graphs ($100)
(proposed by Erdős and Simonovits [129], 1984)

If H is a bipartite graph such that every induced subgraph has a vertex
of degree ≤ r, then the Turán number for H satisfies:

t(n,H) = O(n2−1/r).

This conjecture is open even for r = 3.

This problem is essentially the special case which has eluded the power
of the celebrated Erdős-Stone Theorem [132] and Erdős-Simonovits-Stone
Theorem [126] which can be used to determine t(n,H) asymptotically
for all H with chromatic number χ(H) at least 3. Namely, t(n,H) =
(1 − 1/(χ(H) − 1))

(
n
2

)
+ o(n2).

A variation of the above problem is the following:

(32) Conjecture (proposed by Erdős and Simonovits [129], 1984)
If a bipartite graph H contains a subgraph H ′ with minimum degree
greater than r, then

t(n,H) ≥ cn2−1/r+ε

for some ε > 0.
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(33) A conjecture on the exponent of a bipartite graph
(proposed by Erdős and Simonovits [129], 1984)

For all rationals 1 < p/q < 2, there exists a bipartite graph G such

t(n,G) = Θ(np/q).

(34) Conversely, is it true that for every bipartite graph G there is a rational
exponent r = r(G) such that

t(n,G) = Θ(nr)?

(35) A Turán problem for even cycles
(Proposed by Erdős [70])
Prove that

t(n,C2k) ≥ cn1+1/k.

A lower bound of order n1+1/(2k−1) can be proved by probabilistic methods
[131]. The bipartite Ramanujan graph [180, 186] gives t(n,C2k) ≥ n1+2/3k.
Recently, Lazebnik, Ustimenko and Woldar [178] constructed graphs which
yield t(n,C2k) ≥ n1+2/(3k−3). Füredi [146, 148] determined the exact
values of t(n,C4) for infinitely many n. This conjecture is open except for
the case of C4, C6 and C10 (see Benson [21] and also Wenger [215] for a
different construction).

(36) A problem on Turán numbers for an n-cube
(proposed by Erdős and Simonovits [130], 1970)
Let Qk denote an k-cube on 2k vertices.
Determine t(n,Qk). In particular, determine t(n,Q3).

Erdős and Simonovits [130] proved that

t(n,Q3) ≤ cn8/5.

No better lower bound than cn3/2 is known.

(37) A problem on Turán numbers for graphs with degree constraints
(proposed by Erdős and Simonovits [85], $250 for a proof and $100 for a
counterexample)
Prove or disprove

t(n,H) < cn3/2

if and only if H does not contain a subgraph each vertex of which has
minimum degree > 2.

(38) Turán numbers in an n-cube ($100, from the 70’s, see [84])
Let f2k(n) denote the maximum number of edges in a subgraph of Qn

containing no C2k. Prove or disprove

f4(n) = (
1
2

+ o(1))n2n−1.
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It is known that σ2k = limn→∞ f2k(n)/e(Qn) exists [46]. The best bounds
for σ4 are .623 ≥ σ4 ≥ 1/2 (see [46]). For larger k, it is known that√

2 − 1 ≥ σ6 ≥ 1/3 where the upper bound can be found in [46] and the
construction for the lower bound is due to Conder [58]. Also, it was proved
that σ4k = 0 for k ≥ 2. Is it true that σ6 = 1/3? Is it true that σ10 = 0?

(39) A problem on the octahedron graph
(proposed by Erdős, Hajnal, Sós and Szemerédi [113])
Let G be a graph on n vertices which contains no K2,2,2 and whose largest
independent set has o(n) vertices. Is it true that the number of edges of
G is o(n2)?
Erdős and Simonovits [127] determined the Turán number for the octahe-
dron graph K2,2,2 as well as other Platonic graphs [206, 203].

(40) A problem on the Turán number of C3 and C4

(proposed by Erdős and Simonovits [128])
Let t(n,C3, C4) denote the smallest integer m that every graph on n ver-
tices and m edges must contain C3 or C4 as a subgraph. Is it true that

t(n,C3, C4) =
1

2
√

2
n3/2 +O(n) ?

Erdős and Simonovits [128] proved that t(n,C4, C5) = 1
2
√

2
n3/2 +O(n).

Subgraph enumeration

(41) Problem (proposed by Erdős)
For a graph G, let #(H,G) denote the number of induced subgraphs of G
isomorphic to a given graph H .

Determine
f(k, n) = min

G
(#(Kk, G) + #(Kk, Ḡ))

where G ranges over all graphs on n vertices and Ḡ denotes the comple-
ment of G.
An old conjecture of Erdős stated that a random graph should achieve the
minimum which however was disproved by Thomason. In [210], he showed
that f(4, n) < 1

33

(
n
4

)
, f(5, n) < 0.906×21−(52)

(
n
5

)
, and in general, f(k, n) <

0.936 × 21−(k
2)

(
n
k

)
. Franek and Rödl [140] gave a different construction

which is simpler but gives a slightly larger constant.

(42) Conjecture (proposed by Erdős and Simonovits [129])
Every graph G on n vertices and t(n,C4) + 1 edges contains at least two
copies of C4 when n is large.
Radamacher first observed (see [72]) that every graph on n vertices and
t(n,K3)+1 edges contains at least �n/2� triangles. Similar question can be
asked for a general graph H , but relatively few results are known for such
problems (except for some trivial cases such as stars or disjoint edges).

10



(43) A conjecture on enumerating graphs with a forbidden subgraph
(proposed by Erdős, Kleitman and Rothschild [115])
Denote by fn(H) the number of (labelled) graphs on n vertices which do
not contain H as a subgraph. Then

fn(H) < 2(1+o(1))t(n,H).

If H is not bipartite, this was proved by Erdős, Frankl and Rödl [98].
For the bipartite case, it is open even for H = C4. It is well known that
t(n,C4) = (1/2 + o(1))n3/2. On the other hand, Kleitman and Winston
[165] proved

fn(C4) < 2cn3/2
.

Recently, Kleitman and Wilson [164] proved that fn(C2k) < 2cn1+1/k

for
k = 3, 4, 5 and Kreuter [171] showed that the number of graphs on n

vertices which do not containC2j for j = 2, . . . , k is at most 2(ck+o(1))n1+1/k

where ck = .54k + 3/2.

(44) A problem on regular induced subgraphs
(Proposed by Erdős, Fajtlowicz and Staton [82])
Let f(n) be the largest integer for which every graph of n vertices contains
a regular induced subgraph of ≥ f(n) vertices. Ramsey’s theorem implies
that a graph of n vertices contains a trivial subgraph, i.e., a complete or
empty subgraph of c logn vertices.

Conjecture:
f(n)/ logn→ ∞.

Note that f(5) = 3 (since if a graph on 5 vertices contains no trivial
subgraph of 3 vertices then it must be a pentagon). f(7) = 4 was proved
by Fajtlowicz, McColgan, Reid, and Staton [137] and also by Erdős and
Kohayakawa (unpublished). McKay (personal communication) found that
f(16) = 5 and f(17) = 6. Bollobás observed that f(n) < n1/2+ε for n
sufficiently large (unpublished).

(45) A problem of Erdős and McKay [82], 1994 ($100)
Let f(n, c) denote the largest integer m such that a graph G on n vertices
containing no clique or independent set of size c logn must contain an
induced subgraph with exactly i edges for each i, 0 < i ≤ m.

Prove or disprove that f(n, c) ≥ εn2.

McKay wrote, “It is easy to get bounds of the form f(n, c) ≥ c′ logn, and
Paul had a more complicated way to prove a bound f(n) ≥ c′(logn)2, but
I cannot remember it.”

Calkin, Frieze and McKay [42] proved that a random graph with pn2

edges, for a constant p, contains an induced subgraph with exactly i edges
for each i, for i ranging from 0 up to (1 − ε)pn2.
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(46) A conjecture of Erdős and Tuza [85]
Let G denote a graph on n vertices �n2/4� + 1 edges containing no K4.
Denote by f(n) the largest integer m for which there are m edges e in the
complement of G so that G+ e contains a K4.
Conjecture:

f(n) = (1 + o(1))
n2

16
.

On triangle-free graphs

(47) A problem on making a triangle-free graph bipartite
(proposed by Erdős, Faudree, Pach and Spencer [93])
Is it true that every triangle-free graph on 5n vertices can be made bipar-
tite by deleting at most n2 edges?

This conjecture is proved for graphs with at least 5n2 edges [103]. Thus,
the general conjecture is open for graphs with e edges for 2n2 < e ≤ 5n2.

(48) A problem on the number of triangle-free graphs (very recent, [205])
Determine or estimate the number of maximal triangle-free graphs on n
vertices.

(49) A problem on the number of pentagons in a triangle-free graph [72]
Is it true that a triangle-free graph on 5n vertices can contain at most n5

pentagons?

Győri [152] proved that such graph can have at most 3354/214 n5 ≈ 1.03n5

triangles.

(50) Conjecture (proposed by Erdős, Faudree, Rousseau and Schelp [96])
If each set of �n/2� vertices in a graph of n vertices spans more than n2/50
edges, then G contains a triangle.

Krivelevich [172] proved that if each n/2 vertices span more than n2/36
edges, then there is a triangle.

(51) A problem on graphs covered by triangles
(proposed by Erdős and Rothschild [86])
Suppose G is a graph of n vertices and e = cn2 edges. Assume that every
edge of G is contained in at least one triangle. Determine the largest inte-
ger m = f(n, c) such that in every such graph there is an edge contained
in at least m triangles.

Alon and Trotter showed that f(n, c) < αc
√
n (personal communication).

In the other direction, Szemerédi observed that the regularity lemma im-
plies that f(n, c) approaches infinity for every fixed c. Is it true that
f(n, c) > nε?
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Graph coloring problems

A graph is said to have chromatic number χ(G) = k if its vertices can be
colored in k colors such that two adjacent vertices have different colors and such
a coloring is not possible using k − 1 colors.

(52) A problem on graphs with fixed chromatic number and large girth
(proposed by Erdős, 1962 [68])
Let gk(n) denote the largest integer m such that there is a graph on n
vertices with chromatic number k and girth m.

Is it true that for k ≥ 4,

lim
n→∞

gk(n)
logn

exists?

Erdős [64, 68] proved that

logn
4 log k

≤ gk(n) ≤ 2 logn
log(k − 2)

+ 1.

(53) A problem on the chromatic number and clique number
(proposed by Erdős, 1967 [89])
Let ω(G) denote the number of vertices in a largest complete subgraph
of G. Let f(n) denote the maximum value of χ(G)/ω(G) where G ranges
over all graphs on n vertices.

Does the following limit exist?

lim
n→∞

f(n)
n/ log2 n

Erdős [89] proved that

cn

log2 n
≤ f(n) ≤ c′n

log2 n
.

(54) A conjecture on subgraphs of given chromatic number and girth
(proposed by Erdős and Hajnal [75])
For integers k and r, there is a function f(k, r) such that every graph with
chromatic number at least f(k, r) contains a subgraph with chromatic
number k and girth r.

Rödl [192] proved the above conjecture for the case of r = 4 and for every
k. However, his upper bound is quite large. Erdős [75] further conjectured:

lim
k→∞

f(k, r + 1)
f(k, r)

= ∞.

(55) The problem of Erdős and Lovász [69]
Suppose a graph G is k-chromatic and contains no Kk. Let a and b denote
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two integers satisfying a, b ≥ 2 and a+b = k+1. Do there exist two disjoint
subgraphs of G of chromatic numbers a and b, respectively?

The original question of Erdős is for the case k = 5, a = b = 3, which
was proved affirmatively by Brown and Jung [34]. Several small cases
have been solved (for more discussion, see [158]). Of special interest is the
following case for a = 2:

Suppose the chromatic number of G decreases by 2 by removing any two
vertices joining by an edge. Must G be the complete graph?

(56) A problem on choosability of graphs (proposed by Erdős, Rubin and Tay-
lor [125])
A graph G is said to be (a, b)-choosable if for any assignment of a list of
a colors to each of its vertices there is a subset of b colors of each list so
that subsets corresponding to adjacent vertices are disjoint.

Conjecture: If G is (a, b)-choosable, then G is (am, bm)-choosable for every
positive integer m.

The conjecture is known [10] to hold for graphs with n vertices, provided
m is divisible by all integers smaller than some f(n).

A special case of the above conjecture is the following problem (see [158]):

Let G and H denote two graphs with the same set of vertices. If G is
r-choosable (i.e., (r, 1)-choosable) and H is s-choosable, then their union
is rs-choosable.

(57) A problem on critical graphs
(proposed by Erdős in 1949 [76])
A graph with chromatic number k is said to be edge critical or k-critical
if the deletion of any edge decreases the chromatic number by 1.
What is the largest number m, denoted by f(n, k), such that there is a
k-critical graph on n vertices and m edges? In other words, determine

lim
n→∞

f(n, k)
n2

= ck.

Edge critical graphs were first introduced by Dirac [62] who answered a
problem of Erdős from 1949 by showing f(n, k) > ckn

2 for k ≥ 6 and,
in particular, f(n, 6) > n2/4 + cn. Erdős and Simonovits proved that
f(n, 4) < n2/4+ cn. Toft [212] showed that f(n, 4) > n2/16+ cn by using
a graph with many vertices of bounded degree. Erdős further raised the
following questions:

(58) Is it true that f(n, 6) = n2/4 + n for n ≡ 2 modulo 4?

(59) Is there a 4-chromatic critical graph on n vertices and cn2 edges which
does not contain Kt,t for some large t?

Rödl (unpublished) constructed such an example with t < c logn.
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(60) A problem on critical graphs with large degree
(proposed by Erdős [76, 73])
Let g(n, k) denote the maximum value m such that there exists a k-critical
graph on n vertices with minimum degree at least m.

What is the magnitude of g(n, k)?

Is it true that g(n, 4) ≥ cn for some constant c?

Simonovits [204] and Toft [213] proved that g(n, 4) ≥ cn1/3.

(61) A problem on vertex critical graphs (proposed by Erdős [73])
A graph with chromatic number k is said to be vertex critical or k-vertex-
critical if the deletion of any vertex decreases the chromatic number by
1.

Is there some positive function f(n) so that for every k ≥ 4 there exists a
graph G on n vertices which is k-vertex-critical but χ(G−A) = k for any
set A of at most f(n) edges?

Brown [31] gave an example of a 5-vertex-critical graph with no critical
edges. Recently, Jensen [157] showed that there exists a k-vertex-critical
graph, for k ≥ 5, such that the chromatic number is not decreased after
deleting any m edges all incident to a common vertex.

(62) A conjecture on strong chromatic index (proposed by Erdős and Nešetřil
[76] 1985)
The strong chromatic index χ∗(G) of a graph G is the least number r so
that the edges of G can be colored in r colors in such a way that any two
adjacent vertices in G are not incident to edges of the same color.

Suppose G has maximum degree k. Is it true that χ∗(G) ≤ 5k2/4 if k is
even and χ∗(G) ≤ 5k2/4 − k/2 + 1/4 if k is odd?

This conjecture is open for k ≥ 4 while the cases of k ≤ 3 are solved
by Anderson [13] and Horák, Qing and Trotter [156]. Chung, Gyárfás,
Trotter and Tuza [56] proved that if G contains no induced 2K2, then G
has at most 5k2/4 edges.

(63) A problem on three-coloring (proposed by Erdős, Faudree, Rousseau and
Schelp [139])
Is it true that in every three-coloring of the edges of Kn there is a set of
three vertices which are adjacent to at least two-third of all the vertices
by edges of the same color?

If true, it is the best possible as shown by an example given by Kierstead
[139].

(64) A problem on anti-Ramsey graphs
(proposed by Burr, Erdős, Graham and Sós [39])
For a graph G, determine the least integer r = f(n, e,G) so that there is
some graph H on n vertices and e edges which can be r-edge-colored such
that all edges of every copy of G in H have different colors.
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It seems to be a difficult problem to get good bounds for f(n, e,G) for
a general graph G (see [39]). Even for special cases, there are large
gaps between known bounds. For example, it was shown in [39, 38] that
f(n, e, C5) ≥ cnn for e = (1/4 + ε)n2 and f(n, e, C5) = O(n2/ logn) for
e = (1/2 − ε)n2. Also, f(n, e, P4) > c′nn for e = εn2 and f(n, e, P4) ≤ n
for n = n2/ exp(c

√
logn).

Covering and packing

(65) A conjecture on covering by C4’s (proposed by Erdős and Faudree [88])
Suppose a graphG has 4n vertices with minimum degree at least 2n. Then
G has n vertex-disjoint C4’s.

Alon and Yuster [11] proved that for a fixed bipartite graph H on h ver-
tices, a graph G with n vertices, where h divides n, can be covered by
vertex-disjoint copies ofH if the minimum degree of G is at least (1/2+ε)n
for n sufficiently large.

(66) A problem on clique covering and clique partition
(proposed by Erdős, Faudree and Ordman [92])
The clique covering number cc(G) of G is the least number of cliques that
covers the graph. The clique partition number cp(G) is the least number
of cliques that partition the edge set of G. Here Gn denotes a graph on n
vertices.
Determine the largest value c such that

cp(Gn)
cc(Gn)

> cn2

for an infinite family of graphs Gn.

An example was given in [92] with c = 1/64.

Is there a sequence of graphs Gn such that

cp(Gn) − cc(Gn) = n2/4 +O(n)?

In [40] it was shown

cp(Gn) − cc(Gn) = n2/4 − n3/2/2 + n/4 +O(1).

(67) The ascending subgraph decomposition problem
(proposed by Alavi, Boals, Erdős, Chartrand and Oellermann [5])
Suppose G is a graph with n(n + 1)/2 edges. Prove that G can be edge-
partitioned into subgraphs Gi with i edges such that Gi is isomorphic to
a subgraph of Gi+1 for i = 1, . . . , n− 1.

A special case is the decomposition of star forests into stars (which is the
so-called suitcase problem of partitioning integers 1, . . . , n into k parts
with given sums a1, . . . , ak for any ai ≤ n and

∑
ai = n(n + 1)/2). The

suitcase problem was solved by Ma, Zhou and Zhou [185, 184].
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General extremal problems

(68) A conjecture on trees 1962,
(proposed by Erdős and Sós)

Every graph on n vertices having at least n(k−1)/2+1 edges must contain
as a subgraph every tree of k + 1 vertices, for n ≥ k + 1.

This conjecture, if true, is best possible. Some asymptotic approximations
of this conjecture were given by Komlós and Szemerédi (unpublished).
Also, this conjecture is proved for some special families of trees such as
caterpillars.

Brandt and Dobson [30] have proved the conjecture for graphs with girth
at least 5.

(69) The (n/2-n/2-n/2) conjecture
(proposed by Erdős, Füredi, Loebl and Sós [99])
Let G be a graph with n vertices and suppose at least n/2 vertices have
degree at least n/2. Then G contains any tree on at most n/2 vertices.

Ajtai, Komlós and Szemerédi [4] proved the following asymptotic version:
If G has n vertices and at least (1 + ε)n/2 vertices have degree at least
(1 + ε)n/2, then G contains any tree on at most n/2 vertices if n is large
enough (depending on ε). Komlós and Sós conjectured [99]:
Let G be a graph with n vertices and suppose at least n/2 vertices have
degree at least k. Then G contains any tree with k vertices.

(70) A conjecture of Erdős and Gallai, 1959 [100]
Every connected graph on n vertices can be edge-partitioned into at most
�(n+ 1)/2� paths.

Lovász [179] showed that every graph on n vertices can be edge-partitioned
into at most �n/2� cycles and paths. Pyber [190] showed that every con-
nected graph on n vertices can be covered by at most n/2+O(n3/4) paths.

(71) A problem on clique transversals
(proposed by Erdős, Gallai and Tuza [101])
Estimate the cardinality, denoted by τ(G), of a smallest set that shares a
vertex with every clique of G.

Denote by R(n) the largest integer such that every triangle-free graph on
n vertices contains an independent set of R(n) vertices. Is it true that
τ(G) ≤ n−R(n) ?

From the results on Ramsey numbers r(3, k), we know that c
√
n logn <

R(n) < c′
√
n logn. So far, the best known bound [101] is τ(G) ≤ n −√

2n+ c for a small constant c.

(72) A problem on the diameter of a Kr-free graph
(proposed by Erdős, Pach, Pollack and Tuza [119])
Let G denote a connected graph on n vertices with minimum degree δ.
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Show that if G is K2r-free and δ is a multiple of (r − 1)(3r + 2), then the
diameter of G, denoted by D(G), satisfies

D(G) ≤ 2(r − 1)(3r + 2)
(2r2 − 1)δ

n+O(1)

when n approaches infinity. If G is K2r+1-free and δ is a multiple of 3r−1,
then

D(G) ≤ 3r − 1
rδ

n+O(1)

when n approaches infinity.

In [119], bounds for the diameters of triangle-free or Ck-free graphs with
given minimum degree were derived.

(73) Problem ($100, many years ago)
Is there a sequence A of density 0 for which there is a constant c(A) so
that for n > n0(A), every graph on n vertices and c(A)n edges contains a
cycle whose length is in A.

Erdős said [81], “I am almost certain that if A is the sequence of powers
of 2 then no such constant exists. What if A is the sequence of squares?
I have no guess. Let f(n) be the smallest integer for which every graph
on n vertices and f(n) edges contains a cycle of length 2k for some k. I
think that f(n)/n→ ∞ but that f(n) < n(logn)c for some c > 0.”

Alon pointed out that f(n) ≤ cn logn using the fact [29] that graphs with
n vertices and ck1+1/k edges contain cycles of all even lengths between 2k
and 2kn1/k (by taking k to be about logn/2).

(74) Conjecture (proposed by Erdős [74])
For n ≥ 3, any graph with

(
2n+1

2

)−(
n
2

)−1 edges is the union of a bipartite
graph and a graph with maximum degree less than n.

(75) A decomposition problem about odd cycles
(proposed by Erdős and Graham [102])
It is known that a complete graph on 2n vertices can be edge-partitioned
into n bipartite graphs (and this is not true for 2n + 1). Suppose a com-
plete graph on 2n + 1 is decomposed into n subgraphs. Let f(n) denote
the smallest integer m such that one of the subgraphs must contain an
odd cycle of length less than or equal to m. Determine f(n). Is f(n)
unbounded?

(76) A problem on almost bipartite graphs (proposed by Erdős [82])

SupposeG has the property that for everym, every subgraph onm vertices
contains an independent set of size m/2− k. Let f(k) denote the smallest
number such that G can be made bipartite by deleting f(k) vertices.

Recently, Reed (unpublished) proved the existence of f(k) by using graph
minors. It would be of interest to improve the estimates for f(k).
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Erdős, Hajnal and Szemerédi [114] proved that for every ε > 0 there
is a graph of infinite chromatic number for which every subgraph of m
vertices contains an independent set of size (1 − ε)m/2. Erdős remarked
that perhaps (1−ε)m/2 can be replaced by m/2−f(m) where f(m) tends
to infinity arbitrarily slowly.

(77) A problem of Erdős and Rado [122]

What is the least number k = k(n,m) so that for every directed graph
on k vertices, either there is an independent set of size n or the graph
includes a directed path of size m (not necessarily induced)?

Erdős and Rado [122] give an upper bound of [2m−1(n−1)m+n−2]/(2n−
3).

Mitchell and Larson [176] give a recurrence relation and obtain a bound
of n2 for m = 3 and, more generally, of nm−1 for m > 3.

Random graphs

(78) Problem (proposed by Erdős, see [9])
Let G denote a random graph on n vertices and cn edges. What is the
largest r, denoted by r(c), for which the probability that the chromatic
number is r is at least some constant strictly greater than 0 (and indepen-
dent of n)?

This is open except for r = 3 (see [9]). QLuczak [182] gave an asymptotic
estimate:

r(c) = (1 + o(1))
c

2 log c
.

However, the exact values are not known.

(79) Problem (proposed by Erdős, see [9])
How accurately can one estimate the chromatic number of a random graph
(with edge probability 1/2)? Prove or disprove that the error is more
(much more) than O(1).

Shamir and Spencer have an O(n1/2) upper bound [201].

An old problem raised by Erdős and Rényi [123] is to determine the chro-
matic number of a random graph with given edge density. This problem
has almost been completely resolved due to the work of Matula [186],
Shamir and Spencer [201], and Bollobás [23]. The order of the chro-
matic number for both sparse and dense random graphs have been deter-
mined asymptotically. For random graphs with edge density p satisfying
p ≤ n−5/6−ε, where ε > 0, Shamir and Spencer showed that the chro-
matic number almost surely takes on at most five different values. QLuczak
later on [181] proved that for such sparse random graphs, the chromatic
number is concentrated at two values. Recently, Alon and Krivelevich [8]
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showed that for p ≤ n−1/2−ε, the chromatic number is concentrated at at
most two values (and for some values of p, in a single value). However,
the concentration of the limit function of χ for dense graphs is not as well
understood yet.

(80) A conjecture on a spanning cube in a random graph
(proposed by Erdős and Bollobás, see [88])
A random graph on n = 2d vertices with edge density 1/2 contains an
d-cube.

Alon and Füredi [7] showed that this conjecture is true if the random
graph has edge density > 1/2 for n large enough.

(81) Problem (proposed by Erdős and Bollobás, see [9])
In a random graph (with edge probability 1/2), find the best possible c
such that every subgraph on nα vertices will almost surely contain an
independent set of size c logn (where c depends on α).

(82) Problem (proposed by Erdős and Spencer [9])
Start with n vertices and add edges at random one by one. If we stop
when every vertex is contained in a triangle, is there a set of vertex disjoint
triangles covering every vertex (except for at most two vertices)?

The above question can be posed for other configurations as well [9]. In
particular, Bollobás and Frieze [26] showed that stopping as soon as there
is no isolated vertex, then there already almost surely is a perfect matching
if the number of vertices is even. If we stop when every vertex has degree
at least 2, Ajtai, Komlós and Szemerédi [3] and Bollobás [24] proved that
there already almost surely is a Hamiltonian cycle. Alon and Yuster [12]
and Ruciński [196] examined the threshold function of a random graph on
n vertices for the existence of �n/|V (H)|� vertex-disjoint copies of a given
graph H .

(83) A problem on monotone graph properties
(proposed by Erdős, Suen and Winkler [133])
A graph property P is said to be monotone if every subgraph of a graph
with property P also has property P .
Start with n vertices and add edges one by one at random, subject to the
condition that property P continues to hold. Stop when no more edges
can be added. How many edges can such a graph have?

The cases when P denotes “triangle-free”, “bipartite”, or “disconnected”
were considered by Erdős, Suen and Winkler [133]. The property “max-
imum degree bounded by k” was examined by Ruciński and Wormald
[197].

Many interesting cases are still open, including “C4-free”, “Kr-free” (for
r ≥ 4), “k-colorable” (for k ≥ 3), “planar” and “girth > k”.

20



Hypergraphs

Ramsey theory for hypergraphs

A t-graph has a vertex set V and an edge set E consisting of some prescribed
set of t-subsets of V . For t-graphs Gi, i = 1, . . . , k, let rt(G1, . . . , Gk) denote
the smallest integer m satisfying the property that if the edges of the complete
t-graph on m vertices are colored in k-colors, then for some i, 1 ≤ i ≤ k, there
is a t-subgraph isomorphic to Gi with all t-edges in the i-th color. We denote
rt(n1, . . . , nk) = rt(Kn1 , . . . ,Knk

). Clearly r2(n1, . . . , nk) = r(n1, . . . , nk).

(84) Conjecture ($500)
Is there an absolute constant c > 0 such that

log log r3(n, n) ≥ cn?

This is true if four colors are allowed [110]. If just three colors are allowed,
there is some improvement due to Erdős and Hajnal (unpublished).

r3(n, n, n) > ecn2 log2 n.

(85) Generalized Ramsey problems ($500)
(proposed by Erdős and Hajnal [78])
Denote by ft(n, u, v) the largest value of k such that any coloring of the
t-tuples of a set of n elements in blue and red, then there are either k
elements all of whose t-tuples are in blue or there are v red t-tuples of a
set of u elements. Clearly, for v =

(
k
t

)
, the Ramsey function rt(k, k) = n

satisfies ft(n, k,
(
k
t

)
) = k.

Conjecture

ht(n, k, gt(k) + 1) ≤ (logn)c

where n is sufficiently large and gt is defined by

gt(k) =
t∑
1

gt(ui) + Πt
i=1ui

and the u’s are as nearly equal as possible; gt(k) = 0 for k < t; and
gt(t) = 1.

Turán problems

(86) Turán’s conjecture for 3-graphs
For an r-uniform hypergraph (or r-graph, for short) H , we denote by
tr(n,H) the smallest integer m such that every r-graph on n vertices with
m+ 1 edges must contain H as a subgraph. When H is a complete graph
on k vertices, we write tr(n, k) = tr(n,H).
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In memory of Turán, Erdős offered $1000 for the following conjecture:

Conjecture [214]

lim
n→∞

t3(n, 4)(
n
3

) =
5
9
.

There are many different extremal constructions [32, 169] which show
t3(n, 4) ≥ 5

9

(
n
3

)
(1 + o(n−1)). The best upper bound for t3(n, 4)/

(
n
3

)
is

(−1+
√

21)/6 = .5971 . . . due to Giraud (unpublished, mentioned in [41]).
An excellent survey on this problem can be found in Füredi [149].

(87) Conjecture [214]

lim
n→∞

t3(n, 5)(
n
3

) =
1
4
.

(88) A conjecture for triple systems
(proposed by Brown, Erdös and Sós [33, 78])
Let f(n, k, r) denote the least integer m such that every 3-graph on n
vertices with more than m triples contains an induced subgraph on k
vertices with at least r edges. Prove that

f(n, k, k − 3) = o(n2).

Ruzsa and Szemerédi [198] settled an earlier conjecture of Erdős by show-
ing f(n, 6, 3) = o(n2).

∆-systems

A family of sets Ai, i = 1, 2, . . . , is called a strong ∆-system if the intersec-
tions Ai ∩Aj for i �= j are all identical. In other words,

Ai ∩Aj =
⋂
t

At if i �= j.

A strong ∆-system of k sets is also called a k-star. The family is called a weak
∆-system if we only require that the sizes |Ai ∩Aj | are all the same for i �= j.

(89) A problem on unavoidable stars
(proposed by Erdős and Rado [120] in 1960)
For given integers n and k, determine the smallest integer m, denoted by
f(n, k), for which every family of sets Ai, i = 1, . . . ,m, with |Ai| = n for
all i, contains a k-star.

Erdős and Rado [120, 121] proved that

2n < f(n, 3) ≤ 2nn!.

Abbott and Hanson [1] proved f(n, 3) > 10n/2. Spencer [208] showed
f(n) < (1 + ε)nn!.
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(90) Conjecture ($1000):
f(n, 3) ≤ cn

for some absolute constant c.

The current best bound is due to Kostochka [168]:

f(n, 3) < n!
(
c log log n

logn

)n

.

(91) Conjecture :
f(n, k) ≤ cnk

(92) A problem on unavoidable stars of an n-set
(proposed by Erdős and Szemerédi [136])
Determine the least integerm, denoted by f∗(n, k) such that for any family
A of subsets of an n-set with |A| > f∗(n, k), A must contain a k-star.

Erdős and Szemerédi [136] showed that f∗(n, 3) < 2(1−1/(10
√

n))n. Re-
cently, Deuber, Erdő, Gunderson, Kostochka and Meyer [61] proved that
f∗(n, r) > 2n(1−log log r/2r−O(1/r)) for every r ≥ 3 and infinitely many n.
In particular, f∗(n, 3) > 1.551n−2 for infinitely many n.

(93) A problem on weak ∆-systems
(proposed by Erdős, Milner and Rado [118])
Let g(n, k) denote the least size for a family of n-sets forcing a weak ∆-
system of k sets.
Conjecture[118]:

g(n, 3) < cnk .

Recently, Axenovich, Fon-der-Flaass and Kostochka [14] proved

g(n, 3) < (n!)1/2+ε.

(94) A problem on weak ∆-systems of an n-set (proposed by Erdős and Sze-
merédi [136])
Determine the least integer m, denoted by g∗(n, k), such that for any fam-
ily A of subsets of an n-set with |A| > g∗(n, k), A must contain a weak
∆-system of k sets.

Erdős and Szemerédi [136] proved that g∗(n, 3) > nlog n/4 log log n. Re-
cently, Rödl and Thoma [194] proved that g∗(n, r) ≥ 2

1
3n1/5 log4/5(r−1) for

r ≥ 3. For the upper bound for g∗(n, r) , Frankl and Rödl [142] proved
that g∗(n, k) < (2 − ε)n, where ε depends only on k.

(95) A problem of Erdős, Faber and Lovász ($500, 1972 [75])
Let G1, . . . , Gn be n edge-disjoint complete graphs on n vertices. Then
the chromatic number of ∪n

i=1Gi is n.

Recently, Kahn [159] proved that the chromatic number of ∪n
i=1Gi is at

most (1 + o(1))n. Erdős also asked the question of determining ∪n
i=1Gi if

we require that Gi ∩Gj , i �= j, is triangle-free, or should have at most one
edge.
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(96) A problem on jumps in hypergraph
($500, proposed by Erdős [75])
Prove or disprove that any 3-uniform hypergraph with n > n0 vertices
and at least (1/27 + ε)n3 edges contains a subgraph on m vertices and at
least (1/27 + c)m3 edges where c > 0 does not depend on ε and m.

Originally, Erdős asked the question of determining such a jump for the
maximum density of subgraphs in hypergraphs with any given edge den-
sity. However, Frankl and Rödl [143] gave an example showing for hyper-
graphs with a certain edge density, there is no such jump for the density
of subgraphs. Still, the original question for 3-uniform hypergraphs as
described above remains open.

(97) A problem on property B (proposed by Erdős 1963, [66])
A family F of subsets is said to have property B if there is a subset S such
that every subset in F contains an element in S and an element not in S.
What is the minimum number f(n) of subsets in a family F of n-sets not
having property B?

Property B is named after Felix Bernstein who first introduced this prop-
erty in 1908 [22]. The best known upper bound is due to Erdős [66, 67]
and the following lower bound was given by Beck [20].

n1/3−ε2n ≤ f(n) < (1 + ε)
e log 2

4
n22n

for n ≥ n0 and n0 depends only on ε. This problem was extensively
considered in [9, 158].

(98) A conjecture on covering a hypergraph
(proposed by Erdős and Lovász [117])
Let f(n) denote the smallest integer m such that for any n-element sets
A1, . . . , Am with Ai ∩ Aj �= ∅ for i �= j and for every set S with at most
n − 1 elements, there is an Ai disjoint from S. Erdős and Lovász [117]
proved that

8
3
n− 3 ≤ f(n) ≤ cn3/2 log n.

Kahn [160] showed that f(n) = O(n) and he wrote an excellent survey
paper [161] on several related hypergraph problems (including this prob-
lem).

Erdős [84] further conjectured a strengthened version of this conjecture:
For every c > 0 there is an ε > 0 such that if n is sufficiently large and
{Ai : 1 ≤ i ≤ cn} is a collection of intersecting n-sets, then there is a set
S satisfying that |S| < n(1 − ε) and Ai ∩ S �= ∅ for all 1 ≤ i ≤ cn).

(99) A problem on unavoidable hypergraphs
(proposed by Chung and Erdős [49])

A r-graph H is said to be (n, e)-unavoidable if H is contained in every r-
graph on n vertices and e edges. Let fr(n, e) denote the largest integer m
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with the property that there exists an (n, e)-unavoidable r-graph having
m edges.
Determine fr(n, e).

For the case of r = 2 and 3, the solutions can be found in [48, 49].

(100) A problem on unavoidable stars (proposed by Duke and Erdős [91])

Let f(n, r, k, t) denote the smallest integer m with the property that any
r-graph on n vertices and m edges must contain a k-star with common
intersection of size t.
Determine f(n, r, k, t).

Duke and Erdős proved that f(n, r, k, 1) ≤ cnr−2 where c depends only
on r and k. For the case of r = 3, tight bounds are obtained by Chung
and Frankl [54], also see [141, 47].

(101) A problem on decompositions of hypergraphs
(proposed by Chung, Erdős and Graham [51])
For r-graphsH1, . . . , Hk with the same number of edges, a U -decomposition
(first suggested by Ulam) is a family of partitions of each of the edge sets
E(Hi) into t mutually isomorphic sets, i.e., say E(Hi) = ∪t

j=1Eij , where
for each j, all the Eij are isomorphic. Let Uk(n, r) denote the least possible
value m such that all families of k r-graphs must have a U -decompositions
into t isomorphic sets.

For graphs, it was shown [53, 50] that

2
3
n− 1

3
< U2(n, 2) <

2
3
n+ c

and for k ≥ 3,
3
4
n−√

n− 1 < Uk(n, 2) <
3
4
n+ ck.

There is still room for improvement.

For hypergraphs, it is of interest to determine U2(n, 3), for example. It is
known (see [51]) that

c1n
4/3 log logn/ logn < U2(n, 3) < c2n

4/3.

Also, for ε > 0,

c3n
2−2/k−ε < Uk(n, 3) < c4n

2−1/k.

(102) A problem on the product of the point and line covering numbers
(proposed by Chung, Erdős and Graham [52])
In a hypergraph G with vertex set V and edge set E, the point covering
number α0(G) denotes the minimal cardinality of a subset of V which
has non-empty intersection with every edge e in E. The line covering
number α1(G) denotes the minimal cardinality of a subset S of E such
that every vertex is contained in some edge in S. The problem of interest
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is to characterize hypergraphs which achieve the maximum and minimum
value of α0(G)α1(G).

The case for graphs was solved in [52] and it was shown that

n− 1 ≤ α0(G)α1(G) ≤ (n− 1)�n+ 1
2

�

which is asymptotically best possible.

Infinite graphs

Erdős wrote over a hundred papers on infinite graphs. In particular, the
problem papers by Erdős and Hajnal [105, 106] contain 82 problems which have
been the major driving force in this field. Many of the problems have been
solved positively, negatively or proved to be undecidable. The problems here
are mainly based on the survey papers [86, 155, 153]. Many comments to these
problems were graciously provided by András Hajnal and Jean Larson.

Here we use the following arrow notation, first introduced by Rado:

κ→ (λν)r
γ

which means that for any r-partition f : [κ]r → γ there are ν < γ and H ⊂ κ
such that H has order type λν and f(Y ) = ν for all Y ∈ [H ]r. If λν = λ for
all ν < γ, then we write κ → (λ)r

γ . In this language, Ramsey’s theorem can be
written as

ω → (ω)r
k

for 1 ≤ r, k < ω.

(103) A conjecture on ordinary partition relations for ordinals ($1000)
(proposed by Erdős and Hajnal [105])
Determine the α’s for which ωα → (ωα, 3)2.

Galvin and Larson [150] showed that such α must be of the form ωβ .
Chang [43] proved ωω → (ωω, 3)2. Milner [187] generalized the proof of
Chang to show ωω → (ωω, n)2 for n < ω, and Larson [173] gave a simpler
proof.

There have been many recent developments on ordinary partition relations
for countable ordinals. Schipperus [199] proved that

ωωβ → (ωωβ

, 3)2 (2)

if β is the sum of at most two indecomposables. In the other direction,
Schipperus [199] and Larson [174] showed that

ωωβ �→ (ωωβ

, 5)2 (3)
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if β is the sum of two indecomposables. Darby [59] proved that

ωωβ �→ (ωωβ

, 4)2 (4)

if β is the sum of three indecomposables. Schipperus [199] also proved
that

ωωβ �→ (ωωβ

, 3)2 (5)

if β is the sum of four indecomposables.

(104) A problem on ordinary partition relations for ordinals
(proposed by Erdős and Hajnal [105])
Is it true that if α → (α, 3)2, then α → (α, 4)2?

The original problem proposed in [105] was “Is it true that if α→ (α, 3)2,
then α → (α, n)2?”. However, Schipperus’ results (2) and (3) give a
negative answer for the case of n ≥ 5. For the case of n = 4, Darby and
Larson (unpublished) proved

ωω2 → (ωω2
, 4)2

extending the previous work of Darby on ωω2 → (ωω2
, 3)2.

(105) [105]
Is it true that ω1 → (α, 4)3 for α < ω1?

Milner and Prikry [188] gave an affirmative answer for α ≤ ω2 + 1.

(106) [105]
Is it true that ω1

2 → (ω1
2, 3)2?

A. Hajnal [154] proved ω1
2 �→ (ω1

2, 3)2 under CH. Erdős and Hajnal [106]
ask if MAℵ1 + 2ℵ0 = ℵ2 implies ω1

2 → (ω1
2, 3)2? Erdő, Hajnal and

Larson [108] asked for the cardinals λ that λ2 → (λ2, 3)2 holds. Hajnal
[154] showed the relation failed at successors of regular cardinals under
GCH. Baumgartner [15] showed that the relation failed at successors of
singular cardinals under GCH.

(107)
Is it true that ω3 → (ω2 + 2)3ω?

Baumgartner, Hajnal and Todorčević [16] showed that GCH implies ω3 →
(ω2 + χ)3k for χ < ω1 and k < ω.

(108) A problem on graphs of infinite chromatic number ($250)
(proposed by Erdős, Hajnal and Szemerédi, 1982, [114, 82])
Let f(n) → ∞ arbitrarily slowly. Is it true that there is a graph G of
infinite chromatic number such that for every n, every subgraph of G of
n vertices can be made bipartite by deleting at most f(n) edges?

Prove or disprove the existence of a graph G of infinite chromatic number
for which f(n) = o(nε) or f(n) = o((log n)c).

Rödl [191] solved this problem for 3-uniform hypergraphs.
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(109) A problem on 4-chromatic subgraphs
(proposed by Erdős, Hajnal [107])
Is it true that if G1, G2 are ℵ1-chromatic graphs then they have a common
4-chromatic subgraph?

Erdős, Hajnal and Shelah [112] proved that any ω1 chromatic graph con-
tains all cycles Ck for k > k0. Consequently, the above problem has an
affirmative answer for 3-chromatic graphs.

(110) A problem on the union of triangle-free graphs ($250)
(proposed by Erdős and Hajnal [104])
Is there a graph G which contains no K4 and which is not the union of ℵ0

graphs which are triangle-free?

Shelah [202] proved that the existence of such a graph is consistent but it
is not known if this is provable in ZFC.

(111) A problem on ℵ1-chromatic graphs
(proposed by Erdős, Hajnal and Szemerédi [114])
Is it true that if f(n) increases arbitrarily fast, then there is an ℵ1-
chromatic graph G so that if g(n) is the smallest integer for which G
has an n-chromatic subgraph of g(n) vertices, then f(n)/g(n) → 0?

(112) A problem on odd cycles (proposed by Erdős and Hajnal [87])
Let G be a graph of infinite chromatic number and let n1 < n2 < . . . be
the sequence consisting of lengths of odd cycles in G. Is it true that

∑ 1
ni

= ∞?

Gyárfás, Komlós and Szemerédi [151] proved that the set of all cycle
lengths has positive upper density.

(113) A problem on ordinal graphs and infinite paths
(proposed by Erdős, Hajnal and Milner [109])

For which limit ordinals α is it true that if G is a graph whose vertices
form a set of type α then either G has an infinite path or contains an
independent set of type α. In other words, determine the limit α for
which

α → (α, infinite path)2.

Erdős, Hajnal and Milner [109] proved that the positive relation is true
for all limit α < ωω+2. Baumgartner and Larson [17] showed that if
Jensen’s Diamond Principle holds, then α �→ (α, infinite path)2 for all α
with ωω+2

1 ≤ α < ω2. Larson [175] obtained further results under the
assumption of GCH.

(114) A problem on ordinal graphs and down-up matchings
(proposed by Erdős and Larson [116])
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A down-up matching in an ordinal graph is a matching of a set A with
a set B where every element of A is less than all elements of B, denoted
by A < B. Suppose for every graph on an ordinal α there is either an
independent set of type β or a down-up matching from a A to a set B. If
A has order type γ, then we write α → (β, γ − matching)2.
Suppose that j and k are positive integers with k ≥ 2 and η is a limit
ordinal. Is it true that ωη+jk → (ωη+j , ωk − matching)2?
If j and k ≥ 2 are positive integers and η a countable limit ordinal, then
Erdős and Larson have shown that ωη+jk+1 → (ωη+j , γ−matching)2 but
ωη+jk−1 �→ (ωη+j , γ − matching)2.
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cles in random graphs, Cycles in graphs (Burnaby, B.C., 1982), 173–178,
North-Holland Math. Stud., 115, North-Holland, Amsterdam-New York,
1985.

[4] M. Ajtai, J. Komlós and E. Szemerédi, On a conjecture of Loebl, Proc. of
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[74] P. Erdős, Problems and results in graph theory, The theory and applica-
tions of graphs (Kalamazoo, MI, 1980), 331–341, Wiley, New York, 1981.
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[96] P. Erdős, R. Faudree, C. C. Rousseau and R. H. Schelp, The book–tree
Ramsey numbers, Scientia, A: Mathematics 1 (1988), 111–117.
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Balatonfüred, 1969), pp. 327–363, North-Holland, Amsterdam, 1970.

[110] P. Erdős, A. Hajnal, A. Máté and R. Rado, Combinatorial set theory:
partition relations for cardinals, Studies in Logic and the Foundations of
Mathematics, 106, North-Holland Publishing Co., Amsterdam-New York,
1984.
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matic graphs, Annals of Discrete Math. 12 (1982), Theory and practice of
combinatorics, North-Holland Math. Stud., 60, 117–123, North-Holland,
Amsterdam, New York, 1982.
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[189] J. Nešetřil and V. Rödl, eds., Mathematics of Ramsey Theory, Springer-
Verlag, Berlin, 1990.

[190] L. Pyber, Covering the edges of a connected graph by paths, J. Comb.
Theory Ser. B 66 (1996), 152–159.
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