
Hypertree Decomposition and Constraint Satisfaction
Problems

Löıc Blet

November 30, 2010

Abstract

In this report we present the hypertree decomposition for hypergraphs and show
its use for solving Constraint Satisfaction Problems (CSP) .

We will see a first motivation for this technique when showing that hypertree decom-
position strongly generalize tree decomposition. The main interest though is that, for
a CSP, given a hypertree decomposition of bounded width, we know how to efficiently
solve the given CSP.

Moving from there, we generalize the previous hypertree decomposition method,
and we will see that it is a NP complete problem to decide whether the generalized
hypertree width of a given hypergraph is less or equal than k = 3 (and thus the NP
completeness holds if k is greater than 3). We will conclude with some ideas to go past
this problem.

1

Contents

1 Introduction 3

2 Definitions 3
2.1 Constraint satisfaction problems . 3
2.2 Tree and hypertree decomposition . 4
2.3 An example of hypertree decomposition for a CSP 5

3 Hypertree decomposition strongly generalizes tree decomposition [GLS99]
8

4 Finding a good generalized hypertree decomposition is hard [GMS09] 9

5 Conclusion 10

2

1 Introduction

We know that some hard problems on graphs become easy when dealing with instances
on acyclic graphs. The tree decomposition method together with the associated notion of
tree width is a successful attempt to transform some instances into tractable ones. But
we would like to treat some more. This is the motivation for decomposing hypergraphs
with hypertrees: the method is more general and will allow bigger classes of graphs to be
tractable.

In our first section, we will define the kind of problems we want to solve — constraint
satisfaction problems — and their associated hypergraphs. Then we will describe the tree
and hypertree decomposition method on hypergraphs.

In the following section we bring some tools for comparing decomposition methods. This
will allow us to prove that the hypertree decomposition method strongly generalizes the tree
decomposition method.

The last section deals with an even more general method, smartly called generalized
hypertree decomposition. We will see that it is a hard problem to find a generalized hypertree
decomposition of bounded width.

2 Definitions

To start with, let us give some definitions, on the kind of problems we want to solve —
constraint satisfaction problems — and the techniques we use to solve those — hypergraphs
decomposition methods.

2.1 Constraint satisfaction problems

Definition 1 (CSP). A constraint satisfaction problem (CSP) is a three-tuple 〈U,D,C〉
where

• U is a finite set of variables;

• D is a domain containing the possible values for the variables in U; and

• C is a set of constraints, each constraint c = (S, r) in C being defined on a set of
variables S, its scope, taken from U and specifying the allowed combinations of values
for that set by the relation r.

In order to solve a CSP we must find an assignment (or configuration) to all the variables
that satisfies all the constraints.

Definition 2 (Configuration and Solution). Let P = 〈U,D,C〉 be a CSP:

• A configuration is a function k : U→ D.

3

• A configuration k is a solution to c = (S, r) ∈ C (or k satisfies c, or c is satisfied
under k) if and only if {x1, . . . , xm} is the variable set S and {k(x1), . . . , k(xm)} is one
of the allowed combinations of values for that set as specified by r.

• A configuration k is a solution to P if and only if k is a solution to all constraints in
C.

The problem of deciding whether a CSP instance has any solution is called constraint
satisfiability, and it is a NP complete problem in general. This lead to an active research
effort to find tractable classes of CSPs. We will only deal with CSP that are tractable due
to restricted structure. This is the tractable CSPs identified only based on the structure of
the constraints scopes (not taking in account the relation constraint).

And from now on we can switch to pure graph theory, based on this motivation of solving
CSPs !

To represent the structure of a CSP we define its associated hypergraph and the corre-
sponding primal graph as follows.

Definition 3 (Associated hypergraph for a CSP). Let P = 〈U,D,C〉 be a CSP. We define
its associated hypergraph HP = (V,H), where:

• V = U

• H = {S|∀(S, r) ∈ C}

Definition 4 (Primal graph for a hypergraph). The primal graph of a hypergraph H is a
graph with the same set of vertices as H and has a clique corresponding to each edge in H.

The most important structural property for a CSP is acyclicity. It has been shown that
acyclic CSPs are polynomially solvable.

Definition 5 (Acyclicity for a CSP). A CSP is acyclic if its primal graph is chordal and the
set of its maximal cliques coincide with set the edges of its associated hypergraph.

In practice, many CSPs are only close to being acyclic, and thus leading to some defini-
tions of nearly acyclic CSPs and also leading to methods for decomposing cyclic CSPs into
acyclic CSPs. This is what we will see in the next section.

2.2 Tree and hypertree decomposition

We now introduce the tree decomposition and the tree width of a graph.

Definition 6 (Tree decomposition). A tree decomposition of a graph G = (V,E) is a pair
〈T, χ〉, where T = (N,F) is a tree, and χ is a labeling function associating to each vertex
p ∈ N a set of vertices χ(p) ⊆ V , such that:

1. ∀v ∈ V, ∃p ∈ N, v ∈ χ(p);

4

2. ∀(v, u) ∈ E,∃p ∈ N, {v, u} ⊆ χ(p);

3. for each vertex v ∈ G, the set {p ∈ N |v ∈ χ(p)} induces a subtree of T .

We then define the tree width of a graph and a hypergraph.

Definition 7 (Tree width). the width of a tree decomposition 〈T, χ〉 is maxp∈N |χ(p)| − 1.
The tree width of G is the minimum width over all its tree decomposition.
The tree width of a hypergraph H is 1 if H is acyclic, and equal to the tree width of its

primal graph otherwise.

Let us now see a generalization of this tree decomposition to hypergraphs: the hypertree
decomposition.

Definition 8 (Hypertree for a hypergraph). A hypertree for a hypergraph H is a triple
〈T, χ, λ〉, where T = (N,E) is a rooted tree, and χ and λ are labeling functions which
associates to each vertex p ∈ N a set χ(p) ⊆ vertices(H), and a set λ(p) ⊆ edges(H).

If T ′ = (N ′, E ′) is a subtree of T , we define χ(T ′) =
⋃

v∈N ′ χ(v). We denote the root of
T by root(T). For any p ∈ N , Tp denotes the subtree of T rooted at p.

Definition 9 (Hypertree decomposition). A hypertree decomposition of a hypergraph H is
a hypertree HD = 〈T, χ, λ〉 for H verifying the following conditions:

1. ∀h ∈ edges(H),∃p ∈ vertices(T), vertices(h) ⊆ χ(p), We say that p covers h;

2. for each vertex Y ∈ vertices(H), the set {p ∈ vertices(T)|Y ∈ χ(p)} induces a subtree
of T ;

3. ∀p ∈ vertices(T), χ(p) ⊆ vertices(λ(p));

4. ∀p ∈ vertices(T), vertices(λ(p)) ∩ χ(Tp) ⊆ χ(p).

We can now define the hypertree width of a hypergraph.

Definition 10 (hypertree width). the width of a hypertree decomposition 〈T, χ, λ〉 is maxp∈vertices(T) |λ(p)|.
The hypertree width of a hypergraph is the minimum width over all its hypertree decompo-
sitions.

The acyclic hypergraphs have a hypertree width of one.

2.3 An example of hypertree decomposition for a CSP

Let us illustrate some of the definitions we gave. We first define a crossword CSP, then give
its associated hypergraph, and a hypertree decomposition of minimal width. This whole
example is taken from [GLS99].

5

Figure 1: A crossword puzzle

Example 1 (A crossword CSP). Figure 1 shows a crossword grid, that can be expressed as
a CSP. A solution to this puzzle is an assignment of a letter to each numbered box, such that
each horizontal or vertical array is assigned a legal word.

Let us model this as a CSP P 〈U,D,C〉. The domain D is the set of letters of the al-
phabet. There is a variable i for each numbered box in the grid. There is a constraint c for
each array A of numbered boxes. The scope of c is the list of variables corresponding to the
boxes in A. So, in this example, we have the following constraints. For the horizontal con-
straints: C1H = ({1, 2, 3, 4, 5}, r1H), C8H = ({8, 9, 10}, r8H), . . . For the vertical constraints:
C1V = ({1, 7, 11, 16, 20}, r1V), C5V = ({5, 8, 14, 18, 24}), r5V), . . . Where subscripts H and V
distinguish horizontal and vertical constraints. We then have to define each relation r, based
on a dictionary for instance.

Now we can get the hypergraph of this CSP.

Example 2 (Hypergraph of the crossword CSP). As the constraints are already represented
in a graphical way thanks to the grid of the puzzle, the hypergraph is easy to draw. Recall that
there will be a vertex for each variable in the CSP, and an edge for each constraint scope.
We obtain the hypergraph shown in figure 2.

To conclude this section, we give a hypertree decomposition of the previous hypergraph
Hcp, and show that it has minimal width.

Example 3 (Hypertree decomposition). Figure 3 shows a hypertree decomposition of the
hypergraph Hcp. Each box b in the figure represents a node v of the hypertree decomposition.
In each box, the left set is χ(v) and the right set is λ(v). We see that this hypertree decom-
position is of width 2 (as ∀v|λ(v)| = 2). As the hypergraph Hcp is clearly cyclic its hypertree
width is strictly larger than 1. Thus the hypertree width of Hcp is 2.

In the next section we compare the tree and hypertree decomposition methods.

6

Figure 2: The hypergraph Hcp for the crossword puzzle

Figure 3: A hypertree decomposition of the hypergraph Hcp

7

3 Hypertree decomposition strongly generalizes tree

decomposition [GLS99]

We have seen two different decomposition method, the tree and hypertree decomposition,
denoted TD and HD respectively. They allow us to define classes of tractable CSPs:

• C(TD, 1) ⊂ C(TD, 2) ⊂ . . . ⊂ C(TD, i) ⊂ . . .

• C(HD, 1) ⊂ C(HD, 2) ⊂ . . . ⊂ C(HD, i) ⊂ . . .

Each such class C(D, k) is solvable in time bounded by a polynomial. This is achieved
thanks to a decomposition of width k given by method D. All of the following steps must
be tractable for C(D, k) to be tractable:

• Checking membership of a CSP p in C(D, k).

• Computing a CSP decomposition of P with method D.

• Transforming P into an equivalent acyclic CSP P ′.

• Solving P ′.

We need tools to compare different decomposition method. We thus introduce the defini-
tions of generalization and beating which will lead to strong generalization when combined.

Definition 11 (Generalization). We say that D1 generalizes D2 if:

∃δ, ∀k, C(D2, k) ⊆ C(D1, k + δ)

The meaning of this is that any tractable class of CSPs according to D1 is also tractable
according to D2.

Definition 12 (Beating). A method D1 beats a method D2 if:

∃k,∀m,C(D1, k) * C(D2,m)

We understand this as: some problems are tractable according to D1 and not tractable ac-
cording to D2.

The final comparison tool is the concept of strong generalization. Decomposition method
D1 strongly generalizes decomposition method D2 if D1 both generalizes and beats method
D2.

Let us now prove the following theorem:

Theorem 1. Hypertree decomposition strongly generalizes tree decomposition

8

Proof 1. First we have to show that hypertree decomposition generalizes tree decomposi-
tion. This follows from the definition of the methods : the hypertree decomposition method
is a generalization of the tree decomposition method, meaning that any tree decomposition
can be transformed into a hypertree decomposition of equal or lesser width. So Hypertree
decomposition generalizes tree decomposition.

Then we have to show that hypertree decomposition beats tree decomposition. Let us
consider the class of hypergraphs Kn that have n vertices and only one edge that covers all
n vertices. A hypertree decomposition of this would obviously be of width 1, hence we have:⋃

n>1

Kn ⊆ C(HD, 1)

On the other hand, a tree decomposition of this, would be a tree decomposition of the primal
graph of Kn, which is the clique of size n, leading to a width equal to n, hence we have:

∀d,
⋃
n>1

Kn * C(TD, d)

Thus we can conclude that hypertree decomposition strongly generalizes tree decomposition.

We ensured that going to hypertree decomposition is useful since it is strongly more
general than the tree decomposition. Further results made it clear that a CSP of bounded
hypertree width can be solved efficiently. But still, we could have a more general method,
and we will study a bit the generalized hypertree width.

4 Finding a good generalized hypertree decomposition

is hard [GMS09]

Recall the definition of hypertree decomposition (see section 2.2). The fourth condition of
this definition was put there only because it was needed to prove that any CSP of bounded
hypertree width is efficiently solvable. Thus this condition is not intrinsic and can be removed
in order to create a more general decomposition method, hence the name of generalized
hypertree decomposition.

Definition 13 (Generalized hypertree decomposition). A generalized hypertree decompo-
sition of a hypergraph H is a hypertree GHD = 〈T, χ, λ〉 for H verifying the following
conditions:

1. ∀h ∈ edges(H),∃p ∈ vertices(T), vertices(h) ⊆ χ(p), We say that p covers h;

2. for each vertex Y ∈ vertices(H), the set {p ∈ vertices(T)|Y ∈ χ(p)} induces a subtree
of T ;

3. ∀p ∈ vertices(T), χ(p) ⊆ vertices(λ(p));

9

And we get the generalized hypertree width definition the same way as we got the defi-
nition of hypertree width.

Before stating the main result of this section, let us introduce some needed material for
the upcoming proof.

First we define the ≤ relation on hypergraphs: we write H1 ≤ H2 if each edge of H1 is
contained in at least one edge of H2. Now we can state what a tree projection is.

Definition 14 (tree projection). A tree projection of H with respect to G is an acyclic
hypergraph H ′ such that G ≤ H ′ ≤ H.

Then for a hypergraph H = (V,E) we denote by Hk the hypergraph (V,Ek) where Ek

is the set of all unions of k or less hyperedges from H. We can see, from the definitions of
generalized hypertree decomposition and of tree projection, that the following lemma holds:

Lemma 1. A hypergraph H has a generalized hypertree width bounded by k if and only if
Hk has a tree projection with respect to H.

Let us move on to the hardness result for this decomposition method.

Theorem 2. Deciding whether a hypergraph H has a generalized hypertree width of at most
3 is NP Complete.

Proof 2 (sketch). The aim is to polynomially transform 3SAT into an instance of the tree
projection problem of the form (G,G3). We will admit the NP completeness of the tree
projection problem.

The graph G will be a complicated construction. The idea is to have a first subhypergraph
H with some special properties, based on a propositional formula in conjunctive normal form
ρ. To construct G we put two copies H and H ′ of the subhypergraph mentioned before and
link these with well chosen hyperedges. Then the projection tree T of G with respect to G3 is
carefully created as path between the subpart H to the subpart H ′.

The construction ensures that for any variable xi of ρ, ρ(xi) = 1 if a given vertex is in a
specific set of the projection tree and ρ(xi) = 0 otherwise. This conclude the (sketch of the)
proof.

5 Conclusion

Starting from the tree decomposition method we have defined a generalization and seen that
hypertree decomposition, while being strongly more general still defines tractable classes of
CSPs. By giving up on one condition in the definition of this method we ended up with
generalized hypertree decomposition. this technique has a more intuitive definition but de-
composing a hypergraph with this method will not be tractable in general since deciding
whether a hypergraph is of bounded generalized hypertree width is a NP complete problem.
This motivates the search for decomposition method more general than hypertree decompo-
sition but less than the generalized version, and this search has been started in [GMS09].

10

References

[GLS99] Georg Gottlob, Nicola Leone, and Francesco Scarcello. A comparison of structural
csp decomposition methods. In Proceedings of the 16th international joint confer-
ence on Artifical intelligence - Volume 1, pages 394–399, San Francisco, CA, USA,
1999. Morgan Kaufmann Publishers Inc.

[GMS09] Georg Gottlob, Zoltán Miklós, and Thomas Schwentick. Generalized hypertree
decompositions: Np-hardness and tractable variants. J. ACM, 56:30:1–30:32,
September 2009.

11

