
A Survey on Algorithmic Aspects of

Modular Decomposition 1

Michel Habib a and Christophe Paul b

aLIAFA, Univ. Paris Diderot - Paris VII, France
bCNRS, LIRMM, Univ. Montpellier II, France

Abstract

The modular decomposition is a technique that applies but is not restricted to
graphs. The notion of module naturally appears in the proofs of many graph theo-
retical theorems. Computing the modular decomposition tree is an important pre-
processing step to solve a larger number of combinatorial optimization problems.
Since the first polynomial time algorithm in the early 70’s, the algorithmic of the
modular decomposition has known an important development. This paper survey
the ideas and techniques that arose from this line of research.

Key words: Combinatorial algorithms, Graph theory, Modular decomposition

1 Introduction

Modular decomposition is a technique at the crossroads of several domains
of combinatorics which applies to many discrete structures such as graphs,
2-structures, hypergraphs, set systems, matroids among others. As a graph
decomposition technique is has been introduced by Gallai [Gal67] to study
the structure of comparability graphs (those graphs whose edge set can be
transitively oriented). Roughly speaking a module in graph is a subset M
of vertices which share the same neighbourhood outside M . Galai showed
that the family of modules of an undirected graph can be represented by a
tree, the modular decomposition tree. The notion of module appeared in the
litterature as closed sets [Gal67], clan [EGMS94], automonous sets [Möh85b],

Email addresses: habib@liafa.jussieu.fr (Michel Habib), paul@lirmm.fr
(Christophe Paul).
1 Research supported by the project ANR ”Décomposition des graphes et algo-
rithmes”

Preprint submitted to Elsevier Science 7 October 2009

clumps [Bla78]. . . while the modular decomposition is also called substitution
decomposition [Möh85a] or X-join decomposition [HM79]. See [MR84] for an
early survey on this topic.

There is a large variety of combinatorial applications of modular decompo-
sition. Modules can help proving structural results on graphs as Galai did
for comparability graphs. More generally modular decomposition appears in
(but is not limited to) the context of perfect graph theory. Indeed Lovász’s
proof of the perfect graph theorem [Lov72] involves cliques modules. Notice
also that a number of perfect graph classes can be characterized by properties
of their modular decomposition tree: cographs, P4-sparse graphs, permutation
graphs, interval graphs. . . Refer to the books of Golumbic [Gol80], Brandstädt
et al. [BLS99] for graph classes. We should also mention that the modular de-
composition tree is useful to solve optimization problems on graphs or other
discrete structures (see [Möh85b]). An example of such use is given in the last
section.

In the late 70’s, the modular decomposition has been independently gener-
alized to partitive set families [CHM81] and to a combinatorial decomposi-
tion theory [CE80] which applies to graphs, matroids and hypergraphs. More
recently, the theory of partitive families and its variants had been the foun-
dation of decomposition schemes for various discrete structures among which
2-structures [EHR99] and permutations [UY00, BCdMR08]. Beside, based on
efficiently representable set families, different graph decompositions had been
proposed. The split decomposition of [CE80] relies on a bipartitive family on
the vertex set. Refer to [BX08] for a survey on the recent developments of
these techniques.

A good feature of these decomposition scheme is that they be computed in
polynomial time. Indeed, since the early 70’s, there have been a number al-
gorithms for computing the modular decomposition of a graph (or for some
variants of this problem). The first polynomial algorithm is due to Cowan,
James and Stanton [CJS72] and runs in O(n4). Successive improvements are
due to Habib and Maurer [HM79] who proposed a cubic time algorithm, and
to Müller and Spinrad who designed a quadratic time algorithm. The first two
linear time algorithms appeared independently in 1994 [CH94, MS94]. Since
then a series of simplified algorithms has been published, some of them running
in linear time [MS99, TCHP08], some others in almost linear time [DGM01,
MS00, HPV99]. The list is not exhaustive. In this line of research, a series of
very interesting algorithmic techniques had been developed, which we believe,
could be useful in other applications or topics of computer science.This paper
surveys the algorithmic theory of modular decomposition.

The paper is organized as follows. The partitive family theory and its ap-
plication to modular decomposition of graphs is presented in Section 2. As

2

an algorithmic appetizer, Section 3 addresses the special case of totally de-
composable graphs, namely the cographs, for which a linear time algorithm is
known since 1985 [CPS85]. Partition refinement is an algorithmic technique
that reveals to be really powerful for the modular decomposition problem, but
also in for other graphs applications (see e.g. [PT87, HPV99]). Section 4 is
devoted to partition refinement. Section 5 describes the principle of a series
of modular decomposition algorithms developped in the mid 90’s. Section 6
explains how the modular decomposition can be efficiently computed via the
recent concept of factoring permutation [CHdM02]. Let us mention that we do
not discuss the recent linear time algorithm of [TCHP08] as it mainly merge
the ideas developed in Sections 5 and 6. The purpose of this paper is not to
enter into the details of all the algorithm techniques but rather to present their
main lines. Finally the last section presents three recent applications of the
modular decomposition in three different domains of computer science, namely
pattern matching, computational biology and parameterized complexity.

2 Partitive families

The modular decomposition theory has to be understood as a special case of
the theory of partitive family whose study dates back to the early 80’s [CE80,
CHM81]. We briefly present the mains concepts and theorems of the partitive
family theory. We then introduce the modular decomposition of graphs and
discuss its elementary algorithmic aspects. This section ends with a discussion
on two important class of graphs: indecomposable graphs (the prime graphs)
and totally decomposable graphs (known as the cographs)

2.1 Decomposition theorem of partitive families

The symmetric difference between two sets A and B is denoted by A M B =
(A \ B) ∪ (B \ A). Two subsets A and B of a set S overlap if A ∩ B 6= ∅,
A \B 6= ∅ and B \ A 6= ∅, we write A ⊥ B.

Definition 1 A family S ⊆ 2S of subsets of S is partitive if:

(1) S ∈ S, ∅ /∈ S and for all x ∈ S, {x} ∈ S;
(2) For any pair of subsets A, B ∈ S such that A ⊥ B:

(a) A ∩B ∈ S;
(b) A \B ∈ S and B \ A ∈ S;
(c) A ∪B ∈ S;
(d) A M B ∈ S.

3

A family is weakly partitive whenever condition (2.d) is not satisfied. These
families correspond to modules of directed graphs, or related decomposition
(bi-modules of bipartite graphs []). In order to formalize split decomposition
[CE80], bipartitive families have been introduced [?].

Unless explicitly mentioned, we will consider here only partitive families.

Definition 2 An element F ∈ S is strong if it does not overlap any other
element of S. The set of strong elements of S is denoted SF .

Obviously any trivial subset of S, namely S or {x} (for x ∈ S), is a strong
element. Let us remark that SF is nested, i.e. the transitive reduction of the
inclusion order of SF is a tree TS (see Figure 1). It follows that |SF | = O(|S|).

Degenerate

2

3 8

7

61

5

4

Prime

Degenerate

1 2 3 4 5 6 7 8

Fig. 1. The inclusion tree of the strong elements of the family
S = {{1, 2, 3, 4, 5, 6, 7, 8}, {1, 2, 3}, {7, 8, 9}, {1, 2}, {2, 3}, {3, 4}, {4, 1}, {1, 3}, {2, 4},
{7, 8}, {8, 9}, {7, 9}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}

Definition 3 Let f q
1 , . . . , f q

k be the chidren of a node q of TS . The node q is
degenerate if for all non-empty subset J ⊂ [1, k], ∪j∈Jf q

j ∈ S. A node is prime
if for any non-empty subset J ⊂ [1, k], ∪j∈Jf q

j /∈ S.

It is not difficult to see that any strong element is either prime or degenerate.
Moreover the following theorem tells us that the tree TS is a representation of
the family S and the subfamily of strong elements SF of S defines a ”basis”
of S.

Theorem 1 [CHM81] Let S be a partitive family on S. The subset A ⊆ S
belongs to S if and only if A is strong or there exists a degenerate strong
element A′ (or a node of TS) such that A is the union of a strict subset of the
children of A′ in TS .

As a consequence, any partitive family, even of exponential size, admits a
representation linear in the size of S. Such a representation property trivial
is also known for other families of subsets of a set, such as laminar families,
cross-free families [EG97]. . . as well as for some families of bipartitions of a
set, such as splits [CE80]. Recently, a similar result has been shown for union-
difference families of subsets of a set, i.e. families closed under the union and
the difference of its overlapping elements [BXH08]. In this latter case, the
size of the representation amounts to O(|S|2). For a detailed study of these
aspects, the reader should refer to [BX08].

4

2.2 Factoring Permutations

Although the idea of factoring permutation implicitly appeared in some early
papers (see e.g. [HM91, Hsu92, HHS95]), it has only been formalized in [CH97,
Cap97]. This concept turns out to be central to recent modular decomposition
algorithms.

Let σ be a permutation of a set S of size n. By σ(x), we mean the rank i of
x in σ and σ−1(x) stands for the i-th element of σ. A subset I ⊆ S is a factor
or an interval of a permutation σ if there exist i ∈ [1, n] and j ∈ [1, n] such
that I = {x | x = σ−1(k), i 6 k 6 j}. In other words, the elements of I occur
consecutively in σ.

Definition 4 [Cap97] Let S be a (weakly) partitive family of a set S and let
SF be the strong elements of S. A permutation σ of S is factoring for S if for
any F ∈ SF , F is a factor of σ.

For example, π = 1 2 3 4 5 6 7 8 9, π1 = 6 5 2 1 4 3 7 9 8 and π2 =
9 8 7 5 1 3 2 4 6 are three factoring permutations of the family S depicted
in Figure 1. One can check that, in each of these three permutations, the two
non-trivial strong elements of SF , namely {1, 2, 3, 4} ∈ SF and {7, 8, 9} ∈ SF ,
are factors.

Given a layout of the tree structure of a partitive family, a left-to-right enu-
meration of the leaves results in a factoring permutation. In many cases it
is easier to compute a factoring permutation than the modular decomposi-
tion tree. We explain in Section 6.3 how to obtain the tree from a factoring
permutation.

2.3 Modules of a graph

For the sake of the presentation we only consider undirected, simple and loop-
less graphs. We use the classical notations (e.g. see [BLS99]). The neighbour-
hood of a vertex x in a graph G = (V, E) is denoted NG(x) and its non-
neighbourhood NG(x) (subscript G will be omitted when the context is clear).
The complementary graph of a graph G is denoted by G. Given a subset of
vertices X ⊆ V , G[X] is the subgraph induced by X (any edge in G between
two vertices in X belongs to G[X]).

Let M be a set of vertices of a graph G = (V, E) and x be a vertex of V \M .
Vertex x splits M (or is a splitter of M), if there exist y ∈M and z ∈M such
that xy ∈ E and xz /∈ E. If x is not a splitter of M , then M is uniform or
homogeneous with respect to x.

5

Definition 5 Let G = (V, E) be a graph. A set M ⊆ V of vertices is a
module if M is homogeneous with respect to any x /∈ M (i.e. M ⊆ N(x) or
M ∩N(x) = ∅).

Aside the singletons and the whole vertex sets, any union of connected com-
ponents (or of co-connected components) of a graph are simple examples of
modules.

Lemma 1 [CHM81] The family M of modules of a graph is partitive.

The notions of trivial and strong module and degenerate and prime graph are
defined according to the terminology of Section 2.1. By Lemma 1, if M and
M ′ are overlapping modules, then M \M ′, M ′ \M , M ∩M ′, M ∪M ′ and
M M M ′ are modules of G.

Let M and M ′ be disjoint sets. We say that M and M ′ are adjacent if any
vertex of M is adjacent to all the vertices of M ′ and non-adjacent if any vertex
of M is non-adjacent to all the vertices of M ′.

Observation 1 Two disjoint modules are either adjacent or non-adjacent.

A module M is maximal with respect to a set S of vertices, if M ⊂ S and
there is no module M ′ such that M ⊂ M ′ ⊂ S. If the set S is not specified,
we shall assume S = V .

Definition 6 Let P = {M1, . . . ,Mk} be a partition of the vertex set of a graph
G = (V, E). If for all i, 1 6 i 6 k, Mi is a module of G, then P is a modular
partition (or congruence partition) of G.

A modular partition P = {M1, . . . ,Mk} which only contains maximal strong
modules is a maximal modular partition. Notice that each graph has a unique
maximal modular partition. If G (resp. G) is not connected then its (resp. co-
connected) connected components are the elements of the maximal modular
partition. From Observation 1, we can define a quotient graph whose vertices
are the parts (or modules) belonging to the modular partition P .

Definition 7 To a modular partition P = {M1, . . . ,Mk} of a graph G =
(V, E), we associate a quotient graph G/P , whose vertices are in one-to-one
correspondence with the parts of P. Two vertices vi and vj of G/P are adjacent
if and only if the corresponding modules Mi and Mj are adjacent in G.

Let us remark that the quotient graph G/P with P = {M1, . . . ,Mk} is iso-
morphic to any subgraph induced by a set V ′ ⊆ V such that ∀i ∈ [1, k],
|Mi ∩ V ′| = 1. The representative graph of a module M is the quotient graph
G[M]/P where P is the maximal modular partition of G[M]: it is thereby
the subgraph induced by a set containing a unique – representative – ver-

6

1

6

7

8

9

10

11

4

2

3

5

Fig. 2. On the left, the grey sets are modules of the graph G.
Q = {{1}, {2, 3}, {4}, {5}, {6, 7}, {9}, {8, 10, 11}} is a modular partition of G. On
the right, the quotient graph G/Q is shown. The maximal modular partition of G
is P = {{1}, {2, 3, 4}, {5}, {6, 7}, {8, 9, 10, 11}} and its quotient graph is represented
in Figure 3 (aside the top node of the tree).

tex per maximal strong module of G[M]. See Figure 2. By extension, for a
module M , we denote by G/M the graph quotiented by the modular partition
{M} ∪ {{x} | x /∈M}.

1 2 3 4 5 6 7 8 9 10 11�� �� ���� � �	 	

� �

1

2

3

4

5

6

7

8

9

10

11

1 9852 43 6 7 1110

8 9 10 11

2 3

2 3 4

6 7 10 11

�

Fig. 3. The inclusion tree MD(G) of the strong modules of G.
The representative graph associated to the root is G/P with
P = {{1}, {2, 3, 4}, {5}, {6, 7}, {8, 9, 10, 11}}.

The inclusion tree of the strong modules of G, denoted MD(G), entirely rep-
resents the graph if the representative graph of each strong module is attached
to each of its nodes (see Figure 3). Indeed any adjacency of G can be retrieved
from MD(G). Let x and y be two vertices of G and let GN be the representa-
tive graph of node N , their least common ancestor. Then x and y are adjacent
in G if and only if their representative vertices in GN are adjacent.

Before we state the modular decomposition theorem (Theorem 2), let us present
two more properties of modular partitions and quotient graphs which are
central to efficient modular decomposition algorithms (see Section 5).

Lemma 2 [Möh85b] Let P be a modular partition of a graph G = (V, E).
Then X ⊆ P is a module of G/P iff

⋃
M∈X M is a module of G.

This lemma can be strengthened in order to observe the same correspondance
between the strong modules of G and those of G/P .

Lemma 3 Let P be a modular partition of a graph G = (V, E). Then X ⊂ P
is a non-trivial strong module of G/P iff

⋃
M∈X M is a non trivial strong

module of G.

7

Theorem 2 (Modular decomposition theorem) [Gal67, CHM81]
For any graph G = (V, E), one of the following three conditions is satisfied:

(1) G is not connected;
(2) G is not connected;
(3) G and G are connected and the quotient graph G/P , with P the maximal

modular partition of G, is a prime graph.

What does the modular decomposition theorem say is twofold. First, the quo-
tient graphs associated with the node of the inclusion tree MD(G) of the
strong modules are of three types: an independent set if G is not connected
(the node is labelled parallel); a clique (complete graph) if G is not connected
(the node is labelled series); a prime graph otherwise. It also follows that
MD(G) is unique and does not contain two consecutive series nodes nor two
consecutive parallel nodes. Parallel and series nodes of MD(G) are often called
degenerate nodes.

The tree MD(G) is called the modular decomposition tree. Theorem 2 yields a
natural polynomial time recursive algorithm to compute MD(G): 1) compute
the maximal modular partition P of G; 2) label the root node according to
the parallel, series or prime type of G; 3) for each module M of P , compute
MD(G[M]) and attach it to the root node. Computing the maximal modular
partition seems to be a central problem in the computation of MD(G). It can
be avoided if a non-trivial module M is identified. By Lemma 2 and Lemma 3,
it suffices to recursively compute MD(G[M]) and MD(G/M), and then to
paste MD(G[M]) on the leaf of MD(G/M) corresponding to the representative
vertex of M .

Before we present some structural properties of prime and totally decompos-
able graphs, let us introduce some notations and briefly discuss the composi-
tion view of the theory of modules in graphs.

Notation 3 For a node p of MD(G), its corresponding strong module is de-
noted by M(p) (or P). In fact M(p) is the union of all singletons which are
leaves of the subtree of M(p) rooted in p.
The minimal strong module containing two vertices x and y is denoted by
m(x, y), while the maximal strong module containing x but not y, for any two
different vertices x, y of G, is denoted by M(x, y).

The substitution operation is the reverse of the quotient operation. It consists
of replacing a vertex x of G by a graph H = (V ′, E ′) while preserving the
neighourhood. The resulting graph is:

Gx→H = ((V \ {x}) ∪ V ′, (E \ {xy ∈ E}) ∪ E ′ ∪ {yz : xy ∈ E et z ∈ V ′})

The parallel composition or disjoint union of k connected graphs G1, . . . Gk

8

defines a graph whose connected components are the graphs G1, . . . , Gk. This
composition operation is usually denoted G1 ⊕ · · · ⊕Gk.

The series composition of k co-connected graphs G1, . . . , Gk defines a graph
whose co-connected components are the graphs G1, . . . , Gk (for any pair x, y of
vertices belonging to different graphs Gi and Gj, the edge xy has been added).
The series composition is generally denoted G1 ⊗ · · · ⊗Gk.

These three operations are classical graph operations that have been widely
used in various contexts among which the clique-width theory [CER93].

2.4 Prime graphs

The structure of prime graphs has been extensively studied (e.g. see [CI98]).
For example, it is easy to check that the smallest prime graph is the P4, the
path on 4 vertices (see Figure 4). As witnessed by the following result, P4’s
play an important role in the structure of prime graphs.

Lemma 4 [CI98] Let G, with |G| ≥ 4, be a prime graph. Then any vertex,
but at most one, is contained in an induced P4. A vertex not contained in any
P4 is called the ”nose of the bull” (see Figure 4).

a

� �� � �� � ��
� ��

� �	

�
� �� ��� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �

� � � �� � � �� � � �� � � � � � � �� � � �
� � � �� � � � � � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �

x

b c d

��

Fig. 4. The vertices a, b, c, d form a P4 whose extremities are a and d, and midpoints
b and c. The graph on the right is the bull whose”nose” is vertex x.

Jamison and Olariu proposed an extension of Theorem 2 by considering the
structure of prime graphs [JO95]. A subset C of vertices of a graph G = (V, E)
is P -connected if for any bipartition {A, B} of C, there is an induced P4 in-
tersecting both A and B. For example the bull is not P -connected (consider
the vertex partition {{x}, {a, b, c, d}}). A P -connected component is a maxi-
mal P -connected set of vertices. The set of P -connected components defines a
partition of the vertices. A P -connected component H is separable if there is
a bipartition (H1, H2) of H such that for any P4 intersecting H1 and H2, the
extremities are in H1 and the mid-vertices in H2.

Theorem 4 [JO95] Let G = (V, E) be a connected graph such that G is
connected. then G is either P -connected or there exists a unique P -connected
component H which is separable in (H1, H2) such that for any vertex x /∈ H,
H1 ⊆ N(x) and H2 ∩N(x) = ∅.

9

A hierarchy of graph families have been proposed based on the above Theorem
4 by restricting the number of induced P4’s in small subgraphs (or equivalently
by restricting the structure of prime graphs). For example, P4-sparse graphs
are defined as the graphs for which there is at most one P4 in any induced sub-
graph on 5 vertices [JO92a, JO92b]. Let us also mention the the P4-reducible
graphs [JO95]. See [BLS99] for a complete presentation of these graph families.

2.5 Totally decomposable graphs

A graph is totally decomposable if any induced subgraph of size at least 4 has
a non-trivial module. It follows from Theorem 1 that any node of the modular
decomposition tree MD(G) of a totally decomposable graph G is degenerate.

The family F of totally decomposable graphs is natural and arose in many
different contexts (see [Sum73, CLSB81, CPS85] for references) even recently
(see [BBCP04, BRV07]) as any graph of F can be obtained by a sequence of
disjoint and series compositions starting from single vertex graph belongs to
F . Let us remark that if G is totally decomposable then also is its complement.
The family of totally decomposable graphs is also known as the cographs for
complement reducible graphs [CLSB81, Sum73]. From the following character-
ization theorem, the cograph family is hereditary (any induced subgraph of a
cograph is a cograph).

Theorem 5 [Sum73] The cographs are exactly the P4-free graphs.

e

b

c

d

u

v

a

z

y
x

w

Parallel

Series

Series Series Series Series

Parallel

ParallelParallel d wy u

e

z

ax

v

c b

Fig. 5. A cograph and its modular decomposition tree (also called cotree).

The following lemma states classical properties of cographs whose proofs (left
to the reader) are good exercises to understand the structure of cographs.

Lemma 5 Let x, y and v be vertices of a cograph G = (V, E).

(1) If xv ∈ E, yv /∈ E and xy ∈ E, then m(v, y) ⊆M(v, x)
(2) If xv ∈ E, yv ∈ E and xy /∈ E, then M(v, x) = M(v, y) and m(v, x) =

m(v, y)

10

Using the above theorem, one can propose a naive recognition algorithm by
searching for an induced P4, but so far, the linear algorithms construct the
modular decomposition tree and exhibit a P4 in case of failure.

The first linear time recognition algorithm was proposed in 1985 by Corneil,
Perl and Stewart [CPS85]. It incrementally construct the modular decomposi-
tion tree, also called cotree for the cographs, as long as the graph induced by
the processed vertices is a cograph. Even if alternative recognition algorithms
have recently been proposed [Dah95, HP05, BCHP03], the seminal algorithm
of [CPS85] is a corner stone in the algorithmic of the modular decomposition
and turns out to have a large impact even for other decomposition technics
(e.g. for the split decomposition [GP07]). Also, as we shall discuss in Sec-
tion 3.1, it has recently been generalized to fully dynamic algorithms for more
general graph classes: the problem consists in updating the modular decom-
position tree of a graph when a vertex or an edge is removed or added and the
goal is to obtain a better complexity than computing the modular decompo-
sition from scratch.

2.6 Bibliographic notes

The seminal paper on modular decomposition of graphs is probably Gallai’s
one [Gal67] on transitive orientation. Up to our knowledge, the only survey
paper is due to Möhring and Radermacher [MR84]. More recently, Ehren-
feucht, Harju and Rozenberg [EHR99] published a book on the decomposition
of 2-structures (a generalization of graphs) which presents the modular de-
composition in a more general framework. In its PhD thesis [BX08], Bui Xuan
proposes a survey as well as original results on the representation of set fami-
lies. Many graph families are well-structured with respect to the modular de-
composition, e.g. comparability graphs, permutation graphs, cographs. . . For
these aspects, the reader should refer to the books of Golumbic [Gol80] and
more recently [BLS99, Spi03]. The algorithmic aspect is particularly developed
in [Gol80, Spi03].

3 Cographs recognition algorithms as an appetizer

Let us now study in detail the Corneil, Pearl and Stewart’s algorithm [CPS85].
If the input graph is a cograph, this vertex-incremental algorithm builds the
cotree by adding the vertices one by one in an arbitrary order. In the late 80’s,
Müller and Spinrad generalized it to the first quadratic modular decomposition
algorithm [MS89]. Their algorithm is also incremental. But for the sake of
adjacency tests, the whole graph has to be known at the beginning of the

11

algorithm starts.

Consider the following subproblem: given a cograph G = (V, E) together with
its cotree MD(G), a vertex x and a subset of vertices S ⊆ V , test whether
the graph G + (x, S) = (V ∪ {x}, E ∪ {xy | y ∈ S}) is a cograph and if so
ouput the cotree MD(G + x). Corneil et al ’s [CPS85] showed that whether
G + x is a cograph or not can be characterized by a labelling of the nodes of
the cotree MD(G). A node p receives the label: empty, if the corresponding
module M(p) does not intersect S; adjacent if M(p) ⊆ S; and mixed otherwise.
Remark that by definition any child of a node labelled adjacent (resp. empty)
is also labelled adjacent (resp. empty).

Lemma 6 [CPS85] Let G be a cograph, x a vertex of V and S ⊆ V . The
graph G + (x, S) is a cograph iff

(1) either none of the nodes of the cotree MD(G) is mixed;
(2) or the set of mixed nodes induces a path π from the root of MD(G) to

some node p and
(a) the children of the series nodes of π different than p are all adjacent;
(b) the children of the parallel nodes of π different than p are all empty.

The main idea expressed by the conditions of Lemma 6 is that the modifi-
cations of the cotree implied by the insertion of vertex x are localized in the
subtree T (p) rooted at node p. Indeed any module disjoint from M(p) is not
affected by x’s insertion (the corresponding nodes are labelled empty or ad-
jacent). In a sense, node p should be considered as the insertion node. The
cotree updates only depend on node p (e.g. whether it is mixed or adjacent).
An example is depicted in Figure 6.

G+x

x

a c

b d e f

Series

Series Series

Series

Parallel Parallel

���
���
���
���

���
���
���
���

a b c d e f

��

��

��

����

����

��������

��

����

����

��������

����������
hg

g h
��

Parallel

Parallel Parallel

Series

Series

Series

Fig. 6. Insertion of the vertex x adjacent to S = {b, d, g, h}. Grey nodes are the
adjacent labelled nodes and dashed nodes are the mixed nodes.

The algorithm first labels the cotree in a bottom-up manner. The leaves cor-
responding to vertices of S are labelled adjacent. A node labelled adjacent
forwards a partial mark to its father. When a node have received a mark from
each of its children, it is labelled adjacent. At the end of this process the empty

12

node have never been searched, while the partially marked nodes corresponds,
if G + x is a cograph, to the parallel node of the path π. It is not difficult to
see that the number of the marked node is linear in the size of S meaning that
the labelling process runs in time O(|S|). Testing the condition of the above
lemma can be done within the same complexity as well.

Theorem 6 [CPS85] The family of cographs can be recognized in linear time.

Let us now turn to the edge modification problem which consists in updating
the cotree of a cograph G under an edge insertion or deletion. Since the cotree
of a cograph can be obtained from the cotree of its complement by flipping
the parallel and the series nodes, deleting or inserting an edge in a cograph
are equivalent problems.

Lemma 7 [SS04] Let x and y be two non-adjacent vertices of a cograph G =
(V, E). Then G + xy = (V, E ∪ {xy}) is a cograph iff x is a child of m(x, y)
and M(y, x) ⊆ N(x).

Let us sketch the argument proof. As xy /∈ E, the module m(x, y) is repre-
sented by a parallel node. Assume the conditions of Lemma 7 do not hold.
Then the path in the cotree from m(x, y) to x (resp. y) contains a series nodes
px (resp. py) which is the least common ancestor of x (resp. y) and some leaf
ux (resp. uy). Then the vertices {ux, x, y, uy} induces a P4 in the graph G+xy.

p

m(x,y)

q

������

����������

c

��

��

��������

������

Series

Series

Series

ParallelG+xy

a b c

a

��

b

ySeries

Parallel Parallel

Series

x d e f

e f

xy

Parallel

Parallel

d

Fig. 7. Update of the cotree to insert the edge xy in a cograph. The node m(x, y)
is split into two parallel nodes, say p and q, one being the father of x, the another
the father of the other children of m(x, y). Then leaf y is extracted from the cotree
and attached to a new series node inserted between nodes p and q.

It follows from Lemma 7 that as long as the modified graph remains a cograph,
the modifications in the cotree are local and can be done in constant time.
From results presented in this section, we otbain that:

Theorem 7 [SS04, CPS85] There exists a fully-dynamic algorithm maintain-
ing the modular decomposition tree of a cograph which runs in time O(d) per
modification (edge or vertex insertion and deletion), where d is the number
involved in the modification.

13

3.1 Bibliographic notes

Concerning the cograph recognition problem, new algorithms also appeared
recently. Habib and Paul [HP05] proposed a partition refinement based al-
gorithm (see Section 4) and Bretscher et al [BCHP08] discovered a simple
Lexicographic Breadth First Search [RTL76] based algorithm.

Aside the two cograph algorithmic results presented above, fully-dynamic
algorithms have recently been proposed to maintain a representation based
on the modular decomposition tree under vertex and edge modifications for
various graph classes: permutation graphs [CP06], interval graphs [Cre09,
Iba09]. . . The fully-dynamic representation problem has also been solved for
other families of graphs, e.g. proper interval graphs [HSS01], using other de-
composition schemes.

Beside, Corneil et al ’s algorithm has been generalized to the split decompo-
sition [CE80] to obtain an optimal fully dynamic algorithm for the distance
hereditary graphs recognition problem [GP07]. More recently by the same
technique, Gioan et al. derived an almost linear time split decomposition al-
gorithm [GPTC09a] and the first subquadratic circle graph recognition algo-
rithm [GPTC09b].

4 Partition refinement

Partition refinement, as an algorithmic technique, has been used in a num-
ber of problems, the first of which is probably the deterministic automata
minimization [Hop71]. Paigue and Tarjan [PT87] wrote a synthesis paper on
this technique. Since then, the number of problems solved by partition re-
finement keeps increasing: interval graph recognition [HPV99] and comple-
tion [RST08], transitive orientation, consecutive ones property for boolean
matrices [HMPV00] are example among others. As we will see, this technique
turns out to be a powerful and simple algorithmic paradigm that plays an
important role in the context of modular decomposition.

We first present the data-structure and the elementary operation, namely the
refine operation, of the partition refinement technique. Then, we illustrate
this technique with an algorithm that computes a modular partition of a
graph. Let us mention that this algorithm really follows the lines of Hopcroft’s
deterministic automaton minimization algorithm [Hop71].

14

4.1 Data-structures and algorithmic scheme

Let P and P ′ be two partitions of the same set V . The partition P is smaller
than P ′, denoted P /P ′, if P 6= P ′ and any part of P is a subset of some part
of P ′. The partition P is stable with respect to a set S if none of the parts of
P overlaps S.

Partition refinement consists of repeating, as long as needed, the operation
described in Algorithm 1. The initial partition and the sequence of pivot sets
used in the successive refinement steps have a large impact on the whole com-
plexity of the algorithm. Partitioning the vertex set of a graph with respect
to the neighbourhood of some vertex is a common operation in graph algo-
rithms. Indeed in our examples, all pivot sets considered correspond to the
neighbourhood of some vertex.

Algorithm 1: Refine(P, S)

Input: A partition P of a set V and a subset S ⊆ V , called pivot set
Output: The coarsest partition refining P and stable for S
begin

foreach part X ∈ P do
if X ∩ S 6= ∅ and X ∩ S 6= X then replace X by X ∩ S and X \ S;

end

Let us briefly describe a very useful data-structure namely the standard
partition data structure (see Figure 8). The elements of the set V to be
partitioned are stored in a doubly linked list. Each element of V is assigned a
pointer towards to the part it belongs to. The elements of a part X remains
consecutive in the doubly linked list (they form an interval). So that each part
maintain a pointer towards its first and its last element in the list.

1

4 6 8

53 8

S

2 4 6 7

75231

Fig. 8. P ′ =Refine(P, S).

Notation 8 The data-structure implicitly represent an ordered partition: the
parts are totally ordered. Depending of the application, this aspect may or may

15

not be important. In order to distinguish the two different cases, an ordered
partition will be denoted by P = [X1, . . . ,Xk] while a non-ordered partition will
be denoted by P = {X1, . . . ,Xk}.

Using this standard partition data structure it is possible for every subset
S ⊆ V , while scanning S to build a list L containing the parts of P which
intersect S and move to front X ∩ S in X . Then using L, one can split every
part into X ∩ S and X \ S. A careful complexity analysis shows the following
result :

Lemma 8 The time complexity of the operation Refine(P , S) is O(|S|).

We conclude this brief introduction by a few remarks. Refining a partition by
a subset S or its complement S = V \ S are equivalent operations: Refine(X ,
S)= Refine(X∩S, V \S). It is thereby possible to deal with the complement of
the input graph without explicitly storing its edge set. Partition refinement is
usually used either to compute a total ordering of the vertices (e.g. LexBFS) or
the equivalence classes of some equivalence relations (e.g. maximal set of twin
vertices). McConnell and Spinrad [MS00] showed how to augment the data-
structure in order to extract within the same complexity, at each refinement
step, the edges incident to vertices belonging to different parts. This operation
is useful to efficiently compute the quotient graph associated to a modular
partition. For a more detailed presentation of partition refinement refer to
[PT87, HPV98, HPV99, HMPV00].

Of course many variations of the standard partition data structure are been
introduced, as for example changing the doubly linked list into an array of
size |V |. A further requirement can be asked for partition refinement : given
an initial ordering τ of V one may ask that for every part Xof P to be
represented ordered by τ . This can be done within the same complexity and is
very useful for example when dealing with consecutive LexBFS. The ordering
given by some previous LexBFS can be used as a tie-break rule for another
LexBFS [Cor04a, Cor04b, BCHP08].

4.2 Hopcroft’s rule and computation of a modular partition

Partition refinement is the right tool to compute a modular partition, an im-
portant subproblem towards efficient modular decomposition algorithms. In
this section, we focus on the problem of computing the coarsest modular par-
tition (see Definition 8) of a given vertex partition. The algorithm we present
runs in time O(n + m log n) and is based on the Hopcroft’s rule which is used
in various simple quasi-linear time modular decomposition algorithms.

Definition 8 Let P be a partition of the vertices of a graph G = (V, E).

16

The coarsest modular partition of G with respect to P is the largest modular
partition Q such that Q / P.

The main idea of the algorithm is the following: as long as there is a part
X which is not uniform for some vertex x /∈ X , the current partition P is
refined with the neighbourhood N(x). When the algorithm ends, all the parts
are modules. Finding, at each step, a vertex x whose neighbourhood strictly
refines the partition P , is the usual barrier to linear time complexity. However,
using the so-called Hopcroft’s rule, one get a fairly simple solution that uses
the neighbourhood of each vertex at most log n times.

Lemma 9 Let P be a partition of the vertices of a graph G = (V, E) and x be
a vertex of some part X . If P is stable with respect to N(y), ∀y /∈ X , then X
is a module of G and the partition Q = Refine(P , N(x)) is stable with respect
to N(x′), ∀x′ ∈ X .

The above lemma (which is a direct consequence of the definition of module)
shows that using as pivots the vertices of all the parts of P but one, say Z,
plus one vertex z of Z is enough. For complexity issues, the avoided part Z
has to be chosen as the largest part of P . Similarly, once a part X has been
split, the process continues recursively on the subgraph induced by X and the
resulting largest subpart can be avoided (meaning that only one of its vertices
has to be used as pivot). This ”avoid the largest part” technique is known as
the Hopcroft’s rule and has been first proposed in the deterministic automata
minimization algorithm [Hop71].

To implement this rule, the parts are stored in two disjoint lists K and L.
The neighbourhoods of all the vertices of parts belonging to L will be used
to refine the partition. For the parts belonging to K, only the neighbourhood
of one arbitrarily selected vertex is used. Since K is managed with a FIFO
priority rule, this guarantees that the first part of the list, when extracted, is
a module.

Theorem 9 Let P be a partition of the vertices of a graph G = (V, E).
Algorithm 2 computes the coarsest modular partition for G and P in time
O(n + m log n).

The correctness of the algorithm follows from the next three invariant proper-
ties. The first invariant shows that a module contains in some part of the given
partition cannot be split, while the third one guarantees that the algorithm
outputs a modular partition.

(1) If M is a module of G contained in a part X ∈ P, then there exists a
part Y of the current partition containing M .

(2) If L = ∅, then the first part Y of K is a module.
(3) If the current partition contains a part X that is not a module, then there

17

Algorithm 2: Modular Partition
Input: A partition P of the vertex set V of a graph G
Output: The coarsest modular partition Q smaller than P
begin

Let Z be the largest part of P;
Q ← P; K ← {Z}; L← {X | X 6= Z,X ∈ P};
while L ∪K 6= ∅ do

if there exists X ∈ L then S ← X and L← L \ {X};
else

Let X be the first part K and x arbitrarily selected in X ;1

S ← {x} and K ← K \ {X};
foreach vertex x ∈ S do

foreach part Y 6= X such that N(x) ⊥ Y do
Replace in Q, Y by Y1 = Y ∩N(x) and Y2 = Y \N(x);2

Let Ymin (resp. Ymax) be the smallest part (resp. largest) among
Y1 and Y2;
if Y ∈ L then L← L ∪ {Ymin,Ymax} \ {Y};
else

L← L ∪ {Ymin};
if Y ∈ K then Replace Y by Ymax in K;
else Add Ymax at the end of K;

end

exists Y ∈ L ∪K different from X and containing a splitter y for X .

Complexity issues: The main loop While L∪K 6= ∅ do, computes Refine(Q,
N(x)) ∀x ∈ S, and takes care of the data structures L and K. This can
be done in O(

∑
x∈S |N(x)|). Since only the smallest part is added to L, the

neighbourhood of a vertex is visited at most |log(|V |) times in the whole.
Furthermore when a vertex x of a part X extracted from K is used, neither x
nor none of the vertices of X is used again. This yields the claimed complexity.

4.3 Bibliographic notes

As already mentioned, the use of partition refinement technique dates to 1971
for the deterministic automata minimization problem [Hop71]. In 1987, Paigue
and Tarjan used again this technic to solve three different problems: functional
partition, coarsest relational partition problems and doubly lexicographic or-
dering of a boolean matrix. In the late 90’s, it has been used more systemati-
cally in the context of modular decomposition and transitive orientation yield-
ing O(n+m log n) practical and simple algorithms (see e.g. [MS00, HMPV00]).

18

5 Recursive computation of the modular decomposition tree

In 1994, Ehrenfeucht, Gabow, McConnell and Sullivan [EGMS94] proposed
a quadratic algorithm for the modular decomposition 2 . The principle of this
algorithm, which we will call the skeleton algorithm, is the basis of a large
number of the known subquadratic algorithms proposed in the late 90’s (see
e.g. [MS00, DGM01]), which could abusively be considered as a series of
different implementations of the skeleton algorithm. The complexity of these
implementations are respectively O(n + m.α(n, m)) or O(n + m) [DGM01],
and finally O(n + m log n) [MS00]. We describe the principle of the skele-
ton algorithm without considering the complexity issues. We then discuss the
differences in the time complexity of the known algorithms.

5.1 The skeleton algorithm

Let us first mention that the skeleton algorithm computes a non-reduced form
of the modular decomposition tree MD(G): the resulting tree may contain
some series (or parallel) node child of a series (or parallel) node. All the algo-
rithms we describe in this section will do so. It does not impact the complexity
issues as a single search of the tree is enough reduce it in time O(n). In the
following, we will abusively denote MD(G) the (non-reduced) decomposition
tree returned by these algorithms.

The main idea developed by Ehrenfeucht et al. [EGMS94] is to first compute
a ”spine” of the modular decomposition tree MD(G), then to recursively
compute the modular decomposition trees of some induced subgraphs which
are eventually padded to the spine. More formally:

Definition 9 Let v be an arbitrary vertex of a graph G = (V, E). The v-
modular partition is the following modular partition:

M(G, v) = {v} ∪ {M |M is a maximal module not containing v}

We define spine(G, v) as the modular decomposition tree MD(G/M(G,v)).

First we notice thatM(G, v) is easy to compute.

Lemma 10 M(G, v) is the coarsest modular partition for G and P = {N(v), v, N(v)}
and can be computed in time O(n + m log n).

Let us notice that any degenerate strong module (series or parallel) containing
v will be represented in spine(G, v) by a binary node. The purpose of test of

2 This algorithm is designed for 2-structures, a classical generalization of graphs.

19

Parallel

������

����

�������� ����

���� ����

���� ����

���� ����

������

����

����

������������ ����

���� ���� ���� ����

Parallel

Prime

v v

Series

Series

Series

Series

Fig. 9. On the left, a modular decomposition tree MD(G) and on the right, the
modular partitionM(G, v) with the corresponding spine between v and the root of
MD(G).

Algorithm 3: Ehrenfeucht et al. [EGMS94]

Input: An arbitrary vertex v of G = (V,E), T = spine(G, v) and
{TX = MD(G[X]) | X ∈M(G, v)}

Output: The modular decomposition tree MD(G)
begin

foreach leaf X of T do
Let TX = MD(G[X]) and p(X) be X’s father in T ;
Replace X by TX in T ;
if the root r(TX) and p(X) are both parallel or series then1

Remove r(TX) and connect the children of r(TX) to p(X)

end

Line 1 in Algorithm 3 is to correctly fixed those binary nodes. The correctness
of Algorithm 3 is a consequence of the following properties:

Lemma 11 [EGMS94] Let v be a vertex of a graph G = (V, E) andM(G, v)
be the associated modular partition. Then:

(1) Any non-trivial module of G/M(G,v) contains v;
(2) A set X ⊂M(G, v) is a non-trivial strong module of G/M(G,v) iff

⋃
M∈X M

is an ancestor of v in MD(G);
(3) Any module not containing v is a subset of a part M ∈M(G, v).

Computing spine(G, v) is a the difficult and technical task of the skeleton,
indeed its main bottleneck. The solution we present hereafter has been pro-
posed in [EGMS94] and yields quadratic running time. Later on, Dahlhaus
et al. [DGM01] improved this step and obtained a subquadratic running time
(see discussion of Section 5.3).

20

5.2 Computation of spine(G, v).

Definition 10 A graph G = (V, E) is nested if there exists a vertex v ∈ V
which is contained in all the non-trivial modules of G. Such a vertex is called
an inner vertex of G.

As a direct consequence of Lemma 11, the quotient graph G/M(G,v) is a nested
graph with inner vertex v.

In order to compute, the modules of G/M(G,v) and spine(G, v), Ehrenfeucht
et al. [EGMS94] introduced an auxiliary forcing digraph the arc set of which
guarantees the existence of a directed path from any vertex u to any vertex
w ∈ m(u, v), the smallest module containing u and v. As v belongs to all
the modules of G/M(G,v), a simple search on the forcing graph will suffice to
compute spine(G, v).

Definition 11 3 Let v be an arbitrary vertex of a graph G = (V, E). The
forcing graph F(G, v) is a directed graph whose vertex set is V \ {v}. The arc
−→xy exists if y is a splitter for {x, v}.

In other words, if −→xy exists then y belongs to any module containing v and x.

2

v

1 5

2 3 4

1 2

5

3

4

Series

Prime

Parallel 3 4

5

1v

Fig. 10. A nested graph G = (V,E) together with its modular decomposition tree
MD(G) and on its right the forcing graph F(G, v). The strongly connected com-
ponents of F(G, v) are {1}, {2, 3, 4}, {5}. Any module of G containing 3 and v also
contains {1, 2, 4}, the vertices that can be reached from vertex 3 in F(G, v).

Lemma 12 [EGMS94] If X is the set of vertices that can be reached from
vertex x in the forcing graph F(G, v), then {v} ∪X = m(v, x).

In the following we will only consider the graph G/M(G,v) and its forcing graph
F(G/M(G,v), v). Applying Lemma 12 to F(G/M(G,v), v), we obtain the following
property.

Corollary 1 [EGMS94] Let Mx be the module ofM(G, v) containing the ver-
tex x. If X is the set of modules that can be reached from Mx in F(G/M(G,v), v),

3 The definition proposed here slightly differs from the original one of [EGMS94].
This modification simplifies the relationships with the results of [DGM01].

21

then
⋃

M∈X M = m(v, x).

We now consider the block graph B(G, v) of F(G/M(G,v), v) (see [CLR90])
whose vertices are the strongly connected components of F(G/M(G,v), v), also
called the blocks of (G, v). An arc of B(G, v) between the block B and B′

exists if the vertices of B′ can be reached in F(G/M(G,v), v) from the vertices
of B.

Lemma 13 [EGMS94] The transitive reduction of the block graph B(G, v) is
a chain.

A set of vertices of a digraph is a sink if it has no out-neighbour. By Lemma 13,
any sink set of F(M(G, v)) is the union of consecutive blocks containing the
last one in the transitive reduction of B(G, v). Each sink set corresponds to a
module of G/M(G,v).

Corollary 2 [EGMS94] Let v be a vertex of a graph G = (V, E). A set M of
vertices containing v is a module of G/M(G,v) iff M is the union of {v} and
the modules of M(G, v) belonging to a sink set X of B(G, v).

Thereby the forcing graph F(G/M(G,v), v) describes the modules of G/M(G,v)

and the block graph B(G, v) allows us to compute spine(G, v). Finally, MD(G)
is obtained recursively by following the lines of Lemma 11.

5.3 Complexity issues

Rather than detailing the complexity analysis, we point out the differences
between the original skeleton algorithm presented in [EGMS94] and its later
versions improved in [DGM01]. The interested reader should access the original
papers for details. As already mentioned, a quadratic time complexity analysis
is proposed in [EGMS94]. The main bottlenecks are the computation of the
partitionM(G, v) and the construction of MD(G/M(G,v)).

Two new versions of the skeleton algorithm proposed by Dahlhaus, Gustedt
and McConnell [DGM01], respectively run in O(n + m.α(n, m)) time and in
linear time. To improve the time complexity, the authors of [DGM01] borrowed
from [Dah95] the idea to first recursively compute the modular decomposition
trees of the subgraphs induced by N(v) and by N(v). It follows from the next
Lemma, thatM(G, v) is easy to retrieve from those trees.

Lemma 14 If X is a module of M(G, v), then X is either a module of
G[N(v)] or a module of G[N(v)].

As in [EGMS94], the technique used to compute spine(G, v) relies on a forcing

22

digraph. Remind that the vertices of F(M(G, v)) are the modules of G (indeed
the modules ofM(G, v)) which turns out to be a too strong condition for time
complexity issues. In [DGM01], the forcing digraph is rather defined with the
help of an equivalence relation. The idea is that each equivalence class gathers
vertices of N(v) or of N(v) which appear in a set of sibling modules of some
ancestor node of v in MD(G) (or spine(G, v)). The partition defined by the
equivalence classes is a coarser partition thanM(G, v).

The final trick is that given MD(G[N(v)]) and MD(G[N(v)]), the computa-
tion ofM(G, v), spine(G, v) and finally MD(G) has to be done in time linear
in the number of active edges, i.e. the edges incident to v and the edges link-
ing vertices of N(v) and N(v). The α(n, m) factor in the first version of the
skeleton algorithm presented in [DGM01] is due to the use of some union-find
data-structures required to update the current tree. A clever time complexity
analysis yields linear time if a careful pre-processing step is used to fix the
recursion tree.

5.4 Bibliographic notes

Let us mention that the problem of finding a simple linear time algorithm
for the modular decomposition is presented in [MS00] or [Spi03] as an open
problem. In its book [Spi03], Spinrad wrote p.149:

”I hope and believe that in a number of years the linear algorithm can be
simplified as well”

Based on partition refinement techniques, a simplified O(n + m log n) version
of the skeleton algorithm has been developed in [MS00].

6 Factoring permutation algorithm

In its PhD Thesis, Capelle [Cap97] proved that computing the modular decom-
position tree of a graph and computing a factoring permutation (see Defini-
tion 4 and Figures 3, 12) are two equivalent tasks, as one can be retrieved from
each another in linear time [CHdM02]. It follows that computing the modular
decomposition of a graph can be divided into two different steps: 1) computa-
tion of a factoring permutation; 2) computation of the modular decomposition
tree given the factoring permutation. The main interest of such a strategy is to
obtain an algorithm that avoids the auxiliary data-structures needed to com-
pute union-find and least common ancestor operations. Moreover, in some
recent applications (e.g. comparative genomics [UY00, BHS02, HMS09]), the

23

given data is not the graph nor the partitive family but rather a factoring
permutation. This concept turns out to be of interest by itself.

As noticed by Capelle [Cap97], this strategy was already used in few cases such
as the computation of the modular decomposition tree of chordal graph [HM91]
and the block tree of inheritance graphs [HHS95]. In [HPV98, HPV99], a par-
tition refinement algorithm is proposed to compute a factoring permutation
of a graph in time O(n +m log n). Restricted to cographs, the complexity can
be improved down to linear time [HP05].

We will first revisit Algorithm 1 of [HPV98] and show how it can be adapted
to compute a factoring permutation in time O(n + m log n). This algorithm
has to be compared to the McConnell and Spinrad’s implementation [MS00]
of Ehrenfeucht et al.’s algorithm. The main differences are that the modular
decomposition tree is never built and the relative order between the different
parts of the partition is important.

There exist several linear time algorithms that given a factoring permutation
of a graph compute its modular decomposition tree. A recent one is proposed
in [BCdMR05, BCdMR08]. We describe the principle first one due to Capelle,
Habib and de Montgolfier [CHdM02].

6.1 Computing a factoring permutation

An ordered partition P = [X1, . . . ,Xk] of a set E defines a partial order on
E , the set of anti-chains of which is the set of parts of P . In other words, we
have xi <P xj iff xi ∈ Xi, xj ∈ Xj and i < j. Thereby refining an ordered
partition could be understood as computing an extension the corresponding
partial order.

We will abusively write x <P M , for x ∈ E and M ⊂ E , if x <P y for all
y ∈ M . To prove the correctness of the algorithm, we need to generalize the
definition of interval of permutations to ordered partitions.

Definition 12 Let P be an ordered partition of a set E. A subset S ⊆ E is
an interval of P iff there are two parts L ∈ P and R ∈ P (not necessarily
distinct) intersecting S such that for any part X :

• if L <P X <P R, then X ⊂ S;
• if X <P L or R <P X , then X ∩ S = ∅.

To compute a factoring permutation, the main steps of the algorithm we
present are: 1) computation of an ordered partition that is a modular partition
M(G, v) such that the strong modules containing a vertex v are intervals of

24

M(G, v); and 2) recursive computation of a factoring permutation of each of
the subgraphs induced by a module M ∈M(G, v).

Algorithm 4: Factoring-permutation(G, v)

Input: A graph G = (V, E) and a vertex v ∈ V
Output: A factoring permutation of G
begin

Let P = [N(v), {v}, N(v)] be an ordered partition;
Apply Algorithm 2 with the following refinement rule;
Let x be the current pivot vertex and Y a part such that N(x) ⊥ Y ;
if x 6P v 6P Y or Y 6P v 6P x then

Substitute Y by [Y ∩N(x),Y ∩N(x)];
else

Substitute Y by [Y ∩N(x),Y ∩N(x)];

foreach part X ∈M(G, v), such that |X | > 1 do
Let x be the last vertex of X used as pivot;
PX ← Factoring-permutation(G[X], x);
Substitute X by PX ;

end

ParallelParallel

Parallel

����

���������� ����

���� ����

���� ����

������ ����

���� ����

���� ����

��������

����

���� ����

���� ����

Prime

vM

M

1

M2

M

Prime

v

Series Series

SeriesSeries

Series Series

3

4

����

Fig. 11. Layout of the modular decomposition tree MD(G) such that the neighbours
of v are placed on the right of v and the non-neighbours on the left. The right
tree enlights the modules of M(G, v) and the strong modules M1,M2,M3 and M4

containing v. Algorithm 4 first computes the partitionM(G, v) and then recursively
solves the problem on each module ofM(G, v)

Theorem 10 Algorithm 4 compute in time O(n + m log n) a factoring per-
mutation of a graph G = (V, E).

Proof: Using lemma 10 M(G, v) can be computed in O(n + m log n). By
Lemma 11, any module not containing v is a subset of some module of
M(G, v). It thereby suffices to prove that the following invariant is satisfied
by Algorithm 4 (see Figure 11):

Π = any strong module containing v is an interval of the current partition

The property Π is obviously satisfied by the initial partition [N(v), {v}, N(v)].
Assume by induction Π holds before the current partition P is refined by N(x)

25

for some vertex x. Let M be a module containing v and X be a part of P such
that X ⊥ N(x). There are two distinct cases:

• x /∈M : no vertex y of X ∩N(x) belongs M , otherwise x would be a splitter
for v ant y;
• x ∈M : if X ⊂ N(v), then any vertex y ∈ X ∩N(x) belong to M , otherwise

y would be a splitter for x and v. Similarly if X ⊂ N(v), then any vertex
y ∈ X ∩N(x) belongs to M .

It follows that P ′ =Refine(P , N(x)) also satisfies the invariant Π. The com-
plexity analysis is similar to the analysis of Algorithm 2. 2

6.2 The case of cographs

The natural question is how to get rid of the log n factor in the complexity
of Algorithm 4. Restricting the problem to cographs (or totally decomposable
graphs - see Section 2.5) gives some ideas. The reader should keep in mind
that the log n factor corresponds to the number of times the neighbourhood of
a vertex can be used to refine the partition. So, a linear time algorithm should
use each vertex as a pivot a constant number of times.

The linear time cograph recognition algorithm proposed in [HP05] computes
a factoring permutation as a preliminary step. It roughly proceeds as follows.
It uses at most one vertex per partition part to refine the ordered partition
[N(v), {v}, N(v)]. Assuming the input graph is a cograph, when none of the
parts of the current partition is free of pivot, it can be proved that one of the
two non-singleton parts closest to v in the current partition, say X , can be
refined into [N(x)∩X , {x}, N(x)∩X] (x being the used pivot of X). This step
creates at least one new part free of pivot and thereby relaunches the refining
process.

6.3 From factoring permutation to modular decomposition tree

As already noticed, a natural idea to compute the modular decomposition
tree is to compute for each pair x, y of vertices the set of splitter S(x, y).
Unfortunately a linear time algorithm could not afford the computation of all
these O(n2) sets. But if one has in hand a factoring permutation σ, it is then
sufficient to consider the pairs of consecutive vertices in σ. Indeed, Capelle et
al.’s algorithm [CHdM02] only computes for each pair of vertices x = σ(i) and
y = σ(i + 1) (i ∈ [1, n− 1]) the leftmost and the rightmost (in σ) splitter of x
and y. These two splitters define two intervals of σ, which are both contained
in m(x, y), the smallest module containing both x and y:

26

• the left fracture Fg(x, y) = [z, x] if z is the leftmost splitter of {x, y} in
[σ(1), y] (if any);
• the right fracture Fd(x, y) = [y, z] if z is the rightmost splitter of {x, y} in

[x, σ(n)] (if any).

(

1

2

3

4

5

6

7

8

9

10

11

2 3 4 5 6 71 8 9 10 11))())())(((

Fig. 12. A graph G = (V,E) for which σ = 1 2 3 4 5 6 7 8 9 10 11 is a factor-
ing permutation (see Definition 4). The right fracture of (3, 4) does not exist but
Fg(3, 4) = [2, 3]. We also have Fd(1, 2) = [2, 7] = Fg(7, 8).

The set of fractures (left and right) defines a parenthesis system. Forgetting the
initial pairing of the parenthesis, this system naturally yields a tree, called the
fracture tree and denoted FT (G) (see Figure 12). The fracture tree is actually
a good estimation of the MD(G) (see Lemma 15) which can be computed in
linear time by two traversals of σ: the first traversal computes the fractures,
the second builds the tree.

Lemma 15 [CHdM02] Let σ be a factoring permutation of a graph G and M
be a strong module of G. If M is a prime node of MD(G) and if the father
of M is a degenerate, then there exists a node N of the fracture tree FT (G)
such that M is the set of leave of the subtree of FT (G) rooted at N

For example, in Figure 12, any strong module but M = {8, 9, 10, 11} is repre-
sented by some node of FT (G). Let us notice that the above lemma does not
implies that the strong module {2, 3, 4} has a corresponding node in FT (G).

Henceforth to compute MD(G), the fracture tree FT (G) has to be cleaned.
To that aim, Capelle et al. [CHdM02] use four extra traversals of the factoring
permutation. The first one identifies the strong modules represented by some
of FT (G); the second finds the dummy nodes of FT (G); the third search for
strong modules that are merged in a single node of FT (G); and the last one
remove the nodes of FT (G) that does not represesent strong modules. The
complexity of each of these four traversals is linear in the size of G, O(n+m).

6.4 Bibliographic notes

An attempt to generalize to arbitrary the linear time algorithm which com-
putes a factoring permutation of a cograph has been proposed in [HdMP04].
Unfortunately the algorithm of [HdMP04] contains a flaw. The recent linear
time modular decomposition algorithm presented in [TCHP08] mixes the ideas

27

from the factoring permutation algorithms and the skeleton algorithm. It gen-
eralizes the ordered partition refining technique to tree partition and avoids
union-find or least-common ancestor data-structures. It that sense this new
algorithm may be considered as a positive answer to Spinrad’s comment (see
Section 5.4).

7 Three novel applications of the modular decomposition

As mentioned in the introduction modular decomposition is used in a number
of algorithmic graph theory applications and more generally applies to various
discrete structures. We end this survey with the presentation of three novel
applications which are good witnesses of the use of modular decomposition.
The first one is a pattern matching problem which is closely related to the
concept of factoring permutations. The second one provides an example of
dynamic programming on the modular decomposition tree in the context of
comparative genomic. Finally, we list a series of parameterized problems for
which module based data-reduction rules leads to polynomial size kernels.

7.1 Pattern matching - common intervals of two permutations

Motivated by a series of genetic algorithms for sequencing problems, e.g. the
TSP, Uno and Yagiura [UY00] formalized the concept of common interval of
two permutations. As we will see in the next subsection, in the context of
comparative genonic, common intervals reveal conserved structures in chro-
mosomal material.

Definition 13 A set S of elements is a common interval of a set of permu-
tations Σ if in each permutation σ ∈ Σ, the elements of S form an interval of
σ (see Section 2.2 for the definition of an interval).

It is fairly easy to check that the family I of common intervals of two per-
mutations is a weakly partitive family (see Definition 1). It follows that all
the theory presented in Section 2.1 applies and thus the set of strong common
intervals are organized into a tree.

In their paper, Uno and Yagiura proposed the first linear time algorithm
to enumerate the common intervals of two permutations. More precisely, it
runs in O(n + K) time, where K is the number of those common intervals
(which is possibly quadratic). Alternative algorithms have been recently pro-
posed [HMS09, BCdMR08]. We sketch Uno and Yagiura’s algorithm and dis-
cuss how it can be genralized to compute the modules of a graph when a

28

2

1110987641 2 3

16 7 5 10 11 9 8 4 3

5

Fig. 13. The strong interval tree of two permutations. Remark {9, 10, 11} and {8, 9}
are also a common interval, but they are not strong as the overlap.

factoring permutation is given.

Without loss of generality, we will consider the problem of computing the com-
mon intervals of a permutation σ and the identity permutation In. To identify
the common intervals of a permutation σ and In, the algorithm traverses σ
only once. We denote by [i, j] the interval of σ composed by the elements
whose indexes are between i and j in σ: i.e. [i, j] = {x | i 6 σ(x) 6 j}. An
element x /∈ [i, j] is a splitter of the interval [i, j] if there exist y ∈ [i, j] and
z ∈ [i, j] such that y < x < z. By s([i, j]) we denote the number s([i, j]) of
splitters of the interval [i, j]. The algorithm uses a list Potentiel to filter and
extract σ the common intervals of σ and In. An element i belongs to the list
Potentiel as long as it may be the right boundary of a common interval. The
step i consists in removing those elements which we know they cannot be the
left boundary of a common containing. This filtering can be done efficiently
by computing s([i, j]) (see Lemmas 16 and 17).

Algorithm 5: Uno and Yagiura’s algorithm [UY00]

Input: A permutation σ
Output: The set of intervals common to σ and the identity permutation In

begin
Let Potentiel be an empty list;
for i = n downto 1 do

(Filter) Remove from Potentiel the boundaries r such ∀j 6 i, [j, r]
is not a common interval of σ and In ;
(Addition) Add i to Potentiel;
(Extraction) Search Potentiel to find the boundaries r such [i, r] is
a common interval of σ and In and output those intervals [i, r];

end

The following properties are fundamental in the correctness of the algorithm:

Lemma 16 [UY00] An interval [i, j] of σ is a common interval of σ and In

iff s([i, j]) = 0.

29

Lemma 17 [UY00, BXHP05] If s([i, j]) > s([i, j + 1]), then it does not exist
r < i such that [r, j] is a common interval of σ and In.

The second lemma above means that if s([i, j]) > s([i, j + 1]) then the vertex
σ−1(j + 1) is a splitter of [i, j]. Thereby any common interval containing [i, j]
as a subset has to extend up to σ−1(j + 1).

Application to factoring permutations of a graph. The most striking
link between common intervals and modules of graphs is observed on permu-
tation graphs (see Lemma 18). Permutation graphs are defined as the intersec-
tion graphs of a set of segments between two parallel lines (see [Gol80, BLS99]
for example). It follows that the vertices of a permutation graph G = (V, E)
can be numbered from 1 to n such that there exists a permutation σ of [1, n]
such that vertex numbered i is adjacent to vertex numbered j iff i < j and
σ(j) < σ(i). The permutations σ and In form the realizer of G.

Lemma 18 [dM03] Let G = (V, E) be a permutation graph and (In, σ) be
its realizer. A set of vertices M is a strong module iff M is a strong common
interval of In and σ.

The permutation graph corresponding to the permutations depicted in Fig-
ure 14 is the graph G of Figure 3. Notice that the strong interval tree of these
two permutations is isomorphic the modular decomposition tree of G.

It follows from Lemma 18 that applied to the realizer of a permutation graph,
Algorithm 5 computes the strong modules. Though some extra work is required
to obtained the modular decomposition tree, the complexity remains linear
time. Moreover, as shown in [BXHP05], Uno and Yagiura’s algorithm can
directly be adapted to compute, given a factoring permutation, the strong
modules of a graph. The number s([i, j]) becomes the number of splitters
(in the sense of the modular decomposition, see Section 2.3) of the vertices
contained in the interval [i, j] of the factoring permutation. Now notice that
Algorithm 5 does not only output the strong common intervals. In order to
restrict the enumeration to strong modules, a slight modification is required.
A first traversal computes the strong right modules (i.e. the modules that are
intervals of σ and which are not overlapped on their right boundary by any
other module). Then a second traversal can detect those modules which are
overlapped on the left boundary.

7.2 Comparative genomic - perfect sorting by reversals

A reversal in a permutation σ consists in reversing the order of the elements
of an interval of σ. When dealing with signed permutations (whose elements

30

are positive or negative), a reversal also flips the sign of the element of the
reserved interval. Given two (signed) permutations σ and τ , the problem of
sorting by reversals asks for a series of reversals (a scenario) to transform σ
into τ .

Sorting by reversals is used in comparative genomic to measure the evolution-
ary distance between the genomes of two chromosomes, modeled as signed
permutations [BHS02]. When comparing two genomic sequences, it can be
assumed that the intervals having the same gene content are likely to have
been present in their common ancestor and may witness to some functionally
interacting proteins. Such a conserved genomic structure in the signed per-
mutation model corresponds to common intervals. So to guess an evolution
scenario between two genomic sequences represented by signed permutations
σ and τ , one could asks for the smallest perfect scenario, which is a series of
reversals that preserves any common interval of σ and τ . For further details
on this topics, the reader could refer to [BHS02, BBCP04].

5 1110987641 2 3

16 7 5 10 11 9 8 4 32

1 67 5 9 8 4 23

1 2 3 8 9 5 64

11 10

10 11

1 2 3 4 5

7

7 6 891011

Fig. 14. A perfect scenarion of length 7.

As mentioned in the previous subsection, the set of common intervals of two
permutations (signed or not) defines a weakly partitive family. It follows that
one can distinguish prime from degenerate strong common intervals. As shown
by the following lemma, we can be read on the strong interval tree which are
the perfect scenarios.

Lemma 19 [BBCP04] A reversal scenario for two signed permutations σ
and τ is perfect iff any reversed interval is either a prime common interval of
σ and τ , or the union of strong common intervals which form a subset of the
children of a prime common interval.

It follows from the previous lemma that the strong interval tree is useful to
compute minimum perfect scenarios. Indeed with some extra technical prop-
erties to deal with the signs it can be shown that a simple dynamic pro-

31

gramming algorithm on the strong interval tree solves the problem in time
O(2k × n

√
n log n), where k is the maximum number of prime nodes which

are children of the same prime node. In practice, the parameter k keeps very
small [BCP08]: e.g. when comparing the chromosome X of the mouse and the
rat, we have k = 0 [BBCP07].

7.3 Parameterized complexity and kernel reductions - cluster editing

Parameterized algorithms is, among others, one of the modern techniques to
cope with NP-hard problems. A problem Π is fixed parameter tractable (FPT)
with respect to parameter k if it can be solved in time f(k).nO(1) where n is
the input size. The idea behind parameterized algorithms is to find a param-
eter k, as small as possible, which controls the combinatorial explosion. Many
algorithm techniques have been developed in the context of fixed parameter
complexity, among which kernelization. A parameterized problem (Π, k) ad-
mits a polynomial kernel if there is a polynomial time algorithm (a set of
reduction rules) that reduces the input instance to an instance whose size
is bounded by a polynomial p(k) depending only in k, while preserving the
output. The classical example of parameterized problem having a polynomial
kernel is the problem vertex cover parameterized by k the solution size,
which has a 2k size kernel. For textbooks on this topics, the reader should
refer to [DF99, Nie06, FG06].

Recently, the modular decomposition appeared in kernalization algorithms for
a series of parameterized problems among which: cluster editing [Nie06],
bicluster editing [PdSS07], fast (feedback arc set in tournament) [DGH+06],
closest 3-leaf power [BPP09], flip consensus tree [BBT08]. We dis-
cuss the cluster editing problem. Concerning the others, the reader should
refer to the original papers.

The parameterized cluster editing problem asks whether the edge set of
an input graph G can be modified by at most k modifications (deletions or
insertions) such that the resulting graph H is the disjoint union of cliques
(e.g. clusters). This problem is NP-complete but can be solved in time O∗(3k)
by a simple bounded search tree algorithm [Cai96], which iteratively branches
on at most k P3’s. Recent papers [Guo07, FLRS07] showed the existence of
a linear kernel (best bound is 4k). The reduction rules used for these linear
kernels are crown rules involving modules. For the sake of simplicity we only
present the two basic reduction rules which leads to a quadratic kernel.

Lemma 20 Let G = (V, E) be a graph. A quadratic kernel for the cluster
editing problem is obtained by the following reduction rules:

(1) Remove from G the connected components which are cliques.

32

(2) If G contains a clique module C of size at least k + 1, then remove from
|C| − k − 1 vertex from C.

It is clear that these rules can be applied in linear time using modular decom-
position algorithms. The proof idea works as follows. The first rule is obviously
safe. For the second rule, simply observe that to disconnect a clique module of
size k +1 from the rest of the graph, at least k +1 edge deletions are required.
Now assuming G is a positive instance, each cluster of the resulting graph H
can be bipartitioned into the vertices non-incident to a modified edge and the
other vertices (the affected vertices). Finally k edge modifications can create
at most 2k clusters and the total number of affected vertices is bounded by
2k. This shows that the number of vertices in the reduced graph H is at most
2k2 + 4k.

The bicluster editing problem edits the edge set of a graph to obtain
a disjoint union of complete bipartite graphs. Instead of considering clique
modules, we need to consider independent set modules [PdSS07]. The proof is
then slightly more complicated and relies a careful analysis of the modification
of the modular decomposition under edge insertion or deletion. In the case
of fast, similar rules involving to transitive modules also yields a quadratic
kernel bound. Note that for these two problems, linear kernels can be obtained
with more sophisticated reduction rules [GHKZ08, BFG+09].

References

[BBCP04] A. Bergeron, S. Bérard, C. Chauve, and C. Paul. Sorting by
reversal is not always difficult. In Workshop on Algorithm for
Bio-Informatics (WABI), Lecture Notes in Computer Science,
2004.

[BBCP07] S. Bérard, A. Bergeron, C. Chauve, and C. Paul. Perfect sorting
by reversals is not always difficult. IEEE/ACM Trans. Comput.
Biology Bioinform., 4(1):4–16, 2007.

[BBT08] S. Böcker, Q.B. Anh Bui, and A. Truß. An improved fixed-
parameter algorithm for minimum-flip consensus trees. In In-
ternational Workshop on Parameterized and Exact Computation
(IWPEC), number 5018 in Lecture Notes in Computer Science,
pages 43–54, 2008.

[BCdMR05] A. Bergeron, C. Chauve, F. de Montgolfier, and M. Raffinot.
Computing common intervals of k permutations, with applica-
tions to modular decomposition of graphs. In European Sym-
posium on Algorithms (ESA), number 3669 in Lecture Notes in
Computer Science, pages 779–790, 2005.

[BCdMR08] A. Bergeron, C. Chauve, F. de Montgolfier, and M. Raffinot.
Computing common intervals of k permutations, with applica-

33

tions to modular decomposition of graphs. SIAM Journal on
Discrete Mathematics, 22(3):1022–1039, 2008.

[BCHP03] A. Bretscher, D.G. Corneil, M. Habib, and C. Paul. A simple
linear time LexBFS cograph recognition algorithm. In 29th In-
ternational Workshop on Graph-Theoretic Concepts in Computer
Science (WG), volume 2880 of Lecture Notes in Computer Sci-
ence, pages 119–130, 2003.

[BCHP08] A. Bretscher, D. Corneil, M. Habib, and C. Paul. A simple linear
time LexBFS cograph recognition algorithm. SIAM Journal on
Discrete Mathematics, 22(4):1277–1296, 2008.

[BCP08] S. Bérard, C. Chauve, and C. Paul. A more efficient algorithm
for perfect sorting by reversals. Information Processing Letters,
106:90–95, 2008.

[BFG+09] Stéphane Bessy, Fedor V. Fomin, Serge Gaspers, Christophe
Paul, Anthony Perez, Saket Saurabh, and Stéphan Thomassé.
Kernels for feedback arc set in tournaments. Technical Report
CoRR abs/0907.2165, arxiv, 2009.

[BHS02] A. Bergeron, S. Herber, and J. Stoye. Common intervals and
sorting by reversals: a mariage of necessity. In European Con-
ference on Computational Biology, Bioinformatics, pages 54–63,
2002.

[Bla78] A. Blass. Graphs with unique maximal clumpings. Journal of
Graph Theory, 2:19–24, 1978.

[BLS99] A. Brandstädt, VB. Le, and J. Spinrad. Graph classes: a survey.
SIAM Monographs on Discrete Mathematics and Applications.
Society for Industrial and Applied Mathematics, 1999.

[BPP09] S. Bessy, C. Paul, and A. Perez. Polynomial kernels for 3-leaf
power graph modification problems. In International Workshop
on Combinatorial Algorithm (IWOCA), Lecture Notes in Com-
puter Science, 2009.

[BRV07] M. Bouvel, D. Rossin, and S. Vialette. Longest common sep-
arable pattern among permutations. In Annual Symposium on
Combinatorial Pattern Matching (CPM), number 4580 in Lec-
ture Notes in Computer Science, pages 316–327, 2007.

[BX08] B.M. Bui-Xuan. Tree-representation of set families in graph
decompositions and efficient algorithms. PhD thesis, Univ. de
Montpellier II, 2008.

[BXH08] B.-M. Bui-Xuan and M. Habib. A representation theorem for
union-difference families and application. In Latin American
Symposium on Theoretical Informatics (LATIN), volume 4957
of Lecture Notes in Computer Science, pages 492–503, 2008.

[BXHP05] B.-M. Bui-Xuan, M. Habib, and C. Paul. Revisiting Uno and
Yagiura’s algorithm. In 16th International Symposium on Algo-
rithms and Computation (ISAAC), volume 3827 of Lecture Notes
in Computer Science, pages 146–155, 2005.

34

[Cai96] L. Cai. Fixed-parameter tractability of graph modification prob-
lems for hereditary properties. Information Processing Letters,
58(4):171–176, 1996.

[Cap97] C. Capelle. Décomposition de graphes et permutations fac-
torisantes. PhD thesis, Univ. de Montpellier II, 1997.

[CE80] W.H. Cunnigham and J. Edmonds. A combinatorial decompo-
sition theory. Canadian Journal of Mathematics, 32(3):734–765,
1980.

[CER93] B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle rewrit-
ing graph grammars. Journal of Computer and System Science,
46:218–270, 1993.

[CH94] A. Cournier and M. Habib. A new linear algorithm for modular
decomposition. In Trees in algebra and programming (CAAP),
volume 787 of Lecture Notes in Computer Science, pages 68–84,
1994.

[CH97] C. Capelle and M. Habib. Graph decompositions and factorizing
permutations. In Fifth Israel Symposium on Theory of Comput-
ing and Systems ISTCS’97, IEEE Conf. PR08037, Ramat-Gan,
Israel, pages 132–143, 1997.

[CHdM02] C. Capelle, M. Habib, and F. de Montgolfier. Graph decompo-
sitions and factorizing permutations. Discrete Mathematics and
Theoretical Computer Science, 5:55–70, 2002.

[CHM81] M. Chein, M. Habib, and M.-C. Maurer. Partitive hypergraphs.
Discrete Mathematics, 37:35–50, 1981.

[CI98] A. Cournier and P. Ille. Minimal indecomposable graphs. Dis-
crete Mathematics, 183:61–80, 1998.

[CJS72] D.D. Cowan, L.O. James, and R.G. Stanton. Graph decompo-
sition for undirected graphs. In 3rd S-E Conference on Com-
binatorics, Graph Theory and Computing, Utilitas Math, pages
281–290, 1972.

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Algorithms. MIT
Press, 1990.

[CLSB81] D.G. Corneil, H. Lerchs, and L.K. Stewart-Burlingham. Comple-
ment reducible graphs. Discrete Applied Mathematics, 3(1):163–
174, 1981.

[Cor04a] D. G. Corneil. A simple 3-sweep lbfs algorithm for the recog-
nition of unit interval graphs. Discrete Applied Mathematics,
138(3):371–379, 2004.

[Cor04b] D.G. Corneil. Lexicographique breadth first search - a survey.
In 30th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG), volume 3353 of Lecture Notes in Com-
puter Science, pages 1–19, 2004.

[CP06] C. Crespelle and C. Paul. Fully-dynamic recognition algorithm
and certificate for directed cographs. Discrete Applied Mathe-
matics, 2006. A parâıtre.

35

[CPS85] D.G. Corneil, Y. Perl, and L.K. Stewart. A linear time recog-
nition algorithm for cographs. SIAM Journal on Computing,
14(4):926–934, 1985.

[Cre09] C. Crespelle. Fully dynamic representation of interval graphs. In
Internation Workshop on Graph Theoretical Concepts in Com-
puter Science (WG), 2009.

[Dah95] E. Dahlhaus. Efficient parallel algorithms for cographs and dis-
tance hereditary graphs. Discrete Applied Mathematics, 57:29–
54, 1995.

[DF99] R.G. Downey and M.R. Fellows. Parameterized complexity.
Springer, 1999.

[DGH+06] M. Dom, J. Guo, F. Hüffner, R. Niedermeier, and A. Truss.
Fixed-parameter tractability results for feedback set problems in
tournaments. In Italian Conference on Algorithms and Complex-
ity (CIAC), volume 3998 of Lecture Notes in Computer Science,
pages 320–331, 2006.

[DGM01] E. Dahlhaus, J. Gustedt, and R.M. McConnell. Efficient and
practical algorithm for sequential modular decomposition algo-
rithm. Journal of Algorithms, 41(2):360–387, 2001.

[dM03] F. de Montgolfier. Décomposition modulaire des graphes -
Théorie, extensions et algorithmes. PhD thesis, Univ. de Mont-
pellier II, 2003.

[EG97] J. Edmonds and R. Giles. A min-max relation for submodular
functions on graphs. Annals of Discrete Mathematics, 1:185–204,
1997.

[EGMS94] A. Ehrenfeucht, H.N. Gabow, R.M. McConnell, and S.L. Sulli-
van. An o(n2) divide-and-conquer algorithm for the prime tree
decomposition of two-structures and modular decomposition of
graphs. Journal of Algorithms, 16:283–294, 1994.

[EHR99] A. Ehrenfeucht, T. Harju, and G. Rozenberg. The theory of 2-
structures. World Scientific, 1999.

[FG06] J. Flum and M. Grohe. Parameterized complexity theorey. Texts
in Theoretical Computer Science. Springer, 2006.

[FLRS07] M.R. Fellows, M. Langston, F. Rosamond, and P. Shaw. Ef-
ficient parameterized preprocessing for cluster editing. In In-
ternational Symposium on Fundamentals of Computation The-
ory (FCT), number 4639 in Lecture Notes in Computer Science,
pages 312–321, 2007.

[Gal67] T. Gallai. Transitiv orientierbare graphen. Acta Mathematica
Acad. Sci. Hungar., 18:25–66, 1967.

[GHKZ08] J. Guo, F. Hüffner, C. Komusiewicz, and Y. Zhang. Improved
algorithms for bicluster editing. In Annual Conference on The-
ory and Applications of Models of Computation (TAMC), volume
4978 of Lecture Notes in Computer Science, pages 445–456, 2008.

[Gol80] M.C. Golumbic. Algorithmic graph theory and perfect graphs.

36

Academic Press, 1980.
[GP07] E. Gioan and C. Paul. Dynamic distance hereditary graphs us-

ing split decomposition. In International Symposium on Algo-
rithms and Computation (ISAAC), volume 4884 of Lecture Notes
in Computer Science, 2007.

[GPTC09a] E. Gioan, C. Paul, M. Tedder, and D. Corneil. Practical split-
decomposition via graph-labelled trees. Submitted, 2009.

[GPTC09b] E. Gioan, C. Paul, M. Tedder, and D. Corneil. Quasi-linear circle
graph recognition. Submitted, 2009.

[Guo07] J. Guo. A more effective linear kernelization for cluster editing. In
International SymposiumCombinatorics, Algorithms, Probabilis-
tic and Experimental Methodologies (ESCAPE), volume 4614 of
Lecture Notes in Computer Science, pages 36–47, 2007.

[HdMP04] M. Habib, F. de Montgolfier, and C. Paul. A simple linear-
time modular decomposition algorithm. In 9th Scandinavian
Workshop on Algorithm Theory (SWAT), volume 3111 of Lec-
ture Notes in Computer Science, pages 187–198, 2004.

[HHS95] M. Habib, M. Huchard, and J.S. Spinrad. A linear algorithm
to decompose inheritance graphs into modules. Algorithmica,
13:573–591, 1995.

[HM79] M. Habib and M.-C. Maurer. On the X-join decomposition of
undirected graphs. Discrete Applied Mathematics, 1:201–207,
1979.

[HM91] W.-L. Hsu and T.-H. Ma. Substitution decomposition on chordal
graphs and applications. In 2nd International Symposium on Al-
gorithms (ISA), volume 557 of Lecture Notes in Computer Sci-
ence, pages 52–60, 1991.

[HMPV00] M. Habib, R.M. McConnell, C. Paul, and L. Viennot. Lex-BFS
and partition refinement, with applications to transitive orien-
tation, interval graph recognition and consecutive ones testing.
Theoretical Computer Science, 234:59–84, 2000.

[HMS09] S. Herber, R. Mayr, and J. Stoye. Common intervals of multiple
permutations. Algorithmica, 2009.

[Hop71] J. Hopcroft. An n log n algorithm for minimizing states in a
finite automaton. Theory of machines and computations, pages
189–196, 1971.

[HP05] M. Habib and C. Paul. A simple linear time algorithm for co-
graph recognition. Discrete Applied Mathematics, 145(2):183–
187, 2005.

[HPV98] M. Habib, C. Paul, and L. Viennot. A synthesis on partition
refinement: a useful routine for strings, graphs, boolean matri-
ces and automata. In 15th Symposium on Theoretical Aspect of
Computer Science (STACS), volume 1373 of Lecture Notes in
Computer Science, pages 25–38, 1998.

[HPV99] M. Habib, C. Paul, and L. Viennot. Partition refinement : an

37

interesting algorithmic tool kit. International Journal of Foun-
dation of Computer Science, 10(2):147–170, 1999.

[HSS01] P. Hell, R. Shamir, and R. Sharan. A fully dynamic algorithm
for recongizing and representing proper interval graphs. SIAM
Journal on Discrete Mathematics, 31(1):289–305, 2001.

[Hsu92] W.-L. Hsu. A simple test for interval graphs. In 3rd International
Symposium on Algorithms and Computation (ISAAC), volume
557 of Lecture Notes in Computer Science, pages 459–468, 1992.

[Iba09] L. Ibarra. A fully dynamic graph algorithm for recognizing in-
terval graphs. Algorithmica, 2009.

[JO92a] B. Jamison and S. Olariu. Recognizing p4-sparse graphs in linear
time. SIAM Journal on Discrete Mathematics, 21:381–406, 1992.

[JO92b] B. Jamison and S. Olariu. A tree representation of p4-sparse
graphs. Discrete Applied Mathematics, 35:115–129, 1992.

[JO95] B. Jamison and S. Olariu. P-components and the homogeneous
decomposition of graphs. SIAM Journal on Discrete Mathemat-
ics, 8(3):448–463, 1995.

[Lov72] L. Lovász. A characterization of perfect graphs. Journal of Com-
binatorial Theory Series B, 13:95–98, 1972.

[Möh85a] R.H. Möhring. Algorithmic aspect of comparability graphs and
interval graphs. Graphs and orders, pages 42–101, 1985.

[Möh85b] R.H. Möhring. Algorithmic aspect of the substitution decom-
position in optimization over relations, set systems and boolean
functions. Annals of Operations Research, 4:195–225, 1985.

[MR84] R.H. Möhring and F.J. Radermacher. Substitution decomposi-
tion for discrete structures and connections with combinatorial
optimization. Annals of Discrete Mathematics, 19:257–356, 1984.

[MS89] J.H. Muller and J.P. Spinrad. Incremental modular decomposi-
tion. Journal of the ACM, 36(1):1–19, 1989.

[MS94] R.M. McConnell and J.P. Spinrad. Linear-time modular de-
composition and efficient transitive orientation of comparability
graphs. In 5th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 536–545, 1994.

[MS99] R.M. McConnell and J.P. Spinrad. Modular decomposition and
transitive orientation. Discrete Mathematics, 201:189–241, 1999.

[MS00] R.M. McConnell and J.P. Spinrad. Ordered vertex partitioning.
Discrete Mathematics and Theoretical Computer Science, 4:45–
60, 2000.

[Nie06] R. Niedermeier. Invitation to fixed parameter algorithms, vol-
ume 31 of Oxford Lectures Series in Mathematics and its Appli-
cations. Oxford University Press, 2006.

[PdSS07] F. Protti, M. Dantas da Silva, and J.L. Szwarcfiter. Applying
modular decomposition to parameterized cluster editing prob-
lems. Theory of Computing Systems, 2007.

[PT87] R. Paigue and R.E. Tarjan. Three partition refinement algo-

38

rithms. SIAM Journal on Computing, 16(6):973–989, 1987.
[RST08] I. Rapaport, K. Suchan, and I. Todinca. Minimal proper inter-

val completions. Information Processing Letters, 106(5):195–202,
2008.

[RTL76] D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic aspects
of vertex elimination on graphs. SIAM Journal on Computing,
5(2):266–283, 1976.

[Spi03] J.P. Spinrad. Efficient graph representation, volume 19 of Fields
Institute Monographs. American Mathematical Society, 2003.

[SS04] R. Shamir and R. Sharan. A fully dynamic algorithm for modu-
lar decomposition and recognition of cographs. Discrete Applied
Mathematics, 136(2-3):329–340, 2004.

[Sum73] D.P. Sumner. Graphs indecomposable with respect to the x-join.
Discrete Mathematics, 6:281–298, 1973.

[TCHP08] M. Tedder, D. Corneil, M. Habib, and C. Paul. Simpler linear-
time modular decomposition via recursive factorizing permuta-
tions. In International Colloquium on Automata, Languages and
Programming (ICALP) 1, volume 5125 of Lecture Notes in Com-
puter Science, pages 634–645, 2008.

[UY00] T. Uno and M. Yagiura. Fast algorithms to enumerate all com-
mon intervals of two permutations. Algorithmica, 26(2):290–309,
2000.

39

