

Théorie des graphes - Master IF

- Théorèmes et algorithmes de décomposition (modulaire, arborescente, en cliques, ...)
- Invariants de graphes et leurs complexités (colorabilité, connexité, cyclicité, ...)
- Classes de graphes et leurs caractérisations (planaires, parfaits, motifs interdits ou imposés,...)
- → Premiers pas vers les grandes questions de graphes (conjectures de Berge, de Wagner, de Hadwiger, ...)
- → Applications à l'optimisation combinatoire et à l'analyse d'autres modèles discrets.

Théorie des graphes - Master IF

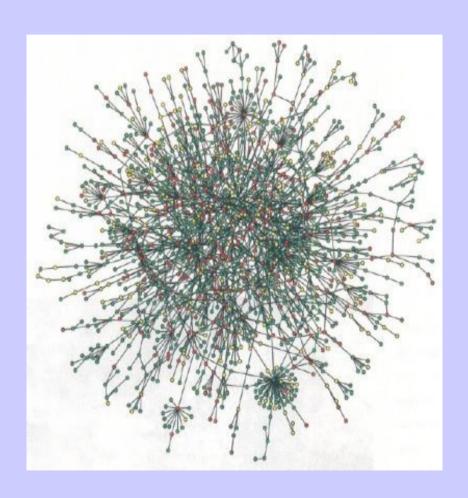
- Cours de Recherche : Eric Thierry + participation de Christophe Crespelle (eric.thierry@ens-lyon.fr)
- Séances de cours, puis mémoires et exposés par les étudiants sur des articles ou des sujets de synthèse.
- Prérequis : connaissances de base en graphes et en algorithmique.
- Exemple de lecture recommandée : chapitres sur les graphes de « Introduction à l'algorithmique » de Cormen, Leiserson, Rivest, Stein.

Théorie des graphes - Master IF

- Des informations sur la page web du cours : perso.ens-lyon.fr/eric.thierry/Graphes2010
- Petite bibliographie :
 - « Introduction to Graph Theory » de D. West.
 - « Graph Theory » de R. Diestel.
 - « Algorithmic Graph Theory and Perfect Graphs » de M. Golumbic.

Graphes: mini historique

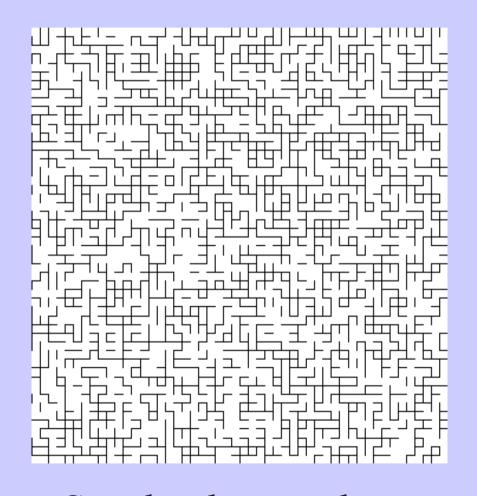
- 1736 : Résolution du problème des ponts de Königsberg par Euler.
- 1852 : Enoncé du problème des 4 couleurs par Guthrie.
- 1878 : Introduction du terme « graphe » par Sylvester en référence à de la chimie.
- 1936: Premier livre sur les graphes
 « Theorie der endlichen und unendlichen Graphen » par König.

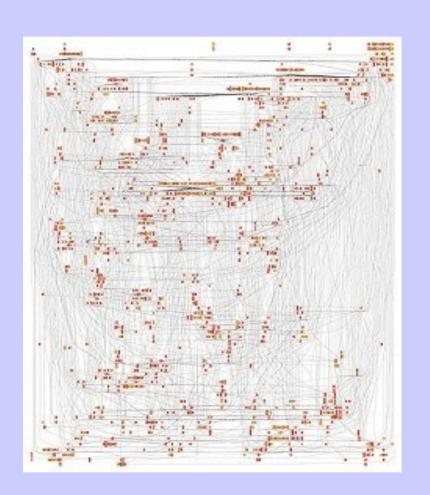


Théorie des graphes

- Une branche des mathématiques discrètes
 / de la combinatoire (beaucoup de preuves
 constructives → des algorithmes).
- Algorithmique des graphes (composantes connexes, plus courts chemins, arbres couvrants, voyageur de commerce, flots ...).
- Utile dans de nombreuses modélisations : informatique, télécom, physique, chimie, biologie, économie, sciences sociales ...

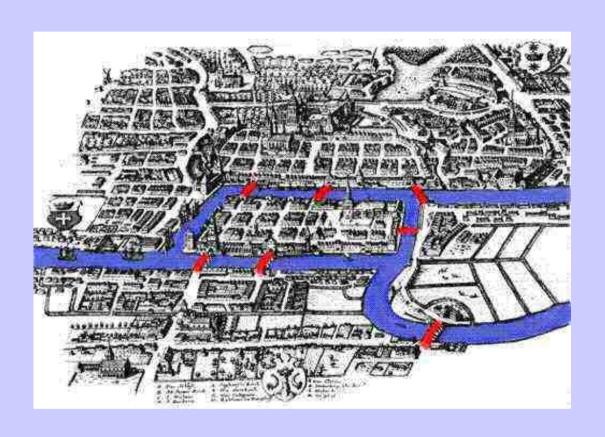
Modélisations par des graphes


GÉANT2 is operated by DANTE on behalf of Europe's NRENs.


Un réseau d'interaction de protéines

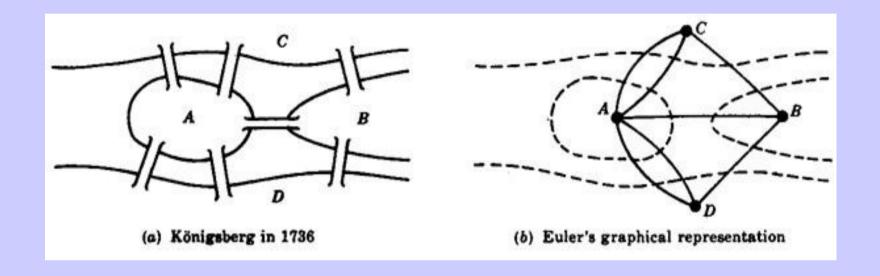
Infrastructures du réseau GEANT2

Modélisations par des graphes

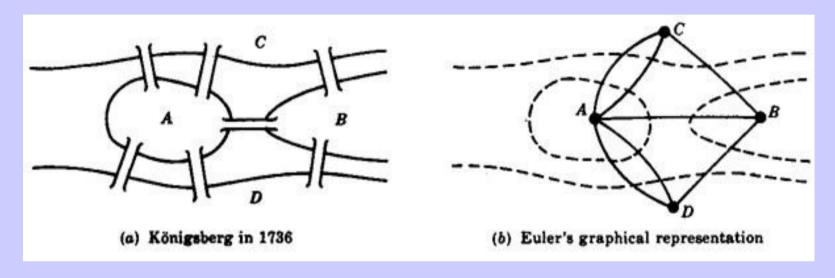


Graphe de percolation

Communauté LambdaMOO

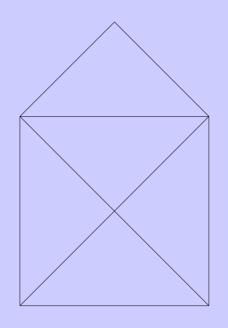

Les 7 ponts de Königsberg

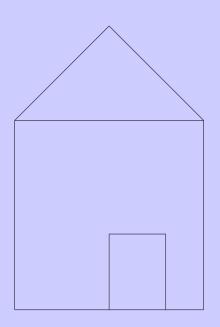
Question de promeneur : peut-on trouver un itinéraire qui part d'un point et revient à ce point, en passant une fois et une seule par chacun des 7 ponts ?


Les 7 ponts de Königsberg

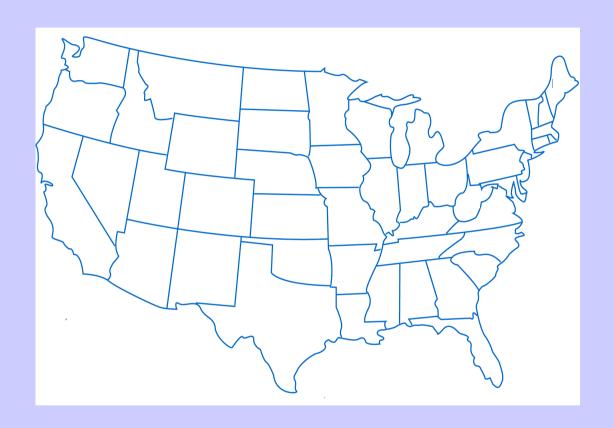
Question : trouver un cycle qui passe une fois et une seule par chaque arête.

Les 7 ponts de Königsberg


Question : trouver un cycle qui passe une fois et une seule par chaque arête.

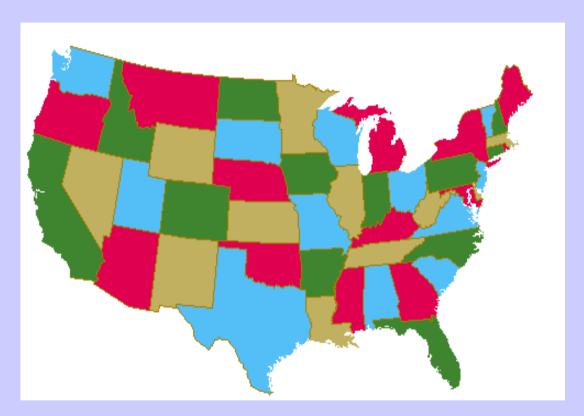

Réponse: impossible! (Euler, 1736)


Dessiner sans lever le crayon



Possible ou pas?

Possible ou pas?


Problème des 4 couleurs

Question de cartographe : avec seulement 4 couleurs, peut-on toujours colorer chaque région tel que deux régions frontalières n'aient pas la même couleur ?

Problème des 4 couleurs

Ici oui!

Graphe sous-jacent : sommets = régions, avec arêtes entre les régions adjacentes. Dessinable sans que les arêtes se coupent \rightarrow **graphe planaire**.

Théorème des 4 couleurs

- 1852 : problème énoncé par Guthrie.
- 1879 : preuve par Kempe → 1890 : cassée par Heawood.
- 1880 : preuve par Tait → 1891 : cassé par Petersen.
- 1976 : preuve par Appel, Haken + machine pour traiter 1478 cas.
- 1996 : preuve par Robertson, Sanders, Seymour, Thomas + machine pour traiter 633 cas.
- 2005 : formalisation d'une preuve par Werner et Gonthier, formulée avec l'assistant de preuve Coq.

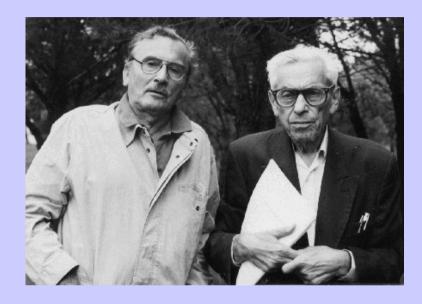
Théorème des mineurs

Mineur d'un graphe obtenu par :

Suppression d'arête

• Suppression de sommet

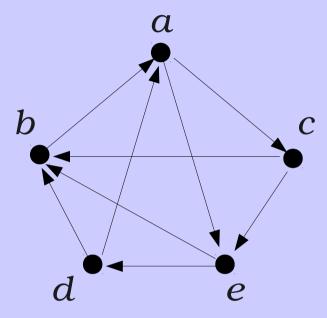
• Contraction d'arête


Théorème des mineurs

- 1960s : conjecture de Wagner « Toute classe de graphes, stable par mineurs, se caractérise par un nombre fini de mineurs interdits ».
- 2004 : preuve par Robertson et Seymour (plus de 600 pages dans une série de 20 articles : « Graph Minors I à XX » écrits entre 1983 et 2004)
- Exemple : les forêts.

Conjecture de Erdös-Gyarfas

Problèmes ouverts de Erdös : prix allant de 50\$ à 5000\$



Claude Berge & Paul Erdös

• Conjecture (100\$ la démonstration, 50\$ le contre-exemple) : « Tout graphe de degré minimum ≥ 3 , admet un cycle dont la taille est une puissance de 2 ».

Conjecture du second voisinage

Paul Seymour

• Conjecture : « Dans tout graphe orienté, sans cycle de taille ≤ 2, il existe un sommet qui a au moins autant de sommets à distance 2 qu'à distance 1 ».