
Drawing Planar Graphs
Lucie Martinet

November 29, 2010

1 Introduction
The field of planar graph drawing has become more and more important since the late 1960’s.
Although its first uses were mainly industrial, nowadays the field of readable representations
of graph has applications in various domains such as medical science, software engineering,
cartography, chemistry or natural language processing. Today, we not only try to draw planar
graph but we want to draw them aesthetically and/or with certains geometrical properties.

The increasing interest in graph drawing has naturally draw the attention of many researchers,
first on the planarity decision problem, and then on the planar embedding problem. Since then,
lots of very different algorithms have been designed to solve these problems. The complexity of
the algorithms has also been an issue, with many algorithms running in O(n2) time. Hopefully,
some linear time algorithm have also been designed; the first one is due to Hopcroft and Tarjan.
The variety of approaches has made planar drawing a very rich and flourishing field of research.

Because of this variety, we decided to focus on one particular technique to solve the planar
decision problem. Then we gives a property of planar graphs drawing. Finally, we present one
particular kind of planar embedding called orthogonal drawing.

2 Testing planarity
There exist various drawing standards to draw graphs. Vertices are usually represented by
symbols like points or boxes and edges by curves. In this report, the vertices will be points and
edges will be polilyne curves.

2.1 Drawing Planarity
We choose to present an algorithm to decide the graph planarity presented in [Wes96] because
this algorithm is simple, relatively instinctive and was founded early (1964) by French people.
This algorithm was first presented by Demoucron, Malgrange and Pertuiset.

This algorithm uses the notion of H-fragments which is following.

Definition 2.1.1 (H-fragments)
Let G = (V,E) be a graph and H = (VH , EH) a subgraph of G. An H-fragment is either:

• an edge not in H which endpoints are in H

• a connected component of G \VH together with the edges (and the vertices of attachment)
that connect it to H

1

v1
v2

v3

v4

v5
v6

v7

v8

v9

v1
v2

v3

v5
v6

v9

v2

v5

v4

v5

v9

v1 v3

v5

v7

v8

v9

Graph G Subgraph H of G H-fragments

Figure 1: A complete graph G, with a subgraph H of G and its associated H-fragments

Definition 2.1.2 (conflict fragments)
Let be C a cycle in a graph G. Two C-fragment A a,d B conflict:

• if they have three common vertices of attachment to C or

• if there are four vertices v1, v2, v3, v4 in cyclic order on C such that v1, v3 are vertices of
attachment of A and v2, v4 are vertices of attachment of B.

v1 v2 v3

v4

v5
v6

v7

v8

v9

Figure 2: To kind of conflicting fragments

Definition 2.1.3
A path between two vertices of attachment, in a given face F , is called α-path.

2.1.1 Description of the algorithm of Demoucron et all

The main idea of this algorithm is to iteratively construct a planar embedding starting with a
subgraph of G.

The algorithm uses the fact that if G is planar and if we have a planar embedding of a
subgraph H of G, we can extend it to a planar embedding of G. We thus start with an H which
is any cycle in G to ensure that the first H is planar. Then, we extend H iteratively as follows:

• we determine the H-fragments

• we select an H-fragment B and a face F which can accept B. A face accepts an H-fragment
if and only if it contains all the vertices of attachment of B.

• We choose an alpha-path to embed B in F .

This algorithm works only with 2-connected graphs.

2

Definition 2.1.4
A 2-connected graph G is graph which the minimum size of the set S of vertices such the Gr S
is disconnected or has only one vertex.

Definition 2.1.5
We call block a maximum subset of G which is 2-connected.

Thus, to know if a graph G is planar, we successively gives the block of G to the algorithm,
after having computing this blocks. We can compute these blocks using a Depth-First-Search
algorithm according to [Wes96].

Algorithme 1 : Testing planarity algorithm
Input : A 2-connected graph G
Output : true if G is planar, false otherwise
begin1

if |E| ≥ 3|V | − 6 then2

return false3

else4

H ← any cycle C of G5

F ← inner and outer faces of C6

while H 6= G do7

B ← all H-fragments of G8

foreach B ∈ B do9

F (B)← {F ∈ F | F contains all vertices of attachment of B}10

if ∃B, |F (B)| = 0 then return false11

if ∃B, |F (B)| = 1 then B0 ← B12

else B0 ← any B ∈ B13

P ← any α-path P of B014

H ← H ∪ P with P embedded into some F ∈ F (B0)15

F ← update faces of H16

return true17

end18

2.1.2 Proof of the correctness of the algorithm

In this section, we prove the correctness of the algorithm.

Theorem 2.1.1
The algorithm of Demoucron, Malgrange and Pertuiset for the computation of a planar embed-
ding of a graph is correct.

Lemma 2.1.1
If A and B are conflicting fragments such that |F (A)| ≥ 2 and |F (B)| ≥ 2 then F (A) = F (B)
and |F (B)| = 2 = |F (A)|.

Proof. (By contradiction)
Assume that F (A) 6= F (B), then, there exist three distinct faces f, g, h such that:

• f ∈ F (A)

• g ∈ F (B)

3

v1
v2

v3

v5
v6

v9

F1 = 1234965
F2 = 1234965

v2

v5 v1 v3

v4

v5

v9

v5

v7

v8

v9

S1 S2 S3 S4

F (S1) = 1, 2
F (S2) = 1, 2
F (S3) = 1, 2
F (S4) = 1, 2

v1
v2

v3

v5
v6

v7

v9

F1 = 123965
F2 = 567
F3 = 1239675

v2

v5 v1 v3

v4

v5

v9

v7

v8

v9

S1 S2 S3 S4

F (S1) = 1, 3
F (S2) = 1, 3
F (S3) = 1, 3
F (S4) = 3 c

v1
v2

v3

v5
v6

v7

v8

v9

F1 = 123965
F2 = 567
F3 = 6987
F4 = 1239875

v2

v5 v1 v3

v4

v5

v9

S1 S2 S3

F (S1) = 1, 4
F (S2) = 1, 4
F (S3) = 1

v1
v2

v3

v4

v5
v6

v7

v8

v9

F1 = 123945
F2 = 567
F3 = 6987
F4 = 5496
F5 = 1239875

v2

v5 v1 v3

v4

v6

S1 S2 S3

F (S1) = 1, 5
F (S2) = 1, 5
F (S3) = 2

v1
v2

v3

v4

v5
v6

v7

v8

v9

F1 = 123945
F2 = 567
F3 = 6987
F4 = 465
F5 = 496
F6 = 1239875

v2

v5 v1 v3

S1 S2

F (S1) = 1, 6
F (S2) = 1, 6

v1
v2

v3

v4

v5
v6

v7

v8

v9

F1 = 125
F2 = 23945
F3 = 567
F4 = 6987
F5 = 465
F6 = 496
F7 = 1239875

v1 v3

S1
F (S1) = 7

v1
v2

v3

v4

v5
v6

v7

v8

v9

F1 = 125
F2 = 23945
F3 = 567
F4 = 6987
F5 = 465
F6 = 496
F7 = 123
F8 = 139875

Table 1: Application of the algorithm

4

• h ∈ F (A) ∩ F (B), since A and B conflict.

• Each α-path L ⊂ A is embeddable into face f

• Each α-path M ⊂ B is embeddable into face g.

So, each pair (L,M) is embeddable outside face h and is also embeddable into h due to the
starting assumption, which is a contradiction with the assumption that A and B conflict. So,
because we ca not have three different faces, F (A) = F (B). |F (A)| = 2 because we assume that
F (A) and F (B) conflict, hence these fragments have each at least two vertices of attachment
are on the same α-path, which is a boundary between two faces. These two faces are the only
possible faces to embed fragment A. See the constructed figure 3.

f
g

hL M
Figure 3: Faces with competing fragments

To justify that the algorithm is actually an incremental algorithm, we use the notion of partial
embedding.

Definition 2.1.6
An embedding of H is a partial embedding of a planar G if we can get this embedding from an
embedding of G by removing edges and vertices.

Definition 2.1.7 (fragment graph)
The fragment graph S(H) is a graph which vertices are H-fragments. There is an edge between
any pair of conflicting fragments.

Lemma 2.1.2 (the fragment graph are bipartite)
If H is a partial embedding of G and if |F (A)| ≥ 2 for all fragments then S(H) is bipartite.

Proof. (by contradiction)
Assume that S(H) is not bipartite. Then there is a cycle C = (fr1, . . . , frn) of odd length

(thus n is even). By applying lemma 2.1.1 to fri and fri+1 we get that F (fri) = F (fri+1) and
there are exactly 2 admissible faces F1 and F2 for all the fragments in cycle C. Thus the only
way to embed the fragments is to put the α-paths Pi ⊂ fri into F1 when i is odd and into F2
when i is even (or vice-versa). But, frn has an even i and frn = fr1 and fr1 has an odd i.
Thus we cannot embed any more paths into H, so H is not a partial embedding of G.

Theorem 2.1.2 (each step of the algorithm produces a partial embedding)
If G is planar, each iteration of the algorithm produces a partial embedding H.

5

Proof. (by induction on the number of iterations)
Let n be the number of iterations.

• Base case: n = 1.
H is a cycle of G and can be reconstructed by removing edges and vertices from any planar
embedding of G.

• Induction from Gn to Gn+1.
Assuming that we start with a planar embedding of H, let analyze the behavior of the
algorithm. As G is planar, there are admissible faces for all H-fragments. Otherwise, there
would be an α-path in a fragment connecting different faces of the partial embedding,
which would be a partial embedding of a non-planar embedding of G.
The first phases of the algorithm computes the set of the fragments to allow. The partial
embedding Gn+1 is build during the steps 12-13-14. There are two cases which are analyzed
as follows.

1. There is a fragment A with only one admissible face. In this particular case, there
is only one way to embed an α-path P ⊂ A, so the algorithm produces a partial
embedding H ∪ P .

2. All fragments have more than one admissible face. We have to choose any α-path
P ⊂ A, for any Gn-fragment A. There are now two cases to consider:

– we choose the same face as in the planar embedding of G; we still have a partial
embedding of G

– we choose the other alternative; but the fragment graph S(Gn) is bipartite (see
lemma 2.1.2) and there only are two admissible faces f and g for all fragments
in the connected component of A. So no fragment in f conflicts with a fragment
in g. Then we can swap these two faces in the planar embedding of G and get a
new planar embedding of G, of which H is a partial embedding.

2.1.3 Complexity

The algorithm presented in section 2.1.1 runs in polynomial time, O(n2).
initialization First, we have to compute the different blocks of G. Using a Depth-First-

Search, we can compute them in O(n).
Then, the initialization requires us to find a cycle in the graph. In the general case, finding a

cycle has a complexity of O(n+ e). In our case, since |E| < 3|V | − 6, the complexity is reduced
to O(n). We consider here that we dispose of the following data structures:

• an adjacency list to store G = (V,E)

• a matrix n ∗ n (where n = |V |), which stores the edges of H. We do a transversal of this
matrix only once, to initialize it.

• a table of sorted lists to store the name of the faces of each vertex in G.

Number of iteration
Let first remind Euler’s theorem .

Theorem 2.1.3 (Euler)
If a connected plane graph G has exactly n vertices, e edges, and f faces, then n− e+ f = 2.

6

Thanks to the previous theorem, we deduce that the number of iterations is exactly equal to
|E| − |V |+ 1, and so it is less than 2|V | − 5, since |E| ≤ 3|V | − 6. Indeed, at each iteration, the
algorithm add a face to the drawing. So, the number of iteration is the number of faces of the
graph minus one, because the algorithm starts with one face already embedded.

Complexity of one iteration
Each step of the algorithm has a complexity no more than O(n):

• The step concerning the computation of the H-fragments can be achieved in O(n). Indeed,
it amounts to compute the component of the graph, and it can be achieved in one graph
transversal, so in O(n). We have to store the vertices of attachment of each H-fragment.

• Finding the potential faces of the H-fragments consists in doing a traversal of the vertices
of attachment of each H-fragment and do the intersection of faces containing each of these
fragments. We can find the result of the intersection in O(n), doing a traversal of each
attachment vertex and of their list of faces, conserving the result in a temporary list of
faces. If this list does contain a face which does not appear in the list of one attachment
vertex, we remove this face of the temporary list. As explained previously, this list can not
be longer as 2 faces after having checked two vertices of attachment.

• the two tests can be achieved in O(n) because the number of fragments is less than n and
they have each at most 2 faces.

• finding a path is achieved in one traversal.

• adding a path to H amount to add |P | ≤ n edges in the matrix storing H. Each addition
is achieved in O(1).

• To find the new constructing faces, we only need to split the previous existing face into
two subfaces. This can be done in less than O(n) time.

3 Straight-line drawing
A straight-line drawing of a planar graph is a drawing in which each edge is drawn as a straight-
line segment without crossing edges.

Theorem 3.0.4 (Fary)
Every planar graph has a straight line embedding.

To prove this theorem, it is sufficient to prove it on maximal connected planar graphs, in
which each face is a triangle. Indeed, if it is not the case, we can add dummy edges to complete
the graph and work on a maximal connected graph. And then, remove the dummy edges does
not change the properties of the planar graph.

Proof. By induction on the number n of vertices in graph G.
Let assume that we have a maximal connected planar graph G.
Base case: n = 3, because the graph is maximal connected, we have 2 faces: the outer one

and the internal one which is a triangle. This triangle can be drawn as a polygon with 3 sides.
These sides are straight-lines.

Induction case: we assume that every planar graph with n − 1 vertices has a straight-line
embedding. Let choose three vertices a, b, c be the outer face of the drawing of G = (V,E), with
|V | = n and |E| = m. We will use the fact that there exists a vertex v ∈ V r {a, b, c} which has

7

strictly less than 6 incident edges. Indeed, the sum of the degrees of these three outer points are
at least 7: 2 ∗ 3 outer-edges and at least an edge connected to the rest of the graph. Moreover,
we saw in class that every planar graph has the following property: 3n− 6 ≥ m. It implies the
following inequation: 6n − 12 ≥ 2m and 2m =

∑
v∈V deg(v). Let call restDeg the rest of the

combined degrees of the other vertices n−3. Then 6n−12 ≥ restDeg+7⇔ 6n−19 ≥ restDeg.
It implies that there are at least one vertex v ∈ V \ a, b, c with a degree at most 5.

Let remove such a vertex with degree k = deg(v) ≥ 5, together with the k incident edges.
As G is maximally connected, when we remove a vertex v and its incident edges. We obtain
G′, which we make maximal adding k − 3 edges. Indeed, let x be the number of edges to add:
|E′| = |E| − k + x⇔ x = |E′| − |E|+ k ⇔ x = 3(n− 1)− 6− [3n− 6] + k ⇔ x = k − 3.

By induction, G′ has a straight-line embedding in which a, b, c are the outer vertices. Remove
the added k − 3 edges of the straight-line embedding of G′. We obtain a polygonal face with at
most 5 sides, in which we have to embed vertex v. Le present the Chvátal’s Art Gallery theorem
to conclude.

Theorem 3.0.5 (Chvátal’s Art Gallery Theorem)
Let P be a polygon with r internal angles of P greater than π formed at vertex v, r ≥ 1. Then
r guardians are always sufficient and occasionally necessary to guard P .

Because of this theorem, each pentagon needs at most one guardian to guard P , what means,
that it is always possible to find a point in a pentagon from which we can draw a straight-line to
join any point of the boundary of P . Then, it is possible to embed v in our polygon, such that
we can join all the vertices belonging the polygon with a straight-line.

a

b c

v1

v2 v3

v4
v5

−→
graph triangulation

a

b c

v1

v2
v3

v4v5

−→
remove vertex 5

a

b c

v1

v2

v3

v4

apply induction

a

b c

v1
v2
v3

v4

v5

←−
Remove the dummy edges

a

b c

v1
v2
v3

v4

v5

←−
Add the removed vertex

a

b c

v1
v2
v3

v4

Figure 4: A planar can always be drawn with non crossing straight-line edges.

Until now, an algorithm to find a non-specific drawing of graph G has been presented and we
know that each planar graph admits a straight-line drawing. Nonetheless, we sometimes need
to give some additional constraints to draw planar graphs, and especially in the field of circuits
conception. For instance, we can require a drawing with polyline edges which are horizontal
or vertical segments series. We call such representations box-orthogonal drawing. In such

8

a drawing, each face is a rectilinear polygon. Some particular drawing are not always possible
for any planar graph. Let present in the following section the main idea for drawing such
representations of planar graphs.

4 Specific drawing: orthogonal drawing
As for many planar graph drawing, there exists a lot of distinct algorithms to find a box-
orthogonal drawing for planar graph. Some are linear, some are polynomial. One of these
algorithm reduces the orthogonal drawing in a flow network model. The goal of this algorithm
is to draw the orthogonal drawing with a minimum of changes of direction for the edges. In this
aim, they call an algorithm of minimum flow cost problem (see the report about the minimum
cost flow).

Let present here how they reduce the orthogonal drawing problem into a minimum flow cost
problem, and how they model the orthogonal drawing.

4.1 Basic facts

b b

b b

b

b

b

b

b

b

vertex

90◦ 180◦

vertex-angle

90◦ 90◦

270◦

bend-angle

b

180◦

90◦90◦

Sum of vertex-angles

around a vertex is 360◦

1

2
3

4

5
6

Sum of angles

Figure 5: Example of an orthogonal drawing with notations and facts

There are two kinds of angles:

• a vertex-angle is an angle formed by two edges incident to a vertex

• a bend-angle is an angle formed by two line segments of an edge

Figure 5 sums up the definitions and gives an example of an orthogonal drawing of a planar
graph. Clearly, all angles are k · 90◦ for some k ∈ {1, 2, 3, 4}.

Now notice the two following facts about angles:

Lemma 4.1.1 (Sum of vertex-angles)
The sum of vertex-angles around any vertex is 360◦.

Proof. See figure 5.

Lemma 4.1.2
The sum of the angles inside any polygonal face is (2p− 4)90◦, and the sum of the angles of the
outer polygonal face is (2p+ 4)90◦, where p is the number of angles of the polygon.

9

Proof. Consider a division of a polygon in r non-overlapping triangles T1, . . . , Tr such as in figure
5. Clearly the sum Σ of all angles inside the polygon is the sum of angles inside the triangles.
But the sum of all angles inside a triangle is 180◦. So Σ = r · 180◦. Let call p the number
of angles of the polygon. Then the polygon has p sides and it can inductively be shown that
r = p− 2:

D = TP1 P2

P1

{
p1 sides
p1 − 2 triangles

P2

{
p2 sides
p2 − 2 triangles

P

{
p = (p1 − 1) + (p2 − 1)− 1 sides
p− 2 = p1 + p2 − 1 triangles

So finally Σ = (p− 2)180◦ = (2p− 4)90◦.

Consider an outer polygon P . Now consider it’s complement P̄ . Then P̄ is a polygon.
Furthermore, both P and P̄ have p angles. Now notice that if P has an angle at point (x, y)
of value α, then P̄ has an angle at point (x, y) of value 360◦ − α. So we get that Σ(P) =
360◦ · p−Σ(P̄). Now apply the previous result to P and we get that Σ(P̄) = (p− 2)180◦ which
yields:

Σ(P) = 360◦ · p− (p− 2)180◦ = (p+ 2)180◦ = (2p+ 4)90◦

4.2 Orthogonal representation
We now introduce an orthogonal representation of an orthogonal drawing D in terms of bends
occurring along edges and angles formed by edges. Assume that for each face F , we already have
an ordered list P (F) = (ei1 , . . . , eik

) of edges forming the face F (see figure 6 for an example).
An orthogonal representation R of D is a set of circular ordered lists R(F), one for each face F
of D. Each element r of R(F) is a triple (er, sr, ar) where:

• er is an edge of F

• sr is a bit string providing information about the bends along er: the kth bit of sr describe
the kth bend on the right side of er, 0 indicates a 90◦ bend and 1 indicates a 270◦ bend.
An empty string ε means there is no bend, so it indicates a line segment

• ar ∈ {90◦, 180◦, 270◦, 360◦} indicates the angle between er and er′ where r′ is the element
following r is the circular list R(F)

Clearly, R describes exactly the shape of D without considering lengths of line seg-
ments and hence describes an equivalent class of orthogonal drawings of G with “similar shape”.
Conversely, the following theorem gives necessary and sufficient conditions for a set R to actually
describe an orthogonal drawing.

Theorem 1
A set R of circular lists as described above is an orthogonal representation of an orthogonal
drawing D of G if and only if the following conditions hold:

(1) There is some planar graph which planar representation is given by the e-fields of the lists
in R

10

(2) For each pair of element r, r′ ∈ R with er = er′ , sr = rev(sr′), that is the string sr can be
obtained by applying bitwise negation to the reversal of sr′

(3) For each element r, define the rotation ρ(r) as follows:

ρ(r) = |sr|0 − |sr|1 +
(

2− ar

90◦
)

where |sr|i is the number of i in sr. Then

∑
r∈R(F)

ρ(r) =
{

+4 if F is an inner face
−4 if F is the outer face F0

(4) For each vertex v, the sum of the vertex-angles around v given by the a-field in R is equal
to 360◦

Proof. ⇒ First assume that r is an orthogonal representation of an orthogonal drawing D.

(1) This is trivial since D is an orthogonal drawing and thus G must be planar

(2) Let r, r′ ∈ R with er = er′ . Then one of them must be described in clockwise order and
the other in counter-clockwise order, so to obtain sr from sr′ , one must reverse the bits.
Furthermore, a 90◦ bend in one order now become a 270◦ in the other order so one must
apply bitwise negation.

1

0 0

1 1

s = 110010

1 1

0 0 s = 01100

(3) Let F be a face with p angles (and thus p faces) and v vertices then there are v vertex-angles
and p− v bend-angles, so:∑

r∈R(F)

ρ(r) =
∑

r∈R(F)

(
|sr|0 − |sr|1 +

(
2− ar

90◦
))

= #{90◦ bend-angles in F} −#{270◦ bend-angles in F}

+ 2v −
∑
{vertex-angles in F}

90◦

But remember that following from lemma 4.1.2 we have:

2p+ 4δ =
∑
{angles in F}

90◦

=
∑
{vertex-angles in F}+ 90◦#{90◦ bend-angles in F}+ 270◦#{270◦ bend-angles in F}

90◦

=
∑
{vertex-angles in F}

90◦ + #{90◦ bend-angles in F}+ 3#{270◦ bend-angles in F}

= 2v + 2(p− v) + 4δ

11

where δ = +1 if F is the outer face and δ = −1 otherwise. Thus:∑
r∈R(F)

ρ(r) = −2(p− v)− 4δ + 2#{90◦ bend-angles in F}+ 2#{270◦ bend-angles in F}

= −2(p− v)− 4δ + 2 #{bend-angles in F}︸ ︷︷ ︸
=p−v

= −4δ

(4) This is a direct consequence of lemma 4.1.1

⇐ Assume that properties (1) to (4) are satisfied by R. Then (1) implies that the faces described
in R are the faces of the planar graph G. Furthermore, (3) implies that each described face is
rectilinear, so putting things together, it means that each face of G is rectilinear. Property (2)
ensure that the faces are consistent, i.e. there is not “hole”. Finally, property 4 ensures the faces
fill the entire space and are non-overlapping.

b

b

b

b

b

b

b

b

F1 F2

1

11

1

non-existent face

s = 11

s′ = 11

s 6= rev(s′)

To find an orthogonal drawing, a method which is used is to reduce this problem into a flow
network problem. That is why the problem of flow networks is shortly described in section 4.2.1
and in section 4.2.2, we explain how to actually reduce an orthogonal drawing into a network
flow problem.

4.2.1 Flow network

As it will be presented in more details in an other report, a flow network is a directed graph
N = (V,E) such that N has to disjoint non-empty sets of distinguished nodes called its sources
and sinks. Each arc e of N is labeled with three nonnegative integers:

• a lower bound λ(e)

• a capacity µ(e) and

• a cost c(e)

For each node u which neither a source nor a sink, the sum of all the flows of the incoming
edges must be equal to the sum of the flows of all the outgoing edges (see figure 7).

Definition 4.2.1 (Production and Consumption)
Each node has a production σ(v) ≥ 0 and a consumption −σ(v) ≥ associated to a flow. Only the
sources and the sink have respectively a consumption or a production equal to 0.

12

b b

b

b

b

bF0

e1

e2

F1

e4

e3

e5

e6

e7

e8

F2

F3

b

b

b

b

b

b

F0

F1

F3

F2

e1

e2

e6

e7

e5

e8

e4

e3

P (F0) = (e1, e4, e3, e2)
P (F1) = (e1, e2, e6, e5)
P (F2) = (e3, e8, e7, e7, e6)
P (F3) = (e5, e8, e4)

R(F0) = ((e1, ε, 180
◦), (e4, 11, 90◦), (e3, 11, 180◦), (e2, 1, 180◦))

R(F1) = ((e1, ε, 180
◦), (e2, 0, 90◦), (e6, ε, 90◦), (e5, ε, 90◦))

R(F2) = ((e3, 00, 180
◦), (e8, 0, 90◦), (e7, 10, 360◦), (e7, 10, 90◦), (e6, ε, 90◦))

R(F3) = ((e5, ε, 90
◦), (e8, 1, 90◦), (e4, 00, 90◦))

s = ε

0

1 1

0
s = 0110

Figure 6: Example of an orthogonal representation

3
7

2

4

8

Figure 7: Incoming and outgoing flows of a vertex v: 3+7+2= 4+8= 12

Definition 4.2.2 (Flow)
A flow φ in N associates a nonnegative integer φ(e) with each arc e, which is the flow of arc e.
The flow of each arc e must satisfy the following inequality: λ(e) ≤ φ(e) ≤ µ(e).

Definition 4.2.3 (Cost)
We denote the cost of a flow φ: COST (φ).

COST (φ) =
∑

e∈E c(e)φ(e)

The flow problem states as follows. Given a network N , find a feasible flow φ, such that all
the conditions described above are satisfied.

4.2.2 Finding an Orthogonal Drawing

In this section, we explain how to transform a drawing orthogonal problem, described in section
4.2, into a flow problem. Each feasible flow is a solution for an orthogonal drawing.

13

We first build another graph Gf which gives the informations concerning the nodes of G and
their place in the faces of the drawing.

We introduce two types of vertices.

• vertices in UV which represent the set of vertices of G. The production of each nodes in UV

represents the number of wires which can be linked to these nodes. Thus their production
is µ = 4. This type of vertices are sources.

• vertices in UF represent the faces of the drawing. The consumption of vertices in UF
represents the number of bends they can admit for their boundary, thus µ = +∞. This
kind of vertices are called sinks.

-12
-6

-2

-4

4

4

4

4

4

4

Figure 8: Graph of nodes and faces

We also introduce two kind of edges.

• the edges of type (uv, uF) which link a vertex in UV and a vertex in UF : we denote this
set of edges EV . These edges mean that vertex v belongs to face F . The flows of this kind
of edges corresponds to the sum of all the angles formed by the incident edges of v inside
face f .

• the edges of type (uF , uF ′) which link to vertices in UF . We denote this set EF . The flow
of these edges represents the number of bends separating face F and face F ′.

Because of lemma 4.1.1, each vertex v ∈ UV has a production σ(v) = 4. Because of lemma
4.1.2, each vertex v ∈ UF has a consumption

−σ(v) =
{

2p(F)− 4 if F is an inner face
2p(F) + 4 if F is the outer face F0

This definition satisfies the flow conditions. Clearly, the total production is 4n, with n the
total number of vertices in G to be orthogonalized. The total consumption can be expressed as
follows: ∑

F 6=F0

(2p(F)− 4) + 2p(F0) + 4 = 2p(F0) +
∑

F 6=F0

(2p(F))︸ ︷︷ ︸
4e

−
∑

F 6=F0

4 + 4

= 4e− (f − 1) ∗ 4 + 4
= 4e− 4f − 8
= 4n according to Euler’s formula

14

-12
-6

-2

-4

4

4

4

4

4

4

1 ≤ σ(e) ≤ 4

0 ≤ σ(e) ≤ +∞

(a) Production and consump-
tion of nodes and faces, with
their associated edges

2
0

0
1

1

2

-12
-6

-2

-4

4

4

4

4

4

4

1 ≤ σ(e) ≤ 4

0 ≤ σ(e) ≤ +∞

(b) Flows corresponding to
the number of bends between
faces

2

1

1

1

4

1
1

1

1

2

2

1

2

1

2

-12
-6

-2

-4

4

4

4

4

4

4

1 ≤ σ(e) ≤ 4

0 ≤ σ(e) ≤ +∞

(c) Flows corresponding to
edges in EV

Figure 9: Construction of the flow network

Thus, the sum of consumption is equal to the sum of production.

Theorem 4.2.1
Let G be a plane graph and N the network constructed from G. For each integer flow σ in
network N , there is an orthogonal representation R that represents an orthogonal drawing D of
G and whose number of bends is equal to the cost of the flow σ. In particular, the minimum
cost flow can be used to construct a bend-optimal orthogonal drawing of G. (see [TS04] for more
explanation)

2

1

1

1
1

1 4

11
1

1

2

2

2

3

1

2

0 ≤ σ(e) ≤ +∞
1 ≤ σ(e) ≤ 4

Figure 10: An optimal orthogonal representation

5 Conclusion
As already suggested in introduction, graph drawing is an important field which has a lot of
application in distinct areas of research. Planar graph drawing was first motivated by the field

15

involving circuits building. We saw that a straight line drawing is always possible for a planar
graph. Indeed, crossing wires are not advised to get good results. Specific planar graph drawing
such as orthogonal drawing are easy to use in practice even if they are not always possible.

References
[AXE] KOHNERT AXEL. Algorithm of demoucron, malgrange, pertuiset.

[Ede] Herbert Edelsbrunner. 23 planar graphs. Lecture from Duke University of Computer
Science.

[MK] Puneet Maheswari and Nagendra Kamath. Planarity testing. www.utdallas.edu/
˜nkk071000/combinatorics/planarity.ppt.

[TS04] Nishizeki Takao and Rahman Saidur. Planar Graph Drawing, volume 12. New Jersey ;
London ; Singapore, [etc.] : World Scientific, 2004.

[Wes96] D. B. West. Introduction to Graph Theory. Prentice-Hall, 1996.

16

